2,926 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Developing genomic models for cancer prevention and treatment stratification

    Get PDF
    Malignant tumors remain one of the leading causes of mortality with over 8.2 million deaths worldwide in 2012. Over the last two decades, high-throughput profiling of the human transcriptome has become an essential tool to investigate molecular processes involved in carcinogenesis. In this thesis I explore how gene expression profiling (GEP) can be used in multiple aspects of cancer research, including prevention, patient stratification and subtype discovery. The first part details how GEP could be used to supplement or even replace the current gold standard assay for testing the carcinogenic potential of chemicals. This toxicogenomic approach coupled with a Random Forest algorithm allowed me to build models capable of predicting carcinogenicity with an area under the curve of up to 86.8% and provided valuable insights into the underlying mechanisms that may contribute to cancer development. The second part describes how GEP could be used to stratify heterogeneous populations of lymphoma patients into therapeutically relevant disease sub-classes, with a particular focus on diffuse large B-cell lymphoma (DLBCL). Here, I successfully translated established biomarkers from the Affymetrix platform to the clinically relevant Nanostring nCounter© assay. This translation allowed us to profile custom sets of transcripts from formalin-fixed samples, transforming these biomarkers into clinically relevant diagnostic tools. Finally, I describe my effort to discover tumor samples dependent on altered metabolism driven by oxidative phosphorylation (OxPhos) across multiple tissue types. This work was motivated by previous studies that identified a therapeutically relevant OxPhos sub-type in DLBCL, and by the hypothesis that this stratification might be applicable to other solid tumor types. To that end, I carried out a transcriptomics-based pan-cancer analysis, derived a generalized PanOxPhos gene signature, and identified mTOR as a potential regulator in primary tumor samples. High throughput GEP coupled with statistical machine learning methods represent an important toolbox in modern cancer research. It provides a cost effective and promising new approach for predicting cancer risk associated to chemical exposure, it can reduce the cost of the ever increasing drug development process by identifying therapeutically actionable disease subtypes, and it can increase patients’ survival by matching them with the most effective drugs.2016-12-01T00:00:00

    Understanding Huntington\u27s disease using Machine Learning Approaches

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative disorder with a complex pathophysiology. Despite extensive studies to study the disease, the sequence of events through which mutant Huntingtin (mHtt) protein executes its action still remains elusive. The phenotype of HD is an outcome of numerous processes initiated by the mHtt protein along with other proteins that act as either suppressors or enhancers of the effects of mHtt protein and PolyQ aggregates. Utilizing an integrative systems biology approach, I construct and analyze a Huntington’s disease integrome using human orthologs of protein interactors of wild type and mHtt protein. Analysis of this integrome using unsupervised machine learning methods reveals a novel connection linking mHtt protein with chromosome condensation and DNA repair. I generate a list of candidate genes that upon validation in a yeast and drosophila model of HD are shown to affect the mHtt phenotype and provide an in-vivo evidence of our hypothesis. A separate supervised machine learning approach is applied to build a classifier model that predicts protein interactors of wild type and mHtt protein. Both the machine learning models that I employ, have important applications for Huntington’s disease in predicting both protein and genetic interactions of huntingtin protein and can be easily extended to other PolyQ and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease

    Leveraging omic features with F3UTER enables identification of unannotated 3'UTRs for synaptic genes

    Get PDF
    There is growing evidence for the importance of 3' untranslated region (3'UTR) dependent regulatory processes. However, our current human 3'UTR catalogue is incomplete. Here, we develop a machine learning-based framework, leveraging both genomic and tissue-specific transcriptomic features to predict previously unannotated 3'UTRs. We identify unannotated 3'UTRs associated with 1,563 genes across 39 human tissues, with the greatest abundance found in the brain. These unannotated 3'UTRs are significantly enriched for RNA binding protein (RBP) motifs and exhibit high human lineage-specificity. We find that brain-specific unannotated 3'UTRs are enriched for the binding motifs of important neuronal RBPs such as TARDBP and RBFOX1, and their associated genes are involved in synaptic function. Our data is shared through an online resource F3UTER ( https://astx.shinyapps.io/F3UTER/ ). Overall, our data improves 3'UTR annotation and provides additional insights into the mRNA-RBP interactome in the human brain, with implications for our understanding of neurological and neurodevelopmental diseases

    Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features.

    Get PDF
    Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors
    • …
    corecore