6,760 research outputs found

    About adaptive coding on countable alphabets

    Get PDF
    This paper sheds light on universal coding with respect to classes of memoryless sources over a countable alphabet defined by an envelope function with finite and non-decreasing hazard rate. We prove that the auto-censuring AC code introduced by Bontemps (2011) is adaptive with respect to the collection of such classes. The analysis builds on the tight characterization of universal redundancy rate in terms of metric entropy % of small source classes by Opper and Haussler (1997) and on a careful analysis of the performance of the AC-coding algorithm. The latter relies on non-asymptotic bounds for maxima of samples from discrete distributions with finite and non-decreasing hazard rate

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Statistical lossless compression of space imagery and general data in a reconfigurable architecture

    Get PDF

    Universal Coding and Prediction on Martin-L\"of Random Points

    Full text link
    We perform an effectivization of classical results concerning universal coding and prediction for stationary ergodic processes over an arbitrary finite alphabet. That is, we lift the well-known almost sure statements to statements about Martin-L\"of random sequences. Most of this work is quite mechanical but, by the way, we complete a result of Ryabko from 2008 by showing that each universal probability measure in the sense of universal coding induces a universal predictor in the prequential sense. Surprisingly, the effectivization of this implication holds true provided the universal measure does not ascribe too low conditional probabilities to individual symbols. As an example, we show that the Prediction by Partial Matching (PPM) measure satisfies this requirement. In the almost sure setting, the requirement is superfluous.Comment: 12 page
    corecore