3 research outputs found

    Automatic Gaze Classification for Aviators: Using Multi-task Convolutional Networks as a Proxy for Flight Instructor Observation

    Get PDF
    In this work, we investigate how flight instructors observe aviator scan patterns and assign quality to an aviator\u27s gaze. We first establish the reliability of instructors to assign similar quality to an aviator\u27s scan patterns, and then investigate methods to automate this quality using machine learning. In particular, we focus on the classification of gaze for aviators in a mixed-reality flight simulation. We create and evaluate two machine learning models for classifying gaze quality of aviators: a task-agnostic model and a multi-task model. Both models use deep convolutional neural networks to classify the quality of pilot gaze patterns for 40 pilots, operators, and novices, as compared to visual inspection by three experienced flight instructors. Our multi-task model can automate the process of gaze inspection with an average accuracy of over 93.0% for three separate flight tasks. Our approach could assist existing flight instructors to provide feedback to learners, or it could open the door to more automated feedback for pilots learning to carry out different maneuvers

    MLGaze: Machine Learning-Based Analysis of Gaze Error Patterns in Consumer Eye Tracking Systems

    Full text link
    Analyzing the gaze accuracy characteristics of an eye tracker is a critical task as its gaze data is frequently affected by non-ideal operating conditions in various consumer eye tracking applications. In this study, gaze error patterns produced by a commercial eye tracking device were studied with the help of machine learning algorithms, such as classifiers and regression models. Gaze data were collected from a group of participants under multiple conditions that commonly affect eye trackers operating on desktop and handheld platforms. These conditions (referred here as error sources) include user distance, head pose, and eye-tracker pose variations, and the collected gaze data were used to train the classifier and regression models. It was seen that while the impact of the different error sources on gaze data characteristics were nearly impossible to distinguish by visual inspection or from data statistics, machine learning models were successful in identifying the impact of the different error sources and predicting the variability in gaze error levels due to these conditions. The objective of this study was to investigate the efficacy of machine learning methods towards the detection and prediction of gaze error patterns, which would enable an in-depth understanding of the data quality and reliability of eye trackers under unconstrained operating conditions. Coding resources for all the machine learning methods adopted in this study were included in an open repository named MLGaze to allow researchers to replicate the principles presented here using data from their own eye trackers.Comment: https://github.com/anuradhakar49/MLGaz

    Prediction of gaze estimation error for error-aware gaze-based interfaces

    No full text
    Gaze estimation error is inherent in head-mounted eye trackers and seriously impacts performance, usability, and user experience of gaze-based interfaces. Particularly in mobile settings, this error varies constantly as users move in front and look at different parts of a display. We envision a new class of gaze-based interfaces that are aware of the gaze estimation error and adapt to it in real time. As a first step towards this vision we introduce an error model that is able to predict the gaze estimation error. Our method covers major building blocks of mobile gaze estimation, specifically mapping of pupil positions to scene camera coordinates, marker-based display detection, and mapping of gaze from scene camera to on-screen coordinates. We develop our model through a series of principled measurements of a state-of-the-art head-mounted eye tracker
    corecore