999 research outputs found

    D3P : Data-driven demand prediction for fast expanding electric vehicle sharing systems

    Get PDF
    The future of urban mobility is expected to be shared and electric. It is not only a more sustainable paradigm that can reduce emissions, but can also bring societal benefits by offering a more affordable on-demand mobility option to the general public. Many car sharing service providers as well as automobile manufacturers are entering the competition by expanding both their EV fleets and renting/returning station networks, aiming to seize a share of the market and to bring car sharing to the zero emissions level. During their fast expansion, one determinant for success is the ability of predicting the demand of stations as the entire system is growing continuously. There are several challenges in this demand prediction problem: First, unlike most of the existing work which predicts demand only for static systems or at few stages of expansion, in the real world we often need to predict the demand as or even before stations are being deployed or closed, to provide information and decision support. Second, for the new stations to be deployed, there is no historical data available to help the prediction of their demand. Finally, the impact of deploying/closing stations on the other stations in the system can be complex. To address these challenges, we formulate the demand prediction problem in the context of fast expanding electric vehicle sharing systems, and propose a data-driven demand prediction approach which aims to model the expansion dynamics directly from the data. We use a local temporal encoding process to handle the historical data for each existing station, and a dynamic spatial encoding process to take correlations between stations into account with Graph Convolutional Neural Networks (GCN). The encoded features are fed to a multi-scale predictor, which forecasts both the long-term expected demand of the stations and their instant demand in the near future. We evaluate the proposed approach with real-world data collected from a major EV sharing platform for one year. Experimental results demonstrate that our approach significantly outperforms the state of the art, showing up to three-fold performance gain in predicting demand for the expanding EV sharing systems

    A systematic literature review

    Get PDF
    Albuquerque, V., Dias, M. S., & Bacao, F. (2021). Machine learning approaches to bike-sharing systems: A systematic literature review. ISPRS International Journal of Geo-Information, 10(2), 1-25. [62]. https://doi.org/10.3390/ijgi10020062Cities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and introduces a corresponding systematic literature review, focusing on machine learning techniques’ contributions applied to bike-sharing systems to improve cities’ mobility. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) method was adopted to identify specific factors that influence bike-sharing systems, resulting in an analysis of 35 papers published between 2015 and 2019, creating an outline for future research. By means of systematic literature review and bibliometric analysis, machine learning algorithms were identified in two groups: classification and prediction.publishersversionpublishe

    Deep Learning for Short-Term Prediction of Available Bikes on Bike-Sharing Stations

    Get PDF
    Bike-sharing is adopted as a valid option replacing traditional public transports since they are eco-friendly, prevent traffic congestions, reduce any possible risk of social contacts which happen mostly on public means. However, some problems may occur such as the irregular distribution of bikes on related stations/racks/areas, and the difficulty of knowing in advance what the rack status will be like, or predicting if there will be bikes available in a specific bike-station at a certain time of the day, or if there will be a free slot to leave the rented bike. Thus, providing predictions can be useful to improve the service quality, especially in those cases where bike racks are used for e-bikes, which need to be recharged. This paper compares the state-of-the-art techniques to predict the number of available bikes and free bike-slots in bike-sharing stations (i.e., bike racks). To this end, a set of features and predictive models were compared to identify the best models and predictors for short-term predictions, namely of 15, 30, 45, and 60 minutes. The study has demonstrated that deep learning and in particular Bidirectional Long Short-Term Memory networks (Bi-LSTM) offers a robust approach for the implementation of reliable and fast predictions of available bikes, even with a limited amount of historical data. This paper has also reported an analysis of feature relevance based on SHAP that demonstrated the validity of the model for different cluster behaviours. Both solution and its validation were derived by using data collected in bike-stations in the cities of Siena and Pisa (Italy), in the context of Sii-Mobility National Research Project on Mobility and Transport and Snap4City Smart City IoT infrastructure

    A spatio-temporal deep learning model for short-term bike-sharing demand prediction

    Get PDF
    Bike-sharing systems are widely operated in many cities as green transportation means to solve the last mile problem and reduce traffic congestion. One of the critical challenges in operating high-quality bike-sharing systems is rebalancing bike stations from being full or empty. However, the complex characteristics of spatiotemporal dependency on usage demand may lead to difficulties for traditional statistical models in dealing with this complex relationship. To address this issue, we propose a graph-based neural network model to learn the representation of bike-sharing demand spatial-temporal graph. The model has the ability to use graph-structured data and takes both spatial -and temporal aspects into consideration. A case study about bike-sharing systems in Nanjing, a large city in China, is conducted based on the proposed method. The results show that the algorithm can predict short-term bike demand with relatively high accuracy and low computing time. The predicted errors for the hourly station level usage demand prediction are often within 20 bikes. The results provide helpful tools for short-term usage demand prediction of bike-sharing systems and other similar shared mobility systems

    Graph Construction with Flexible Nodes for Traffic Demand Prediction

    Full text link
    Graph neural networks (GNNs) have been widely applied in traffic demand prediction, and transportation modes can be divided into station-based mode and free-floating traffic mode. Existing research in traffic graph construction primarily relies on map matching to construct graphs based on the road network. However, the complexity and inhomogeneity of data distribution in free-floating traffic demand forecasting make road network matching inflexible. To tackle these challenges, this paper introduces a novel graph construction method tailored to free-floating traffic mode. We propose a novel density-based clustering algorithm (HDPC-L) to determine the flexible positioning of nodes in the graph, overcoming the computational bottlenecks of traditional clustering algorithms and enabling effective handling of large-scale datasets. Furthermore, we extract valuable information from ridership data to initialize the edge weights of GNNs. Comprehensive experiments on two real-world datasets, the Shenzhen bike-sharing dataset and the Haikou ride-hailing dataset, show that the method significantly improves the performance of the model. On average, our models show an improvement in accuracy of around 25\% and 19.5\% on the two datasets. Additionally, it significantly enhances computational efficiency, reducing training time by approximately 12% and 32.5% on the two datasets. We make our code available at https://github.com/houjinyan/HDPC-L-ODInit

    Recent Advances in Graph-based Machine Learning for Applications in Smart Urban Transportation Systems

    Full text link
    The Intelligent Transportation System (ITS) is an important part of modern transportation infrastructure, employing a combination of communication technology, information processing and control systems to manage transportation networks. This integration of various components such as roads, vehicles, and communication systems, is expected to improve efficiency and safety by providing better information, services, and coordination of transportation modes. In recent years, graph-based machine learning has become an increasingly important research focus in the field of ITS aiming at the development of complex, data-driven solutions to address various ITS-related challenges. This chapter presents background information on the key technical challenges for ITS design, along with a review of research methods ranging from classic statistical approaches to modern machine learning and deep learning-based approaches. Specifically, we provide an in-depth review of graph-based machine learning methods, including basic concepts of graphs, graph data representation, graph neural network architectures and their relation to ITS applications. Additionally, two case studies of graph-based ITS applications proposed in our recent work are presented in detail to demonstrate the potential of graph-based machine learning in the ITS domain
    • …
    corecore