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ABSTRACT 

Malignant tumors remain one of the leading causes of mortality with over 8.2 million 

deaths worldwide in 2012. Over the last two decades, high-throughput profiling of the 

human transcriptome has become an essential tool to investigate molecular processes 

involved in carcinogenesis. In this thesis I explore how gene expression profiling (GEP) 

can be used in multiple aspects of cancer research, including prevention, patient 

stratification and subtype discovery. 

The first part details how GEP could be used to supplement or even replace the current 

gold standard assay for testing the carcinogenic potential of chemicals. This 

toxicogenomic approach coupled with a Random Forest algorithm allowed me to build 

models capable of predicting carcinogenicity with an area under the curve of up to 86.8% 
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and provided valuable insights into the underlying mechanisms that may contribute to 

cancer development.  

The second part describes how GEP could be used to stratify heterogeneous populations 

of lymphoma patients into therapeutically relevant disease sub-classes, with a particular 

focus on diffuse large B-cell lymphoma (DLBCL). Here, I successfully translated 

established biomarkers from the Affymetrix platform to the clinically relevant Nanostring 

nCounter© assay. This translation allowed us to profile custom sets of transcripts from 

formalin-fixed samples, transforming these biomarkers into clinically relevant diagnostic 

tools. 

Finally, I describe my effort to discover tumor samples dependent on altered metabolism 

driven by oxidative phosphorylation (OxPhos) across multiple tissue types. This work 

was motivated by previous studies that identified a therapeutically relevant OxPhos sub-

type in DLBCL, and by the hypothesis that this stratification might be applicable to other 

solid tumor types. To that end, I carried out a transcriptomics-based pan-cancer analysis, 

derived a generalized PanOxPhos gene signature, and identified mTOR as a potential 

regulator in primary tumor samples.  

High throughput GEP coupled with statistical machine learning methods represent an 

important toolbox in modern cancer research. It provides a cost effective and promising 

new approach for predicting cancer risk associated to chemical exposure, it can reduce 

the cost of the ever increasing drug development process by identifying therapeutically 

actionable disease subtypes, and it can increase patients’ survival by matching them with 

the most effective drugs.  
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TP ................................................................................................................... TRUE POSITIVE 
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 Transcriptional profiling 1.1

1.1.1 Rational of quantifying gene expression 

The central dogma of molecular biology describes the production of proteins from 

DNA. In short, a specific sequence of DNA, also known as a protein-coding gene, is 

transcribed into pre-mRNA by RNA polymerase. This mRNA is then spliced, and a 5’ 

cap and a 3’ poly-adenine tail are added. Finally, the mature mRNA species is translated 

into proteins by the ribosome. The set of all proteins is called the proteome, which 

provides a snapshot of the biological processes within a cell. Unfortunately, it is still not 

feasible to measure the level of all proteins, so the next best alternative is to quantify the 

levels of all mRNA species, which make up the transcriptome. Even though there is not 

always a strong correlation between the levels of mRNA and corresponding proteins due 

to post transcriptional gene regulatory events  (Greenbaum et al. 2003), quantification of 

mRNA abundance still provides biologically relevant information, such as differences 

between molecular cancer subtypes or biological processes that are activated as response 

to treatment with chemical compounds. The following section will present three different 

methods to measure the transcriptome.  

 

1.1.2 Oligonucleotide Microarrays 

There is a variety of different types of gene expression microarrays. This section 

will focus on the most popular Affymetrix gene arrays since these were used for 

transcription quantification in rats in Chapter 2 and in humans in Chapter 4 and 5.  
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Affymetrix GeneChips™ are composed of hundreds of thousands of probes, each of 

which is complementary to a specific mRNA sequence. Each type of probe contains a 

unique 25-mer DNA oligonucleotide, which is synthesized onto the microarray using 

photolithographic synthesis. For a microarray experiment, mRNA from a biological 

sample is extracted, purified, fluorescently labeled and applied onto a GeneChip. Each 

mRNA species can only hybridize onto an exact complementary oligonucleotide. After 

hybridization, mRNA that could not attach to a complementary probe is washed away 

and the chip is scanned. During this process, probes that contain labelled hybridized 

mRNA emit light and the intensity of this emission can be used to determine the amount 

of hybridization of a particular mRNA species (Heinrich Goehlmann & Talloen 2009).  

During standard Affymetrix preprocessing, 14 unique probes are summarized into 

a probe set and each gene is represented by one or more of these probe sets. However, the 

GeneChips used in the experiments throughout the thesis (Human Gene 

U133A/B/Plus2.0 and Rat Gene 230.2) were designed with a dated genome annotation, 

which have issues such as pseudogenes and probes that include SNPs. Thus, in order to 

ameliorate these issues and also to avoid the one-to-many mapping between probe sets 

and genes, custom chip definition files from Brainarray (Dai et al. 2005) were used to 

summarize the probes directly to gene levels throughout this thesis.   

1.1.3 RNA Sequencing 

Microarrays are heavily dependent on the quality of the genome annotations. There are an 

approximate 500,000 to 2,000,000 common SNP in the human genome, and probes 



  4 

 

 

designed in regions encompassing these SNP will result in misleading estimation of 

transcript abundance levels (Siu et al. 2011). Next generation sequencing does not suffer 

from this issue.  

While RNA-Seq does make use of reference genomes or transcriptomes, it allows for 

errors in the alignment between pieces of transcripts known as sequencing reads and the 

reference. Generally, microarray technology allows only the detection of the specific 

analytes, which it was designed for, whereas RNA-Sequencing is more flexible and is 

better suited to answer open ended research questions. Thus, RNASeq has a much 

broader range of applications, such as the ability to look at alternative gene spliced 

transcripts, post-transcriptional modifications, gene fusions, mutations/SNPs and changes 

in gene expression (Maher et al. 2009). Furthermore, current RNA-sequencing methods 

allow not only the quantification of messenger RNA level, they also give insight into 

total RNA, non-coding RNA, micro RNA, transfer RNA, and ribosomal RNA (Ingolia et 

al. 2012).  

In a typical workflow of RNA sequencing, mRNA is converted into a library of cDNA 

fragments, by either RNA fragmentation and transcription into cDNA using reverse 

transcriptase or by using transcriptase first and DNA fragmentation afterwards. Then 

sequencing adaptors are added to each cDNA fragment and the first N (typically 50-100) 

base pairs are determined using high throughput sequencing technology. For paired end 

sequencing the fragment is sequenced from both sides, which allows better identification 

of splice junctions. The resulting sequence reads are aligned onto a reference genome or 
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transcriptome and the number of aligned reads can be used to quantify the expression 

level of each gene (Wang et al. 2009). 

1.1.4 Nanostring nCounter© 

Both oligonucleotide microarrays and RNA-sequencing are well suited as 

research tools for the discovery of biological mechanisms of actions or the discovery of 

molecular subtypes. However, for clinical applications they are often too costly, and 

more importantly they are not reliably reproducible as they suffer from considerable 

batch effects (Su et al. 2014; Tillinghast 2010; Shi et al. 2010). The Nanostring 

nCounter© platform does not suffer from the same issues, but it is limited to multiplexing 

only up to 800 genes (Geiss et al. 2008). A standard workflow for gene expression-based 

analysis is to use full transcriptome quantification assays to identify a set of genes, a gene 

signature, that can serve as a clinical diagnostic or prognostic indicator. Typical 

signatures are usually in the range of dozens to few hundreds transcripts (e.g. (Lamond et 

al. 2013; Biroschak et al. 2013; Smaglo et al. 2015)), which can then be measured using 

the nCounter system. nCounter can measure gene expression without amplification or 

cloning, can detect gene expression from as little as 300 ng mRNA, works well with 

mRNA extracted from paraffin-embedded formalin-fixed (FFPE) samples, and is 

therefore ideal in clinical settings, where the amount of RNA is very limited since it is 

sourced from tissue biopsies (Geiss et al. 2008). 

Similar to RNA-Sequencing, nCounter provides a digital readout of the amount of 

a transcript in a sample. The levels of each transcript can be established by counting the 
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number of molecules of each sequence type and calculating concentration with reference 

to internal standards (Geiss et al. 2008). To account for batch effects, nCounter analyses 

are performed in batches of 12 samples, where one of the 12 samples contains 

standardized spike-in oligonucleotide samples that can be used to normalize across 

batches.  

The nCounter platform relies on probes but gives a direct quantification of mRNA 

species measured. During that process a target mRNA of interest is hybridized to both 

capture probe and reporter probe. Both of these two probes have a gene specific sequence 

that is complimentary to the mRNA. The capture probe is able to bind onto the nCounter 

cartridge, while the reporter probe contains a barcode that is specific to the target mRNA. 

After hybridization, the excess probes are removed. The purified probe/target complex is 

bound onto a streptavidin-coated slide via biotinylated capture probes and electrophoresis 

is used to elongate and align the molecules. Biotinylated anti-5' oligonucleotides that 

hybridize to the 5'-repeat sequence are added. The stretched reporters are immobilized by 

the binding of the anti-5' oligonucleotides to the slide surface via the biotin. Voltage is 

turned off and the immobilized reporters are prepared for imaging and counting (Geiss et 

al. 2008). 

 

 Supervised Classification methods 1.2

Chapters 2-4 all heavily rely on supervised classification methods, which are introduced 

in this section.  
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1.2.1 Random Forest 

Random forests were developed by (Breiman 2001) and are based on decision 

trees. In these trees each leaf represents a specific class label, whereas branches represent 

conjunctions of features that lead to those class labels. Each node within the tree splits 

samples based on a feature that is chosen so that entropy of class correspondence within 

the splits is minimized. Decision trees are popular because they are straightforward to 

visualize, where the impact of each feature is immediately apparent. However, decision 

trees tend to overfit training sets and do poorly on independent test sets (Hastie et al. 

2009). 

Random forests are a class of ensemble learning methods, which are able to avoid 

this kind of overfitting. See Figure 1.1 for a graphical representation. Specifically, the 

random forest algorithm generates a multitude of different decision trees, each of which 

can predict the class label and then uses the most common of all individual classes to 

derive a final class. In the case of binary classification the mean outcome (0, 1) of all 

decision trees can be used to calculate class probability. The differences in the individual 

decision trees are achieved by bagging and by random feature selection. Bagging is a 

machine learning method that generates new trainings sets of the same size by uniform 

sampling with replacement (Breiman 1996), whereas the random feature selection is 

applied to the selection of each node within each decision tree. Instead of choosing the 

best of all features, it chooses the best feature from a random subsample that is usually 

the size of the square root of all features.  
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Figure 1.1: Random Forest overview 

The figure shows an example of a random forest based on three decision trees. An unknown sample x can be 

classified by each of the three tree and all results are aggregated to calculate the final class probability y. 

 

1.2.2 Elastic Nets 

Elastic nets (Zou & Hastie 2005) or logistic regression with elastic net 

regularization is another supervised classification method. Logistic regression is a special 

case of generalized linear model and measures the relationship between a binary 

dependent variable and one or more independent variables by estimating probabilities 

using a logistic function. Unlike linear regression, the conditional outcome variable 

follows a Bernoulli distribution, which means it results in probabilities that are bound 

between 0 and 1. Since the model is a generalized linear model the least squares method 

can be used to fit the model onto the data. This method minimizes the sum of squared 

residuals, where a residual is the difference between an observed value and a value that is 

provided by the model. This can be expressed in the following way: 
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𝛽̂ = argmin
𝛽

(‖𝑦 − 𝑋𝛽‖2) 

Where 𝑋  represents the features, 𝑦  the dependent outcome variable and 𝛽 

represents the coefficients for the model, where each coefficient corresponds to one 

feature. 

Similar to decision trees, least-squares also suffers from overfitting the training 

data, which leads to poor performance in independent test sets. This is particularly the 

case when the number of features greatly outnumbers the number of samples, which is 

most often the case in genomics data. To overcome this issue regularization methods are 

employed, which usually take the form of penalty terms that reduce model complexity.  

One such regularization method is the Tikhonov regularization or ridge regression that 

adds a L2-norm penalty: 

𝛽̂ = argmin
𝛽

(‖𝑦 − 𝑋𝛽‖2 + 𝜆2‖𝛽‖2) 

where 𝜆2  controls the weight of the penalty. Ridge regression reduces the 

magnitude of the regression coefficients 𝛽; however, while all parameters are reduced 

they still remain non-zero.  An alternative regularization method is the Lasso (least 

absolute shrinkage and selection operator) (Tibshirani 1994; Tibshirani 2011), which 

adds a L1 norm penalty: 

𝛽̂ = argmin
𝛽

(‖𝑦 − 𝑋𝛽‖2 + 𝜆1‖𝛽‖1) 

which effectively reduces the coefficients of features with low information 

content to zero, i.e. it reduces the model to the most important features. However, the 
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Lasso has its own limitations: It can only select as many features 𝑝 as samples 𝑛, which is 

a problem with genomics data, where 𝑝 ≫ 𝑛 and additionally it tends to select only one 

feature out of a group of highly correlated features, which makes it less robust. 

Finally, the elastic net is able to overcome the issues of both the ridge regression 

and the Lasso, by linearly combining both L1 and L2 penalty terms:  

𝛽̂ = argmin
𝛽

(‖𝑦 − 𝑋𝛽‖2 + 𝜆2‖𝛽‖2 + 𝜆1‖𝛽‖1) 

It both reduces the magnitude of the regression coefficients 𝛽 and sets their value 

to 0 for features that are less relevant. As a side note, depending on the parameters 𝜆, the 

elastic net can be reduced to the Lasso (𝜆1 = 0) or the ridge regression (𝜆2 = 0). The 

model presented here shows the naïve version of an elastic net. The actual version used in 

this thesis uses an 𝛼 parameter [0,1] that controls the tradeoff between the two penalty 

terms. An elastic net with 𝛼 = 0 is basically a ridge regression, while 𝛼 = 1  amounts to 

a pure Lasso.  

1.2.3 Shrunken centroids 

Shrunken centroids or PAM (Hastie et al. 2011) are based on nearest centroid 

classification, which assigns observations the labels of the class of trainings samples 

whose centroid is closest to the observation. This means the algorithm compares the 

features of a new sample to each class centroids, which are the means of the features of 

all samples in each class. The class label of the centroid closest to new sample based on 

the Euclidian distance is used as prediction outcome.  
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Shrunken centroids is an extension of this simple type of classifier, where each 

value in the centroids is shrunken towards zero by a specified threshold 𝜏 , i.e. 𝜏  is 

subtracted from positive values and added to negative values. If a value is reduced to zero 

it is removed from the classification. This has two advantages: It reduces noise and it 

provides an in-build feature selection mechanism (Hastie et al. 2011).  

 

 Thesis overview 1.3

Malignant tumors remain one of the leading causes of mortality with over 8.2 million 

deaths worldwide in 2012 (Stewart & Wild 2014). Due to fractured nature of cancer each 

subtype in each tissue type has its own molecular profile and its own resistances to 

treatment regimens, thus as of now no overall cure is in sight. Over the last two decades, 

high-throughput profiling of the human transcriptome has become an increasingly 

essential tool to investigate molecular processes involved in carcinogenesis. Gene 

expression profiling can help shedding light on the heterogeneous nature of cancer, but 

more importantly it can find common and ideally targetable biological processes that 

cancer relies on.  

In this thesis I explore how high throughput transcriptional profiling coupled with 

statistical machine learning methods can have an impact at every stage of cancer 

research. In the abstract most of the following projects consists of three steps. 1.) During 

feature selection, the abundance of gene expression measurements is reduced to a 

manageable set of clinically/biologically relevant genes, which is often referred to as a 
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gene signature. 2.) Next a prediction model based on this gene signature is derived from a 

trainings dataset that usually consists of a few dozen to thousands of samples, which we 

call a biomarker. More specifically, a biomarker is defined as a gene signature and the 

associated mathematical rule that translates the expression levels of the signature’s genes 

into a probabilistic score of class membership. 3.) And finally, in order to avoid 

overfitting the dataset each biomarker is validated in an independent dataset. This 

validation ensures that the prediction does not only reflect the specific nature of the 

trainings set but captures the underlying molecular processes that lead to differences in 

phenotypes. 

I applied this abstract workflow to cancer prevention, where I modeled the differences 

between cancer causing and harmless chemicals, patient stratification, where I built 

models that assign lymphoma patients to actionable subgroups that are treated differently 

and finally subtype discovery, where I attempted to link an established subtype in 

lymphoma across tissue boundaries into other cancer types.  

 

1.3.1 Genomic models of environmental and chemical carcinogenicity 

Despite an overall decrease in incidence of and mortality from cancer, about 40% 

of Americans will be diagnosed with the disease in their lifetime, and around 20% will 

die of it (Stewart & Wild 2014). Only 27% (breast) to 42% (prostate) of cancer risk can 

be attributed to heritable factors (Lichtenstein et al. 2000), the rest is caused by 

environmental factors such as chemical carcinogens. Current approaches to test 
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carcinogenic chemicals adopt the 2-year rodent bioassay, which is costly and time-

consuming. As a result, fewer than 2% of industrially available chemicals have actually 

been tested (Fitzpatrick 2008). However, evidence accumulated to date suggests that gene 

expression profiles from model organisms exposed to chemical compounds reflect 

underlying mechanisms of action, and that these toxicogenomic models could be used in 

the prediction of chemical carcinogenicity.  

In Chapter 2, I test the applicability of toxicogenomics to model chemical 

carcinogenicity using the DrugMatrix, a publicly available dataset of primary tissue from 

rats that were exposed to a large panel of chemical compounds and drugs. I then validate 

these prediction models for carcinogenicity on an independent dataset, the TG-GATEs 

and finally, I show my successful attempt to identify pathways that are involved in 

carcinogenesis using a purely data-driven approach. 

  

1.3.2 Molecular classifiers for aggressive B-Cell lymphomas 

The third chapter transitions away from prevention to the treatment of cancer. 

Instead of predicting chemical carcinogenicity, I built models that predict molecular 

subtypes, which can be targeted with different treatment regiments. This type of precision 

medicine maximizes the survival of cancer patients. 

Every year, 75,000 patients in the United States are diagnosed with aggressive 

non-Hodgkin lymphoma (Rummel 2010). Diffuse large B cell lymphoma (DLBCL) — 

the most common variety — accounts for 31% of new cases. Even though DLBCL 
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tumors are heterogeneous at the molecular level and show different pathogenesis, all 

patients are treated with the same chemotherapeutic cocktail. This lack of targeted 

treatments likely helps to explain why more than a third of patients succumb to their 

disease (Friedberg 2008).  

In Chapter 3 and 4, I describe the development of three molecular biomarkers for 

the classification of aggressive B-cell lymphoma, each of which is able to distinguish 

between therapeutically relevant subtypes. The first biomarker stratifies tumor samples 

into Burkitt’s and Diffuse Large B-Cell Lymphoma (DLBCL) – two disease subtypes 

with clearly distinct therapeutic regimens – and can be used as a diagnostic tool to 

supplement current tools such as IHC staining and FISH tests. Additionally, it also allows 

the quantification of intermediate cases, which right now are either assigned to BL or 

DLBCL, without showing the full phenotype of either. The second biomarker stratifies 

DLBCL patients into MYC high and MYC low classes with the purpose of identifying 

patients that could benefit from potential alternative treatments targeting the transcription 

factor cMYC. The third biomarker stratifies DLBCL patients into one of three molecular 

subtypes (BCR/OxPhos/HR) based on the published consensus clustering classification 

(CCC) described in Monti et al. 2005. Each of these three subtypes has been shown to be 

potentially amenable to targeted treatments, some of which are currently in clinical trials.  

All three biomarkers are translated from the research settings, i.e. full 

transcriptome assays and fresh frozen biopsies, into clinical diagnostic tools relying on 

the Nanostring nCounter platform and formalin-fixed paraffin embedded (FFPE) tissues. 
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1.3.3 Identifying tumors dependent on oxidative phosphorylation across different 

cancer types 

The samples in one of the therapeutically relevant subtypes in the comprehensive 

consensus clustering (CCC) classes in DLBCL show a dependence on altered metabolism 

driven by oxidative phosphorylation (OxPhos)(Monti et al. 2005). A similar subtype was 

found in melanoma (Vazquez et al. 2013), which supports the hypothesis that OxPhos 

dependent cancers can be found in a variety of cancers. This is of particular interest since 

it has been shown that Oxphos dependent cancer cell-lines can be specifically targeted 

(e.g. with PPARγ inhibitors (Caro et al. 2012)) 

 

In Chapter 5, I present a transcriptomics-based pan-cancer analysis that uses a 

novel method called ASSIGN to stratify samples by their predicted level of OxPhos 

activity. The generated predictions were then validated in in-vitro experiments. 

Furthermore, I describe the derivation of a generalized PanOxPhos gene signature, and 

the search for potential transcriptional regulators of the associated molecular phenotype. 
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2 GENOMIC MODELS OF ENVIRONMENTAL AND CHEMICAL 

CARCINOGENCITY 
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Gusenleitner D, Auerbach SS, Melia T, Gómez HF, Sherr DH, Monti S 2014. Genomic 

models of short-term exposure accurately predict long-term chemical carcinogenicity and 

identify putative mechanisms of action. PloS one, 9(7), p.e102579 

 

 Abstract 2.1

Background: Despite an overall decrease in incidence of and mortality from 

cancer, about 40% of Americans will be diagnosed with the disease in their lifetime, and 

around 20% will die of it. Current approaches to test carcinogenic chemicals adopt the 2-

year rodent bioassay, which is costly and time-consuming. As a result, fewer than 2% of 

the chemicals on the market have actually been tested. However, evidence accumulated 

to date suggests that gene expression profiles from model organisms exposed to chemical 

compounds reflect underlying mechanisms of action, and that these toxicogenomic 

models could be used in the prediction of chemical carcinogenicity. 

Results: In this study, we used a rat-based microarray dataset from the NTP 

DrugMatrix Database to test the ability of toxicogenomics to model carcinogenicity. We 

analyzed 1,221 gene-expression profiles obtained from rats treated with 127 well-

characterized compounds, including genotoxic and non-genotoxic carcinogens. We built 

a classifier that predicts a chemical’s carcinogenic potential with an AUC of 0.78, and 

validated it on an independent dataset from the Japanese Toxicogenomics Project 

consisting of 2,065 profiles from 72 compounds. Finally, we identified differentially 
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expressed genes associated with chemical carcinogenesis, and developed novel data-

driven approaches for the molecular characterization of the response to chemical 

stressors. 

Conclusion: Here, we validate a toxicogenomic approach to predict 

carcinogenicity, and provide strong evidence that, with a larger set of compounds, we 

should be able to improve the sensitivity and specificity of the predictions. We found that 

the prediction of carcinogenicity is tissue-dependent and that the results also confirm and 

expand upon previous studies implicating DNA damage, the peroxisome proliferator-

activated receptor, the aryl hydrocarbon receptor, and regenerative pathology in the 

response to carcinogen exposure. 

 

 Introduction 2.2

[T]he development of truly useful, predictive tests of human carcinogens still lies 

in the future.  

– R.A. Weinberg (Weinberg 2013) 

 

Despite an overall decrease in mortality from cancer, about 41% of Americans 

will be diagnosed with the disease and about 21% will die from it (Howlader et al. 2013). 

The incidence of certain cancers is increasing for unknown reasons, and there is 

substantial evidence suggesting that inherited genetic factors make only a minor 

contribution (Paul Lichtenstein et al. 2000), while the percentage of cancer cases that can 
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be attributed to infectious diseases remains stable at about 16–18% (Danaei 2012). It has 

thus been widely hypothesized that accumulating environmental chemicals play a 

significant role in sporadic cancer (Davis et al. 2013; Sorensen et al. 1988; Lee Davis et 

al. 2007). There is also growing recognition that the role played by environmental 

pollutants in human cancer is under-studied, and that more formal approaches to the 

analysis of the biological consequences of prolonged exposure to pollutants are needed 

(IBCERCC 2013; Leffall & Kripke 2010). 

High-throughput genomic approaches have been successfully applied toward the 

elucidation of the molecular mechanisms of cancer initiation and progression, to the 

identification of novel therapeutic targets, and to the development of diagnostic and 

prognostic biomarkers, resulting in thousands of publications. However, their application 

to the study of the environmental causes of cancer has not received as much attention. 

Standard approaches to carcinogen testing have adopted the 2-year rodent 

bioassay (2YRB) as the de facto “gold-standard”. The 2YRB requires, for each 

compound, the use of more than 800 rodents and for each rodent a histopathological 

analysis of more than 40 tissues, with a cost per compound in the $2-4 million range 

depending on route of administration, number of doses to be examined, and chemical 

being evaluated. As a result, only approximately ~1,500 of the ~84,000 chemicals in 

commercial use have been tested (Bucher & Portier 2004; Gold et al. 2005; Huff et al. 

2008; Waters et al. 2010). Furthermore, substantial recent literature questions the reliance 

on animal assays to model the biology of human carcinogenicity for regulatory purposes 
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(Boobis et al. 2008; Cohen 2010). On the other hand, the evidence accumulated to date 

suggests that gene expression profiles of model organisms or cells exposed to chemical 

compounds reflect underlying biological mechanisms of action and can be utilized in 

higher throughput assays to predict the long-term carcinogenicity (or toxicity) of 

environmental chemicals (Waters et al. 2010). Multiple mechanisms of action for rodent 

hepatocarcinogenicity have been implicated by the analysis of toxicogenomics data, 

including DNA damage, regenerative proliferation, xenobiotic receptor activation, 

peroxisome proliferation and steroid-hormone mediated carcinogenesis (Waters et al. 

2010; Fielden et al. 2007; Nie et al. 2006). Furthermore, several studies have tested the 

predictability of (genotoxic and non-genotoxic) carcinogenicity of chemical compounds 

from the expression profiles of animal models’ tissues or cell cultures exposed to the 

chemicals, and provide preliminary evidence that gene expression-based carcinogenicity 

prediction is indeed feasible (Waters et al. 2010). While offering valuable insights, and 

significantly informing the analytic approach reported here, most of these studies were 

limited to a relatively small number of compounds or to a limited set of transcripts, and 

have not thoroughly explored the effects of time and dose of exposure, or issues of 

portability of the models across independently generated, genome-wide expression 

datasets. 

In this study, we present the results of our analysis of two large cohorts of rat-

based expression profiles from animals exposed to hundreds of well-annotated chemicals 

with varying carcinogenicity and genotoxicity (DrugMatrix, (Ganter et al. 2005); TG-
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GATEs, (Uehara et al. 2010), see Materials). The profiles represent short-term (hours or 

days) exposure assays, and, when paired with the available long-term (2 years) 

carcinogenicity labels of the compounds profiled, provide ideal data with which to test 

the hypothesis that long-term exposure phenotypes can be accurately modeled by short-

term gene expression-based assays. To our knowledge, the collection we assembled 

represents the largest toxicogenomics resource analyzed to date, and allows us to 

rigorously evaluate issues of batch-to-batch variability, tissue-, time-, and dose-

dependency, sample size adequacy, and determination of the optimal number of 

genes/transcripts necessary to achieve maximum predictive accuracy. 

Here, we detail our predictive model building effort based on a discovery set, the 

DrugMatrix, comprising 1,221 expression profiles in liver corresponding to 127 chemical 

compounds tested at multiple doses and exposure times. We then present the results of 

our evaluation on a completely independent validation set, the TG-GATEs, consisting of 

2,065 profiles corresponding to 72 compounds, and we show that our classifier does 

generalize without loss of accuracy. We investigate the impact of tissue type-, dose-, 

time-dependency, and sample size on carcinogenicity prediction and also introduce a 

gene set projection method aimed at increasing the biological interpretability of the 

predictive model while improving the robustness of the classification across independent 

datasets. Finally, we present the results of our analysis aimed at the characterization of 

the carcinogenome, defined as the set of genes and pathways that reflect mechanisms of 

action associated with carcinogenesis, and of our effort at defining data-driven gene 
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modules reflecting complementary mechanisms of action relevant to chemical 

carcinogenesis. A graphical overview of all analyses is provided in Figure I.1. 

 

 Results 2.3

2.3.1 Multi-tissue exploratory data analysis 

Principal component analysis (PCA) was performed to identify the major sources 

of variation in the DrugMatrix dataset. A plot of the first two principal components 

shows that the data are stratified by tissue type (Figure 2.1a), with heart and thigh muscle 

tissue results clustering tightly on the lower left side, kidney on the upper left side, and 

liver tissue and cultured hepatocytes on the right side. 46.3% and 26.1% of the overall 

variance in the data is explained by the first and second principal components, 

respectively. Hierarchical clustering of the samples yields similar stratification by tissue 

of origin (data not shown). These results suggest that tissue is a major confounding 

factor, and for that reason all subsequent analyses were performed within a given tissue 

type.  



  23 

 

 

 

Figure 2.1: Principal component analysis (PCA) of the DrugMatrix.  

a) The first two principal components of all samples in the DrugMatrix dataset. b) Liver samples with color 

coding for controls, samples treated with genotoxic or non-genotoxic samples. c) Liver samples with color coding 

for carcinogenicity. 

 

The Carcinogenic Potency Database (CPDB) was used as arbiter of tissue specific 

carcinogenicity for each compound (Methods and Materials). PCA performed within 

liver only (Figure 2.1b and Figure 2.1c) shows that the segregation induced by the 

genotoxicity and carcinogenicity phenotypes is not as marked as the segregation by tissue 

type, underscoring the need for tissue-specific analyses. Of note, the overall changes in 

transcript abundance induced by genotoxic compounds are smaller than the changes 

induced by carcinogenic compounds (1
st
 PC variance of 76.5 versus 182.4, respectively; 

see boxplots at bottom of Figure 2.1b and Figure 2.1c). This outcome may reflect the fact 

that genotoxic compounds mediate carcinogenicity through a single mechanism, i.e., 

DNA damage, while non-genotoxic carcinogens induce malignancy through a variety of 
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pathways including, but not limited to chronic nuclear or growth factor receptor 

activation, aberrant activation of kinase and calcium channel signaling cascades, 

increased proliferation, altered apoptosis signaling, and/or altered metabolism, all of 

which would be expected to yield a broader spectrum of transcriptional changes than 

those resulting solely from DNA damage, a point to which we will return. 

2.3.2 Molecular Characterization of the Transcriptional Response to Chemical 

Perturbation 

Next, we sought to rigorously define the transcriptional response to chemical 

carcinogens in terms of the genes and signaling pathways significantly associated with 

chemical perturbations, and differentially expressed between carcinogens and non-

carcinogens, as well as between sub-types of carcinogens. To this end, we carried out 

within- and across-compound differential and pathway enrichment analyses of the 

DrugMatrix liver samples. 

 

2.3.3 Defining the perturbational transcriptome 

We first aimed at characterizing the perturbational transcriptome – defined as the 

set union of the genes that significantly respond to chemical perturbation by any 

compound – and to evaluate whether the perturbation patterns are significantly associated 

with the carcinogenicity of the compounds. To this end, we identified for each compound 

the transcripts significantly up- or down-regulated with respect to the matched controls, 
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across multiple durations of exposures. In total, 2,745 (~24%) transcripts showed 

significant (FDR≤0.01, fold-change≥1.5) up-/down-regulation for at least 5 compounds 

relative to their matched controls. Of these, 569 had a significant association with the 

carcinogenicity phenotype at an FDR q-value≤0.05 (see Methods). To obtain a global 

view of the expression patterns across compounds, a data matrix was generated with each 

compound represented by the column vector of the ‘treatment vs. control’ t-scores. 

Hierarchical clustering of the resulting matrix (Figure 2.2a) yielded a clear segregation of 

compounds into two clusters, with one highly enriched for carcinogenic compounds 

(Fisher test p=6.5 x 10
-6

), and with a significantly higher number of up/down-regulated 

genes (Kolmogorov-Smirnov test p=0.01, see Methods and Figure I.2). The analysis 

further showed that: i) genes up-/down-regulated by multiple compounds are either 

always up-regulated or always down-regulated, but rarely both (Figure 2.2b); ii) 

significant up-/down-regulation occurs more often in response to carcinogens than to 

non-carcinogens, with ~20% of these genes exhibiting a pattern of statistically significant 

association between up-/down-regulation and carcinogenicity status (Figure 2.2b, 

'Enrichment' columns); and iii) the overwhelming majority (567 out of 569) of the 

transcripts significantly associated with carcinogenicity were enriched in the carcinogenic 

group, and of these almost two thirds were up-regulated (Figure 2.2c). 



  26 

 

 

 

Figure 2.2: Defining the carcinogenome.  

a) Hierarchical clustering of 191 profiles/138 compounds (columns) and genes (rows), with each compound 

represented by the vector of ‘treatment vs. control’ differential expression t-scores. The heatmap is color-coded 

according to the significance level (q-values) of the corresponding t-scores. Notice the right cluster (top purple 

color bar) and its enrichment in carcinogenic (red) compounds (Fisher test p=8.5 x 10-6). b) Top 10 genes ranked 

according to the number of compounds inducing their significant up-/down-regulation (FDR≤0.01 and fold-

change≥1.5. See complete list in Table S2.28). Each gene was also tested for its association with carcinogenicity 

across compounds (‘Enrichment’ columns) by performing a Fisher test between the gene status (0: not 

differentially expressed; 1: differentially expressed) and the compounds’ status (+ = carcinogenic; - = non-

carcinogenic). c) Contingency table detailing the distribution of the genes whose compound-induced up-/down-

regulation pattern is significantly associated with carcinogenicity status of the compounds. 

 

In summary, our analysis shows that carcinogenic compounds (irrespective of 

their mode of toxicological action) induce a more pervasive (more genes) and marked 

(significant) transcriptional response than non-carcinogens, a response that is consistent 
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across multiple compounds, and that manifests itself more often as an up-regulation of 

expression than a down-regulation. Furthermore, this heightened response is mainly 

driven by non-genotoxic mechanisms, since no significant enrichment for genotoxicity is 

observed in either cluster. 

 

2.3.4 Signatures of carcinogen exposure 

Next, we carried out differential analysis aimed at comparing a gene’s expression 

between carcinogens and non-carcinogens (171 vs. 362 liver samples respectively, with 

replicates of the same condition averaged), irrespective of their level in the controls. The 

main purpose of this analysis was not the selection of features for predictions, but rather 

the investigation of the exposure-induced transcriptional changes toward the elucidation 

of mechanisms of response. Rigorous statistical testing based on a moderated t-test (see 

Methods), yielded a list of 2,263 differentially expressed genes (DEG) at a false 

discovery rate (FDR) q-value≤0.01, with 1,232 genes up-regulated and 1,031 genes 

down-regulated in response to carcinogens. Of note, although the DEGs are highly 

statistically significant, their fold-change is relatively small, with only 56 genes having 

FC≥1.35 in either direction (Table 2.1), suggesting that the significance reflects the large 

sample size, and that it is driven by a relatively small subset of compounds. This is 

confirmed by a visual inspection of the heatmap displaying the top 250 differentially 

expressed genes (see web portal (Gusenleitner et al. 2013)), which shows a large 

heterogeneity within each group. Despite the considerable heterogeneity of the response, 

http://smonti.bumc.bu.edu/~smonti/environcology/rat_carcinogenome/
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a focus on the top markers listed in Table 2.1 confirms that several genes linked to 

changes in liver swelling, or hepatomegaly (e.g., ZDHHC2, AQP7, IL33), centrilobular 

hepatic eosinophilia, peroxisome proliferation (e.g., HDC, ACSL3), hepatocellular 

hypertrophy (e.g., ACOT1, STAC3, CPT1B) and hepatic lipid accumulation (HSPB1, 

LRP1, NOL3) were differentially regulated. The identification of pathology-associated 

biomarkers is consistent with the observation that pathological manifestations in short-

term studies are associated with cancer outcomes in rodents, and that pathology such as 

Cirrhosis in humans is a risk factor for hepatocellular carcinoma (Allen et al.; Simonetti 

et al. 1991). In addition genes associated with genotoxicity (e.g., JAM3, BTG2, MDM2, 

PLN, NHEJ1, CCNG1, MGMT) appear to be significantly up-regulated in response to 

carcinogen exposure.   

Within the list of carcinogenic compounds, comparison of genotoxic carcinogens 

vs. non-genotoxic carcinogens yields a list of 191 (126 up, 65 down) DEGs with a 

FDR≤0.01, but only 86 of these genes have a FC≥1.35 (40 up, 46 down) (Table I.2). This 

comparison further highlights the significant up-regulation of well-established markers of 

DNA damage response (CDKN1A/p21, MDM2), liver fibrosis (e.g., AhR), liver 

hyperplasia (e.g., CYP1A1) and liver inflammation (e.g., BCL6) in response to genotoxic 

carcinogens, and the up-regulation of markers of liver steatosis, (e.g., CYP4A11, 

DECR1, EHHADH) and hepatocellular peroxisome proliferation (e.g., ACOX1) in 

response to non-genotoxic carcinogens.  
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Several of the genes differentially regulated are associated with tumor initiation 

(e.g., AhR, CYP1A1, CYP1A2, MDM2, EGR1, and NFKBIZ), further suggesting that 

genomic outcomes of short-term exposure truly reflect the longer-term process of 

malignant transformation.  A detailed list of all DEGs, including hyper-enrichment 

analyses of the top genes using DAVID (Huang et al. 2009) is available at 
1
 (Gusenleitner 

et al. 2013). 

 

2.3.5 Pathway enrichment analysis 

Pathway enrichment analysis by GSEA of the ‘carcinogen vs. non-carcinogen’ 

signature showed a strong enrichment of DNA damage and repair pathways (e.g., p53, 

base excision repair, mismatch repair), as well as of regulators of cell proliferation (e.g., 

E2F, NF-B, G1-S transition), protein turnover (e.g., proteosome, ubiquitin-mediated 

proteolysis), and enrichment of metabolic pathways (e.g., oxidative phosphorylation and 

fatty acid oxidation). Further analysis of the ‘genotoxic vs. non-genotoxic carcinogen’ 

signatures highlighted the major role played by DNA damage and repair pathways in the 

former, and cell metabolism and oxidative stress in the latter. This is consistent with 

previously reported studies, which emphasize DNA damage response as a distinctive 

transcriptional signature of direct DNA modification, and increased cell proliferation, 

                                                 

 

1
 http://smonti.bumc.bu.edu/~smonti/environcology/rat_carcinogenome/ 
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oxidative stress and metabolism as characteristic of indirect, non-genotoxic modes of 

action (Waters et al. 2010). Also of notice was the high heterogeneity in the response to 

non-genotoxic carcinogens when compared to the genotoxic carcinogens, as reflected in 

the lower number of gene sets significantly enriched in the signature of the former than of 

the latter. As noted above, this likely reflects the existence of multiple mechanisms of 

non-genotoxic carcinogenesis, which cannot be adequately captured by a simple 

dichotomous comparison using anything but a large database. 

In summary, our supervised analysis of the DrugMatrix data recapitulates and 

refines the known repertoire of transcripts and associated biological pathways previously 

implicated in the response to carcinogen exposure, thus confirming the quality of the 

expression data analyzed and their adequacy for our predictive model building effort, to 

which we now turn. 

 

2.3.6 Predictive Models of Genotoxicity and Carcinogenicity in the DrugMatrix 

The PCA analysis shows that overall expression patterns are mainly driven by 

tissue type. Furthermore, methods to control for tissue type, such as “subtraction” of the 

tissue-associated PCA components, or inclusion of tissue type as predictor to build tissue-

agnostic classifiers, were not fruitful (see Supplement, Table I.3 and Figure I.3). 

Consequently, we henceforth report our results based on the analysis of the liver samples 

since this tissue was profiled with the largest number of well-annotated chemicals and its 

phenotypic annotation was the most thorough. 
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The Random Forest (RF) algorithm (Breiman 2001) was selected as the classifier 

of choice because of its computational efficiency, flexibility, and ability to model 

continuous and discrete data simultaneously, as well as to capture complex phenotypes. 

For each sample, the classifier produces a score between 0 and 1, corresponding to the 

probability of the compound being carcinogenic (or genotoxic). As the primary 

evaluation criterion of a classifier’s prediction performance, we report the area under the 

ROC curve (AUC). Additionally, we also report sensitivity, specificity, positive and 

negative predictive value, and false discovery rate corresponding to the probability 

threshold that achieves the highest accuracy in the training set (see Methods for further 

details). 

 

2.3.7 Genotoxicity prediction 

Predictive models of genotoxicity based on a 500-gene Random Forest classifier 

were built from the DrugMatrix liver samples. The random resampling-based estimation 

of classification performance yielded an AUC (area under the ROC curve) of 75.1%.  

 

2.3.8 Tissue-specific carcinogenicity classifiers 

We defined tissue-specific labels of carcinogenicity to train a set of predictive 

models. The resulting carcinogenicity classifier achieved a prediction performance as 

measured by AUC of 76.7% in liver tissue (Figure 2.3, summary statistics in Table I.4), 
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which represents an improvement of 11.9% with respect to the tissue-agnostic results 

(Supplement). Using a zero-one loss function to select the optimal classification 

threshold, corresponding to a zero cost for correct classification (both TP and TN), and a 

cost of 1 for incorrect classification (both FP and FN), results in a classifier with 

sensitivity of 56.8% and specificity of 82.91%. However, there is a tradeoff between 

sensitivity and specificity and, if required, the former can be increased at the cost of the 

latter. For example, changing the ratio between the penalties of FP and FN to 1:5 

increases the sensitivity to 80.4% while the specificity drops to 54.4% (Figure 2.4b). The 

AUC measures all the possibilities of such tradeoffs.  

 

Figure 2.3: Classification results overview.   

Random resampling classification results on the DrugMatrix (top) as well as the TG-GATEs (bottom) datasets 

using 200 iterations. In addition, the results of a model trained on all DrugMatrix samples and tested on TG-

GATEs (middle) are shown. Results based on the regular gene expression data and on the data projected onto 

pathway space (canonical pathways of MSigDB – C2:CP, see Methods) are reported. For each testing scheme, 
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area under the receiver operating characteristic (ROC) curve (AUC), as well as accuracy, sensitivity and 

specificity of a classifier trained with a zero-one loss function (FP:FN = 1:1), and 95% confidence intervals are 

reported.  

 

Figure 2.4: ROC curve and variable importance for carcinogenicity prediction.  

ROC curve of random forest classification in liver of: a) genotoxicity and b) carcinogenicity. For 

carcinogenicity, tissue specific class labels from the carcinogenicity potency data base (CPDB) were used. The 

red curves show the mean of the 200 reruns, whereas the dashed curves indicate the first and third quartile 

respectively. The teal dot indicates a classifier assigning equal costs to false positives (FP) and false negatives 
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(FN) (zero-one loss), whereas the blue dot indicates a classifier assigning a cost of 5 for FN and 1 for FP. c) 

Variable Importance of the random forest model. Blue denotes genes that are down-regulated in the 

carcinogenic group, whereas red denotes up-regulation. 

 

2.3.9 Inclusion of compounds’ structural features as predictors  

The availability of structural features characterizing the 3-dimensional chemical 

structure of the profiled compounds allowed us to evaluate their predictive power (see 

Materials). To this end, we performed Random Forest classification of all compounds in 

the DrugMatrix using the structural features, instead of gene expression, as predictors. 

Evaluation by random resampling yielded an AUC of 70.9% when predicting 

genotoxicity, and 59.9% when predicting hepato-carcinogenicity (see Table I.7 and 

Figure I.4), results significantly worse than those obtained based on gene expression. To 

assess their complementarity, we also evaluated the performance of a Random Forest 

classifier integrating both gene expression and structural features. The resulting model 

yielded an AUC of 77.7% for hepato-carcinogenicity and 80.1% for genotoxicity (Table 

I.8 and Figure I.5), suggesting that the information encoded in the structural features is 

indeed marginally complementary to gene expression.  

 

2.3.10 Comparison to other classifiers 

The Random Forest classifier was a-priori chosen because of its computational 

efficiency and its ability to model variable interactions, to handle models incorporating 
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both continuous and discrete variables, and to model complex phenotypes. For 

completeness, its performance was compared with that of two additional state-of-the-art 

classification methods: Shrunken Centroids (PAMR) (Tibshirani et al. 2002) and Support 

Vector machine (SVM) (Chang & Lin 2011), using the same random resampling 

evaluation scheme. The results in Table I.5 (SVM) and Table I.6 (Shrunken Centroids) 

show that the Random Forest significantly outperforms both the SVM and the Shrunken 

Centroids classifiers, providing support for our modeling choice. 

 

2.3.11 Effect of compound sample size on prediction 

While the number of well-annotated liver samples in the DrugMatrix was very 

large (n=1,221), the number of distinct compounds tested was comparatively small (127 

compounds, 41 of which were labeled as carcinogenic according to the 2YRB). To assess 

whether we had reached the maximally achievable predictive accuracy, we analyzed 

learning curves for both carcinogenicity and genotoxicity based on down-sampling, 

whereby AUCs were estimated for classifiers built on training sets of progressively larger 

size (see Methods). As shown in Figure 2.5, the learning curves (in red) and the 

corresponding trend lines (blue) manifest a clear upward orientation, and their shape 

shows no “plateauing,” suggesting that an increased and attainable number of compounds 

will indeed significantly improve predictive accuracy.  
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Figure 2.5: Classification learning curves 

As a function of the number of chemicals for: a) genotoxicity and b) carcinogenicity in liver. 

The actual AUC values are in red and include the 95% confidence interval for each value. 

The predicted values of a fitted linear regression model are shown in blue. 

 

In summary, our Random Forest-based classifier trained on the gene expression 

data from the DrugMatrix was capable of predicting carcinogenicity with a random 

resampling AUC of 77.6%, and significantly outperformed other state-of-the-art 

classifiers (SVM, shrunken centroids, and others), thus making us confident that our 

modeling approach would generalize well to new untested chemicals. 
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2.3.12 Validation of the predictive models on an independent dataset: TG-GATEs 

The performance of our classification model was next evaluated on an 

independent validation set, the TG-GATEs (see Materials). To this end, a final 500-gene 

random forest classifier of liver carcinogenicity was trained on all of the available 

compounds in the DrugMatrix (n=127) using the tissue-specific carcinogenicity labels. 

The top 50 markers as ranked by variable importance are shown in Figure 2.4c. The 

resulting classifier was then applied to the TG-GATEs. To achieve a truly independent 

validation set, 25 compounds that were tested in both datasets were excluded, leaving 47 

chemicals for validation, corresponding to 1,333 expression profiles (each compound was 

tested at multiple doses, times, and in triplicates). The Random Forest classifier was then 

applied to the subset of primary liver samples from the repeat experiments in the TG-

GATEs, yielding an AUC of 76.6% (Figure 2.3, summary statistics in Table I.9, ROC 

curves in Figure I.6 and Figure I.7). Of interest, the prediction of the 25 compounds 

present in both datasets, yielded a higher AUC of 80.8%, even though those compounds 

were tested at different doses in the two datasets (data not shown). 

 

2.3.13 Prediction of dose-dependent carcinogenicity 

The prediction performance of the models trained on DrugMatrix and tested on 

TG-GATEs provides supporting evidence of the validity of our approach since significant 

classification accuracy was achieved across datasets despite the difference in 

experimental conditions (dose and time) of the two datasets, and the known dataset-to-
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dataset bias inherent in the Affymetrix microarray platform (Shi et al. 2010; Fielden et al. 

2011). To further evaluate the best achievable classification performance, we next 

applied our random resampling scheme within the TG-GATEs. Besides the differing dose 

and exposure times profiled in the two datasets, an additional difference between the 

DrugMatrix and TG-GATEs lies in the more precise compound annotation of the latter, 

where carcinogenicity labels reflect a compound’s actual carcinogenicity at the 

administered dose. The DrugMatrix doses, on the other hand, are all at or above the 

standard administered doses reported in the Carcinogenic Potency Data Base (CPDB). 

This raises the possibility that some of the compounds labeled as non-carcinogen by the 

CPDB at the standard dose might be carcinogenic at the higher doses tested in the 

DrugMatrix, and consequently be given a false negative labeling for training and testing 

purposes. Confirming this possibility, evaluation by random resampling within the TG-

GATEs, where all the doses were within the CPDB range, showed an overall increase in 

classification performance with an AUC of 82.7% (summary statistics in Table I.10, 

ROC curves in Figure I.8). To further evaluate the dependency of these results on the 

dose-specific labeling, we also measured classification performance based on a dose-

independent annotation of TG-GATEs, by using the minimum dose labeling for all the 

profiles at any dose (thus reproducing the compound-labeling criteria used in the 

DrugMatrix). This led to a significant reduction in the prediction performance, with an 

AUC of 69.3% (summary statistics in Table I.11, ROC curves in Figure I.8), results 

similar to those achieved in the DrugMatrix.  
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2.3.14 Effect of time and dose on prediction 

With the predictive model established and validated on an independent dataset, 

we next tested the impact of exposure time and dose on the effect of a chemical 

compound. The repeat samples (see Materials) from TG-GATEs correspond to 

systematic tests of chemical compounds at four different exposure times between 4 and 

29 days and at three doses, with three replicates for each condition. Predictive accuracy 

for each time-dose combination was assessed based on the random resampling scheme, 

and the corresponding AUCs and 95% confidence intervals are shown in Table 2.1. The 

results range from an AUC of 58.6% with the lowest dose and shortest time to an AUC of 

86.8% for the highest dose at the longest time of exposure. Prediction performance is 

more dependent on the dose level and less on the duration of exposure. This is evident 

when considering only the highest dose, where the AUC varies only by 4.7% between 4 

and 29 days. 

Table 2.1: AUC for different time points and doses in TG-GATEs 

 comparing the prediction results based on differing a times and doses in the repeat subset of TG-GATEs. Each 

classification was performed 200 times. The table reports the mean AUC as well as the 95% confidence 

intervals.  

 
 

Dose 

 
 

low  middle  high  

E
x

p
o

su
re

 

ti
m

e 

4 days  58.6 ± 2.0  73.8 ± 1.6  82.1 ± 1.6  

8 days  70.7 ± 1.8  81.7 ± 1.0  84.2 ± 1.4  

15 days  73.6 ± 1.8  82.2 ± 1.2  82.8 ± 1.6  

29 days  73.9 ± 2.0  79.2 ± 1.2  86.8 ± 1.2  
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In summary, validation of our carcinogenicity classifier on an independent dataset 

confirmed the predictive accuracy obtained in the discovery set, thus proving the 

robustness and generalization capability of our modeling approach. Furthermore, the 

increased accuracy we achieved by training and testing within the same validation 

dataset, while taking advantage of dose-dependent labels, further emphasizes the critical 

role played by across-dataset bias, and the importance of using accurate (dose-dependent) 

phenotypic labels.  

 

2.3.15 Carcinogenicity prediction of un-annotated compounds 

The availability of the short-term histopathology reviews for the samples profiled 

in TG-GATEs allowed us to preliminarily assess our ability to predict the carcinogenicity 

of chemicals not included in the CPDB, and thus begin to address our ultimate goal of 

predicting the carcinogenicity of as-yet untested chemicals. To this end, we derived two 

binary scores from the histopathology findings included in the TG-GATEs, a fully data 

driven score, H-scored, and a manually derived score, H-scorem (see Materials), and used 

these scores as gold-standard proxies of the carcinogenic potential of a given compound-

time-dose instance against which to test our classifier’s accuracy. 

Since this evaluation required the time-consuming manual review of 

histopathology findings, the analysis was limited to a subset of the available samples. In 

particular, repeat samples from rats exposed at maximum dose and maximum time (29 

days) were selected. Next, a 500-gene Random Forest classifier was trained on the 
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samples with the same exposure time and dose level for which hepatocarcinogenicity 

status was available (n=108). This classifier was applied to the prediction of all unknown 

compounds (n=252), and only samples with prediction probability above 0.66 

(carcinogenic) or below 0.33 (non-carcinogenic) were selected, yielding a final set of 124 

samples for which manual (and blind) review of the histopathology findings was 

available. The comparison of the classifier’s predictions with the pathology-derived 

scores is summarized in Table 2.2. The classifier’s sensitivity with respect to both scores 

is very high, with only the three replicates of mexiletine showing discordance between 

the classifier’s prediction (non-carcinogen) and the histopathology scores (carcinogen). 

The specificity is comparatively lower with respect to both scores, and in particular with 

respect to the manually derived H-scorem; however, the false positive instances mostly 

correspond to compounds whose multiple replicates disagree with respect to their H-

scorem, that is, the false positive instance was predicted as positive by our classifier, but 

was H-scorem negative, while the additional replicates of the same compound were both 

predicted and H-scorem positive (bucetin, doxorubicin, sulindac, trimethadione).  We 

expect that with a longer time of exposure the pathology report would also show evidence 

for carcinogenicity. 
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Table 2.2: Validation of prediction using pathological items  

The first column shows the concordance between the high confidence predicted liver samples that were treated 

for 29 days at the highest dose level and fully data-driven histopathological score (H-scored), whereas the second 

column indicates the concordance with the manually derived score (H-scorem). 

 H-scored H-scorem 

#Samples 124 124 

Accuracy 89.5 ± 5.5 79.8± 7.1 

Sensitivity 94.3 ± 4.1 95.8 ± 3.5 

Specificity 77.8 ± 7.3 57.7 ± 8.6 

PPV 91.2 ± 4.9 75.8 ± 7.4 

NPV 84.8 ± 6.3 90.9 ± 4.9 

FDR 8.8 ± 4.9 24.2 ±7.4 

 

2.3.16 Toward biologically interpretable predictive models: Gene Set Projection 

Our next effort was aimed at increasing the interpretability and cross-platform 

robustness of the classifier. To this end, we adopted a gene set projection approach, 

whereby the data are mapped from single genes to gene sets representing well-annotated 

biological pathways and processes (Figure I.10). Gene sets are then used in place of 

single genes as the input variables to the classifier, with a gene set value reflecting the 

activation/inactivation of that gene set in response to a given compound (see Methods). 

The 733 canonical pathways included in the MSigDB c2.cp compendium (Liberzon et al. 

2011) were used as our candidate gene sets, thus yielding a 733-by-1173 gene set-based 

matrix from the original 10371-by-1173 gene-based matrix. The classification 

performance of gene set-based random forest classifiers was evaluated by random 



  43 

 

 

resampling (Figure 2.3) both within the DrugMatrix (Table I.12) and the TG-GATEs 

(Table I.10), yielding a liver carcinogenicity AUC of 73.3% and 80.6%, respectively. 

These results are slightly worse than those attained based on the original gene-based data. 

However, training on the gene set-projected DrugMatrix and testing on the TG-GATEs 

resulted in an increased predictive performance as shown in (Table I.9) (AUC of 78.5%). 

This is likely due to the normalization implicit in the gene set projection, which involves 

the scaling of each compound’s profile against the matching controls, and thus 

contributes to removing potential sources of across-dataset bias.  

To determine the minimum number of gene sets necessary to reach maximum 

prediction performance, classifiers with an increasing number of gene sets were built and 

evaluated. First, gene sets were ranked by their variable importance (see methods) as 

measured by a Random Forest classifier built on all gene sets. Next, RF classifiers using 

an increasing number of gene sets selected from the variable importance-ranked list were 

built and evaluated based on the same 70%-30% train-test split previously described. The 

results (Figure 2.6a) show that 50 gene sets are sufficient to reach an AUC of 76%, and 

approximately 150 are necessary to reach the maximum predictive performance of 

76.8%.  
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Figure 2.6: Putative Modes of Action of carcinogenic chemical compounds 

 a) Classification performance (AUC, averaged over 100 iterations of random resampling) of a random forest 

classifier as a function of the number of gene sets used as predictors. 150 gene sets are needed to reach 

maximum AUC, while 50 are sufficient to get 99% of the expected maximum AUC. b) Heatmaps of the top 50 

pathways as ranked by their variable importance derived from a random forest classifier of hepato-

carcinogenicity. Rows correspond to pathways, clustered into biological processes; columns correspond to 
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chemical compounds. The left and right heatmaps show all non-carcinogenic and carcinogenic compounds, 

respectively. Only profiles corresponding to maximum duration and dose treatments, with replicates averaged, 

are displayed. A detailed version of the right heatmap with all pathways and compounds labeled is available in 

Figure S11. c) Details of the biological processes associated with the clustering, showing the single differentially 

regulated pathways and their variable importance ranking, as well as the driving genes. 

 

2.3.17 From predictive models to mechanisms of action 

The list of gene sets as ranked by their variable importance provide a set of 

complementary and potentially interacting biological pathways shown to be statistically 

associated with chemical carcinogenesis. This is markedly different from the GSEA 

ranking, which evaluates each gene set individually and does not take into account its 

possible interaction with other gene sets. 

We exploited these properties of the variable importance ranking toward a data-

driven identification of the likely mechanisms of action relevant to chemical 

carcinogenesis. To this end, we projected the DrugMatrix data corresponding to the max-

dose and max-duration exposures (to maximize signal) onto the top 50 gene sets as 

ranked by variable importance. We then performed hierarchical clustering to identify 

modules of coordinated gene sets likely to reflect distinct mechanisms of action. The 

resulting heatmap is shown in Figure 2.6b. Multiple gene sets are clustered in distinct 

modules each reflecting a different biological process that likely contributes to a 

compound’s mechanism of action (MoA). These include a suppressed normal liver 

function module (complement cascade, platelet aggregation plug formation as well as 
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classic, common and extrinsic pathway), a metabolism of lipids and lipoproteins module, 

as well as the PPARα signaling pathway, damage response (p53 pathway) and 

proliferation (DNA Replication pre initiation) modules. 

Even though there are only 41 distinct carcinogenic compounds tested in the 

dataset, the gene set projection-based clustering results highlight the considerable 

heterogeneity in the response to carcinogen exposure, likely reflecting distinct 

mechanisms of cancer induction, and point to a promising approach to their data-driven 

categorization. A notable example is represented by the seven genotoxic compounds 

clustered under the orange color bar on top of the heatmap (Figure 2.6b). Genotoxic 

compounds induce direct DNA modifications and cells respond by up-regulation of 

components of the damage response machinery, such as the p53 pathway and the G2 

pathway. A second example is the down-regulation of regular non-metabolic liver 

function (complement cascade, platelet aggregation and classic pathway) in almost all 

carcinogenic compounds. We suspect this loss of function is due to elevated stress on the 

cells and possibly even a first sign of field effects necessary to support transformation. 

This clearly suggests that the various classes of carcinogens can not only be defined by 

the mechanisms that eventually lead to carcinogenesis, but also by the loss of specific 

normal functions within a tissue type, emphasizing the need to consider each tissue type 

separately.  

A third cluster of compounds exclusively captures lipid lowering compounds 

(Simvastatin, Clofibrate, Gemofibrozil, etc.), which all show a significant up-regulation 
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of lipid metabolism pathways (metabolism of lipids and lipoproteins, glyoxylate and 

dicarboxylate metabolism). Lipid-lowering drugs have been under suspicion as potential 

carcinogens for more than a decade (Newman 1996), and aberrant lipid metabolism has 

been shown to be an essential feature in Hepatocellular Carcinomas (Patterson et al. 

2011) as well as cancers in other tissue types (e.g., ovarian cancer (Pyragius et al. 2013)). 

Finally, more than two thirds of the carcinogenic compounds show an up-

regulation of the proteasome pathway. This is interesting since a large body of scientific 

literature (e.g. (Fielden et al. 2011; Crawford et al. 2011) identifies the ubiquitin-

proteasome pathway as an important component for maintaining a balance between cell 

growth and apoptosis, thereby controlling tumor propagation and survival.  

Taken together, these results suggest that gene set projection is a helpful approach 

for controlling for batch-to-batch and cross-dataset variability, while increasing a 

classifier’s interpretability by making explicit the biological pathways that contribute to 

prediction.  
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 Materials and methods 2.4

2.4.1 Data Resources 

The Carcinogenic Potency Database (CPDB
2
) (Fitzpatrick 2008) was used as the 

primary source to determine a compound’s long-term carcinogenicity and genotoxicity. 

The CPDB records the results of 6,540 chronic, long-term animal cancer tests on 1,547 

chemicals. For this study we used the outcomes of the 2-year male rat-based bioassay to 

annotate the carcinogenicity of our chemical compounds, while the outcome of a 

corresponding salmonella auxotroph-based Ames test was used as proxy for genotoxicity. 

Carcinogenicity information was summarized in a tissue-agnostic carcinogenicity label, 

set to be positive if the compound was found to cause cancer in any tissue type, negative 

otherwise. Additionally, tissue-specific carcinogenicity labels were also defined for liver. 

The discovery set is based on the DrugMatrix
3
 (Ganter et al. 2005), a major 

toxicogenomic resource made public by the National Toxicology Program (NTP) and is 

available through the Gene Expression Omnibus (GEO) with the accession number 

GSE57822. The DrugMatrix contains 5,587 gene expression profiles from male rat 

primary tissues (liver, kidney, heart and thigh muscle) and cultured rat hepatocytes, 

corresponding to treatments with 376 chemicals, and including 994 control samples from 

                                                 

 

2
 http://toxnet.nlm.nih.gov/cpdb/ 

3
 https://ntp.niehs.nih.gov/drugmatrix/index.html 
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rats kept in matched conditions. Each compound was administered at multiple doses and 

durations (6 hours - 7 days), and each combination of tissue, compound, time and dose 

was profiled in triplicates. Of the 376 chemicals tested, 255 are annotated with either 

carcinogenicity or genotoxicity information in the CPDB, corresponding to 3,448 profiles 

(a detailed description is provided in Table S2.20). Not all tissues were profiled for each 

compound tested. In particular, a total of 127 compounds with both 

hepatocarcinogenicity and genotoxicity annotation were profiled in liver, yielding a set of 

1,221 profiles available for model building. 

The validation set is based on the Toxicogenomics Project-Genomics Assisted 

Toxicity Evaluation system (TG-GATEs
4
), a product of a collaboration between the 

Japanese government and Japanese pharmaceutical companies (Takashima et al. 2006; 

Uehara et al. 2010), and is available through ArrayExpress (E-MTAB-800). The TG-

GATEs includes 21,385 samples of male rat primary liver and kidney tissues, and 

cultured hepatocytes all profiled on the Affymetrix Rat 230.2 platform. TG-GATEs 

tested 131 chemical compounds, for 72 of which information on liver carcinogenicity is 

available (Table I.18). The profiles from primary tissues correspond to two experimental 

groups:  in the single group, rats were exposed at a single time point, and mRNA was 

extracted after 3 to 24 hours, in the repeat group, rats were exposed daily for 4 to 29 

                                                 

 

4
 http://thedatahub.org/dataset/open-tggates 
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days, and mRNA was extracted at each of four end points (4, 8, 15, and 29 days), and at 

each of three doses (low, medium, high). For this study we used only the repeat group of 

TG-GATEs. Of the 72 compounds tested in TG-GATEs, 25 were also tested in the 

DrugMatrix, leaving 47 unique compounds for validation. Comparison of the overlapping 

chemicals shows that the doses used in the TG-GATEs are lower than those used in the 

DrugMatrix (Table I.19). Annotation for liver carcinogenicity was performed by a board 

certified toxicologist through review of existing literature resources from carcinogenicity 

bioassays. A treatment (chemical-dose combination) was annotated as 

hepatocarcinogenic if it was determined that it would produce a statistically significant 

increase in liver cancer (any type) in a 2-year rat cancer bioassay. All dose levels used to 

generate the TG-GATES data were presumed to be acceptable for use in 2-year bioassay 

(i.e., animals would survive to the extent that they would be at risk for the development 

of cancer). 

 

2.4.2 Computational Tools 

Analyses were performed based on custom scripts developed using the statistical 

programming language R (R Core Team 2012) and several Bioconductor packages 

(Gentleman et al. 2004).  
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2.4.3 Data Processing 

Both Affymetrix datasets were normalized using the R Bioconductor package 

frma and frmaTools (McCall et al. 2010). Probe specific effects and variances for the 

Affymetrix Rat 230.2 platform were pre-computed using 2000 samples randomly drawn 

from the DrugMatrix dataset and then used to normalize both the DrugMatrix and TG-

GATEs datasets. 

 

2.4.4 Defining the perturbational transcriptome 

The list of genes that significantly respond to chemical perturbation was identified 

by carrying out a series of two-group t-tests between the control samples and the 

corresponding treatment samples for each compound separately, while correcting for the 

confounding effect of time. A gene-by-compound matrix was then constructed, with each 

column representing the vector of “control vs. treatment” t-scores for the corresponding 

compound. A total of 191 profiles, corresponding to 138 compounds (some at multiple 

doses) for which either carcinogenicity or genotoxicity information was available, were 

considered for this analysis. Only the genes with FDR-corrected q-value≤0.01 and fold-

change≥1.5 in at least five compounds were included. Hierarchical clustering of both the 

compounds and the genes based on the t-scores’ matrix was performed, and the results 

visualized in a heatmap with the color-coding based on the t-test’s q-values (Figure 2.2a). 

Association between cluster membership and carcinogenicity (genotoxicity) status of the 

compound was assessed by Fisher test. 
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Each gene was tested for its association with carcinogenicity by performing a 

Fisher test between the gene status (0: not differentially expressed; 1: differentially 

expressed) and the compound status (+: carcinogenic; –: non-carcinogenic) across 

compounds, and the nominal p-values were corrected for multiple hypothesis testing by 

the FDR procedure (Figure 2.2b, columns grouped under ‘Enrichment’). 

 

2.4.5 Differential Analysis and Pathway Enrichment Analysis 

We derived standard differential gene expression signatures using the 

R/Bioconductor package Limma (Smyth 2005), which is based on linear modeling and a 

moderated t-test. Since labels for genotoxicity (GT) as well as carcinogenicity (CG) were 

available in the DrugMatrix, we used multiple binary phenotypes: GT vs. Non-GT, CG 

vs. Non-CG, GT-CG vs. Non-GT-CG, and Non-GT-CG vs. Non-GT-Non-CG. For TG-

GATEs we only tested CG vs. Non-CG. Expression profiles from multiple replicates of 

the same condition were averaged so as to avoid inflating statistical significance. We also 

performed a hyper-enrichment analysis of the top 200 differentially expressed genes (up-

regulated) of each scheme using DAVID - EASE (Huang et al. 2009) and plotted 

heatmaps of top differentially expressed genes with a false discovery rate (FDR) 

corrected q-value≤0.05 and a fold change≥1.2. Finally, we used the same binary 

phenotypes to run gene set enrichment analysis (GSEA) (Mootha et al. 2003; 

Subramanian et al. 2005) using collections C2 (canonical pathways), C3 (transcription 
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factor targets) and C6 (cancer pathways) from MSigDB (Liberzon et al. 2011) version 

3.0.  

 

2.4.6 Classification Methods 

The Random Forest algorithm (as available through the R package 

randomForest) implements an ensemble classification approach combined with 

bagging, whereby multiple decision trees are inferred from random subsets of the training 

data, and the class predictions of the component trees are combined by majority voting. 

After evaluation of multiple sizes, a Random Forest based on 500 trees (the package’s 

default) was selected as the size that yielded the best trade-off between accuracy and 

computational efficiency. In addition to the performance measurements, we also report 

the variable importance for each gene. This measurement reflects the increase of the 

error rate across all trees, if the value of the tested gene is randomly permuted when 

testing. 

For comparative purposes, the shrunken centroid and the support vector machine 

classifiers, as implemented in the R packages pamr (Hastie et al. 2011) and e1071 

(Meyer et al. 2012), respectively, were also evaluated. 
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2.4.7 Performance evaluation criteria 

To assess classification performance, we used a random resampling or bagging 

scheme (Breiman 1998) whereby the dataset was randomly split into properly stratified 

training- and test-set pairs multiple times, a predictive model was inferred from each 

training set, and tested on the corresponding test set (see Figure I.9). A 70%-30% 

train/test split was adopted, and was repeated 200 times to obtain robust accuracy 

estimates and their corresponding 95% confidence intervals. Importantly, since multiple 

instances of the same compound are included in the dataset, the train/test split was carried 

out so that all instances of the same compound were only present in the train- or the test-

set. The prediction for each sample consisted of a value between 0 and 1, to be 

interpreted as the probability of the corresponding compound of being carcinogenic 

(genotoxic). The area under the ROC curve (AUC) was chosen as our primary evaluation 

criterion since this measure is independent of the threshold chosen to call a compound 

carcinogenic (genotoxic). The choice of the appropriate threshold depends on the relative 

costs assigned to false negatives and false positives, and these in turn depend on the 

primary purpose for which the classifier is used, an assessment that is beyond the scope 

of this study. For completeness, accuracy, sensitivity, specificity, positive and negative 

predictive values, and false discovery rate are also reported for every classification task 

(Table I.20) with the positive classification threshold optimized to maximize accuracy 

(i.e., minimize a zero-one loss (Berger 1985)) within the training set.  
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2.4.8 Comparison with published signatures 

We compared our random forest prediction model to two published gene 

signatures: A 141 gene carcinogenicity signature (Ellinger-Ziegelbauer et al. 2008) 

(Ellinger-Ziegelbauer 2008) and a 23 gene non-genotoxic carcinogen signature (Fielden 

et al. 2011). Both signatures were mapped to Rat Ensembl gene identifiers using Biomart 

(Kasprzyk 2011) and subsequently tested by training on the DrugMatrix and testing on 

the compounds within TG-GATEs that did not overlap with the DrugMatrix. Since the 

Fielden et al 2011 signature was specifically derived from non-carcinogenic compounds; 

we used cross-validation in the DrugMatrix using all annotated liver samples and on the 

non-genotoxic subset only. For both signatures we used a Support Vector Machine as 

classification algorithm (R-package e1071 (Meyer et al. 2012)) since it was also used in 

the original publications. 

 

2.4.9 Gene set Projection 

Gene set projection was used to map the original data from gene space to gene set 

space. In particular, each treated sample was compared with the set of corresponding 

control samples, and a weighted Kolmogorov-Smirnov enrichment score was calculated 

for each gene set (Subramanian et al. 2005) (Figure I.10). This enrichment score reflects 

the up or down-regulation of a-priori defined pathways or gene sets following treatment 

with the profiled compound. The projection transforms the data from the original gene-

by-sample matrix representation to a gene set-by-sample matrix, with the entry in row i, 
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column j reporting the enrichment score for the i-th gene set in the j-th sample. The set of 

canonical pathways included in the c2_cp collection of the MSigDB repository was used 

for the projection (MSigDB version 3) (Liberzon et al. 2011). The resulting projection is 

different from the one that would be obtained by “single-sample GSEA” (Barbie et al. 

2009), since each compound-time instance is normalized against the matched controls, 

thus yielding a gene ranking that reflects the true differential expression between 

treatment and control. The projected data thus obtained were then used to train 

classification models with gene sets in place of genes as the predictive features.  

 

2.4.10 Learning curves for sample size estimation 

Learning curves relating classification AUC to compound’s sample size were 

built based on a variation of the standard random resampling scheme. Starting from a 

training set consisting of 70 compounds, up to the total number of compounds in 

increments of 10, AUC means and standard deviations were estimated based on 200 

random resampling iterations. The estimated AUCs and their corresponding number of 

compounds are shown in Figure 2.5, together with linear regression lines fitted on the 

[sample size; AUC] pairs.  
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2.4.11  Histopathology annotation of TG-GATEs  

TG-GATEs provides the results of histopathology exams of tissues from the 

profiled animals, including high-resolution whole slide digital images of their liver and 

kidney on the TG-GATEs portal
5
. The histopathology findings are coded into 133 

categorical covariates, each taking values in the range 0-4 (0: pathology not observed; 4: 

pathology was severe) and includes items such as liver microgranuloma and liver 

hypertrophy centrilobular. To summarize these findings and relate them to 

carcinogenicity, we defined two binary scores (negative/positive) to label each of the 

compound-dose-time instances. The first score (H-scored) is data-driven and represents 

the logic OR of all the covariates, denoting an instance as positive if any of the covariates 

for that instance has a value greater than zero (i.e., if there is any type of positive 

histopathology evidence).  

The second score (H-scorem) results from the manual review of a compound-dose-

time instance by a board certified toxicologist with experience designing and interpreting 

subchronic and chronic toxicity/carcinogenicity studies. Factors taken into account when 

scoring the samples included the degree of adversity associated with specific pathologies 

(e.g. necrosis is typically considered the most adverse of pathologies), the historical 

association between the pathological manifestation and subsequent liver cancer outcomes 

                                                 

 

5
 http://toxico.nibio.go.jp/ 

http://toxico.nibio.go.jp/
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in a 2-year bioassay, the severity of the pathology observed, and the multiplicity of 

pathology types. Due to the time-consuming nature of the manual review, only a subset 

of compound-dose-time instances were annotated, corresponding to the repeat samples 

from rats exposed at the maximum dose for 29 days (maximum time). The manual review 

and annotation of the instances was blinded, that is, the carcinogenicity status predicted 

by the classifier was withheld at the time of the instances’ annotation. The resulting 

scores were used as a proxy measure of carcinogenicity to evaluate the prediction 

performance of our classifiers on compounds for which no CPDB annotation was 

available. 

 

 Discussion 2.5

Through our computational analysis of two large rat-based gene expression 

datasets, we conclusively validated the hypothesis that expression profiles of short-term 

exposure are highly predictive of the long-term carcinogenicity of (exposure to) 

chemicals as measured by the 2-year rodent bioassay. Additionally, we extensively 

evaluated the capability of gene expression profiling to model the transcriptional effects 

of exposure to chemical perturbations, and showed that the integration of data-driven 

analysis and pathway-centered annotation best captures the biological processes and 

pathways that this exposure affects.  
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2.5.1.1 Building carcinogenicity biomarkers 

Analysis of expression data from multiple tissues (liver, kidney, heart and thigh 

muscle) showed that the most effective approach to carcinogenicity prediction 

necessitates the definition of tissue-specific classifiers. Consequently, we focused our 

classification effort on data from liver, since this tissue had the largest number of profiles 

and compounds evaluated, as well as the most thorough compound annotation.  

Classification performance.  

Our classifiers based on the Random Forest, and on as few as 500 genes as 

predictors (selected by variance filtering), yielded predictive accuracy as measured by 

AUC ranging from 76.7 (DrugMatrix) to 82.7 (TG-GATEs), with the 

sensitivity/specificity trade-off depending on the cost function adopted (Figure 2.3). The 

predictive accuracy of the classifier trained on the discovery set (DrugMatrix) and tested 

on the validation set (TG-GATEs) yielded an AUC of 76.6%, which increased to 78.5% 

when using gene set projection, proving that our random resampling approach provided 

an accurate and unbiased estimation of prediction performance. Of notice, the 

classification performance within the TG-GATEs (by random resampling) exceeded the 

performance across datasets (AUC: 82.7% vs. 76.7% - Figure 2.3). This is likely due to 

the dose-specific carcinogenicity annotation in the TG-GATEs, a hypothesis that is 

confirmed by direct comparison of cross-validation results with and without dose-specific 

labeling in the dataset (AUC: 82.7% vs. 69.3%). It also suggests that the carcinogenicity 



  60 

 

 

classifiers trained on the DrugMatrix are underperforming due to mislabeling and could 

be improved by the use of dose-specific carcinogenicity labels.  

2.5.1.2 Comparison to published models.  

We were also interested in comparing our predictive model to two published gene 

signatures: the Ellinger-Ziegelbauer et al. 2008 - 512-gene carcinogenicity signature 

(Ellinger-Ziegelbauer et al. 2008) and the Fielden et al. 2011 - 23-gene non-genotoxic 

carcinogen signature (Fielden et al. 2011). To this end, the two published signatures and 

associated predictive models were trained on the DrugMatrix and tested on TG-GATEs 

(Table I.13, see Methods). Our model performed considerably better in predicting all 

carcinogenic compounds (AUC: 76.64 vs. 61.75 and 69.56). For the Fielden et al 23-gene 

signature, we also performed a cross-validation within the DrugMatrix using only non-

genotoxic compounds, which resulted in an AUC of 62.59. 

2.5.1.3 Carcinogenicity is a complex phenotype.  

Supervised analysis of the DrugMatrix (differential analysis and GSEA) shows 

that the “exposure to carcinogens” phenotype is not adequately modeled as a simple 

dichotomy, especially when we consider the non-genotoxic carcinogens. This is reflected 

in the results of the differential analysis (see online portal web portal (Gusenleitner et al. 

2013)), where, due to the very large sample size, a considerable number of genes are 

identified as significantly differentially expressed (554).  However, inspection of their 

fold-changes (i.e., the ratio of their within-class mean expressions), as well as of the 

heatmap of the top markers, suggest that the differential signal is driven by relatively 

http://smonti.bumc.bu.edu/~smonti/environcology/rat_carcinogenome/
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small subsets of compounds where the exposure induces a very marked up- or down-

regulation. GSEA also supports this conclusion, as shown by the lower number of gene 

sets significantly enriched in the signature of non-genotoxic carcinogens as compared 

with the genotoxic carcinogens. As previously noted, this likely reflects the existence of 

multiple mechanisms of non-genotoxic carcinogenesis, all of which cannot be adequately 

captured by a simple dichotomous categorization. The heterogeneity of the phenotype 

also helps explain the superior performance of the Random Forest, a classifier based on 

an ensemble of decision trees. The decision tree formalism naturally lends itself to 

address classification problems that can be partitioned into sub-problems each governed 

by a possibly distinct classification rule. This formalism fits well the nature of our 

phenotype, since we can expect different classification rules to apply to different 

compound groups governed by distinct mechanisms of action. 

2.5.1.4 Adequacy of compound sample size.  

Although the gene expression datasets analyzed are comparatively large, the 

number of chemicals tested is still relatively limited, representing only ~9% of the 

compounds for which carcinogenicity annotation is available (and less than 0.16% of the 

compounds on the market). Additionally, a disproportionate number of compounds 

analyzed in the DrugMatrix act through the peroxisome-proliferating receptor (PPAR) 

pathway, hence compounds acting through other mechanisms of action might not be 

adequately represented. Our down-sampling simulation analysis aimed at evaluating 

sample size adequacy shows that the classification learning curve (see Figure 2.4) does 
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not reach a plateau, thus suggesting that inclusion of additional compounds spanning a 

wider range of mechanisms of actions will enable the training of more precise classifiers, 

as well as the identification of a more extensive taxonomy of pathways relevant to 

carcinogenesis.  

2.5.1.5 Gene set projection and interpretability vs. accuracy tradeoff.  

Projection of the expression data matrix into gene set space, and subsequent 

classification using the gene sets as predictors, had the dual advantage of increasing the 

interpretability of the model (by identifying pathways and processes relevant to cancer 

induction) and of making it more robust across datasets (by correcting for batch-to-batch 

bias). However, it adversely impacted the predictive accuracy modestly within datasets 

(see Figure 2.3). Consequently, the choice of whether or not to adopt gene set projection 

will depend on the expected difference between the training set and the new profiles to be 

classified. We hypothesize that an increased sample size (number of compounds) will 

reduce the difference in predictive accuracy between gene-based and gene set-based 

prediction, and thus make the interpretability of the latter approach the major determinant 

of its choice. In this study, we relied on pre-defined gene sets as defined in the MSigDB 

repository. However, we recognize that an alternative, fully data-driven approach is 

possible, where unsupervised clustering methods can be applied toward the identification 

of sets of tightly co-regulated genes and the corresponding groups of samples 

(compounds) defining their “co-regulation context”. Combined with techniques of 

pathway annotation, this approach might lead to the definition of gene sets more relevant 
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to the task of predicting carcinogenicity while maintaining their biological 

interpretability. 

2.5.1.6 Optimal number of genes to assay.  

The availability of data from a whole-transcriptome array allowed us to evaluate 

the dependency of a classifier’s performance on the number and identity of the genes 

used as predictors, and to determine what would be a sufficient number of gene markers 

to include in a custom array designed to model chemical carcinogenicity. As noted, the 

selection of the top 500 genes as ranked by variance (rigorously carried out within the 

training set of each training-/test-set split) was sufficient to train a Random Forest 

classifier with highest predictive accuracy. Increasing the number of genes to 1000 or 

more, or replacing the variance ranking with a t-score ranking (with respect to the 

phenotype to be predicted) did not measurably affect the predictive accuracy (see Table 

I.14 and Table I.15). Similarly, by selecting the 2
nd

 set of top 500 genes (i.e., from the 

501
st
 to 1000

th
 genes ranked by variance), the 3

rd
 set, etc., predictive accuracy decreased 

only marginally (see Table I.16). These results confirm the often-made observation that 

the effective dimensionality of gene expression data is well below the nominal number of 

genes profiled in the array, and that considerable redundancy among genes exists. Since 

predictive accuracy alone does not provide a high enough resolution to fully drive gene 

selection, interpretability and biological relevance will need to be used as additional 

criteria to guide inclusion.   
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2.5.1.7 From predictive models to mechanisms of action.  

Using the pathway projection, we were able to identify modules of coordinated 

gene sets, each reflecting a different biological process that likely contributes to a 

compound’s MoA. These tentative modules are in concordance with findings in 

published literature (Holsapple et al. 2006) and include a metabolism of lipids and 

lipoproteins module in parallel with the PPARα signaling pathway, damage response 

(p53 pathway) and proliferation (DNA replication pre-initiation) modules. A notable 

example for the power of this approach is represented by the group of seven genotoxic 

compounds. Genotoxic compounds induce direct DNA modifications and cells respond 

by up-regulation of components of the damage response machinery, such as the p53 

pathway and the G2 pathway, outcomes captured in one of the modules.  

Novel findings include the identification of a suppressed normal liver function 

module (complement cascade, platelet aggregation plug formation, as well as classic, 

common and extrinsic pathways). This is particularly intriguing since it emphasizes 

the potential role played by loss of normal tissue function in carcinogenesis. Equally of 

notice was the identification of a module reflecting up-regulation of the proteasome in 

response to carcinogens. The proteasome is closely tied to ribosome function, which is in 

turn linked to cell proliferation.  

Even though we have a large number of profiles at our disposal (2195 liver 

samples in the Drugmatrix), there are only 127 well-annotated tested compounds and 

only 41 of these are known hepatocarcinogens in rodents. Furthermore, there are various 
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(>5) mechanisms of action, as shown in Figure 2.6, through which carcinogens can act. 

The Random Forest, coupled with variable importance ranking is successful in 

disentangling these mechanisms and provides a data-driven definition of their biological 

meaning; however, a larger number of compounds will be necessary to exhaustively 

define the carcinogenome. 

 

 Conclusions and future outlook 2.6

Toxicogenomic short-term exposure studies based on in-vivo (rat) models remain 

expensive and time consuming and therefore limit the number of chemical compounds 

that can be tested. Furthermore, as noted, animal models make for an imperfect proxy to 

test human carcinogenicity. To address both these shortcomings, the next generation of 

toxicogenomics tests is poised to rely on in vitro human models amenable to high-

throughput screening (Interagency Breast Cancer and Environmental Research 

Coordinating Committee (IBCERCC) 2013; Leffall & Kripke 2010). This transition will 

introduce new challenges, including the accurate translation of in-vitro chemical doses to 

in-vivo relevance, as well as the need for adoption of organotypic culture models capable 

of capturing the cross-talk between multiple cell types. Further development of 

computational methods that accurately map the chemical response to 

activation/inactivation of relevant pathways of carcinogenicity will become essential to 

provide the essential link between the exposure and the adverse phenotype. 
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3 MOLECULAR CLASSIFIERS FOR AGGRESSIVE B-CELL LYMPHOMAS 
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Rodig SJ. 2015. Molecular Classification of MYC-Driven B-Cell Lymphomas by 

Targeted Gene Expression Profiling of Fixed Biopsy Specimens. The Journal of 

molecular diagnostics : JMD, 17(1), pp.19–30. 

 

 Abstract 3.1

Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) are 

aggressive tumors of mature B-cells that are distinguished by a combination of 

histomorphologic, phenotypic, and genetic features.  A subset of B-cell lymphomas, 

however, has one or more characteristics that overlap BL and DLBCL, and are 

categorized as B-cell lymphoma unclassifiable, with features intermediate between BL 

and DLBCL (BCL-U).  Molecular analyses support the concept that there is a biological 

continuum between BL and DLBCL that includes variable activity of MYC, an 

oncoprotein once thought to be only associated with BL, but now recognized as a major 

predictor of survival among patients with DLBCL treated with R-CHOP.  We tested 

whether a targeted expression profiling panel could be used to categorize tumors as BL 

and DLBCL, resolve the molecular heterogeneity of BCL-U, and capture MYC activity 

using RNA from formalin-fixed paraffin embedded biopsies.  A diagnostic molecular 

classifier accurately predicted pathological diagnoses of BL and DLBCL, and provided 

more objective sub-classification for a subset of BCL-U and genetic “double-hit” 

lymphomas as molecular BL or DLBCL.  A molecular classifier of MYC activity 
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correlated with MYC IHC and stratified patients with primary DLBCL treated with R-

CHOP into high- and low-risk groups.  These results establish a framework for 

classifying and stratifying MYC-driven, aggressive B-cell lymphomas based upon 

quantitative molecular profiling that is applicable to fixed biopsy specimens. 

 

 Introduction 3.2

The World Health Organization (WHO) classification of tumors defines 

neoplastic diseases according to unique clinical and biological characteristics (Campo et 

al. 2011).  Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) are 

aggressive tumors of mature B-cells categorized as individual tumor types. The reliable 

differentiation of BL from DBLCL is important, as these tumors are treated with distinct 

chemotherapeutic regimens (Magrath et al. 1996; Habermann et al. 2006). 

BL is a neoplasm composed of monomorphic, intermediate-sized lymphocytes 

that are positive for markers of mature, germinal-center B-cells and negative for the anti-

apoptotic protein BCL2. The vast majority of cells (>95%) are positive for the 

proliferation marker Ki67/MIB1. The genetic hallmark of BL is a balanced translocation 

involving the MYC oncogene and, most commonly, the immunoglobulin heavy chain 

locus (IGH) (Campo et al. 2011; Hecht & Aster 2000). Mutations in TCF3 and ID3 are 

also common (Schmitz et al. 2012; Love et al. 2012). In contrast, DLBCL is composed of 

pleomorphic, large lymphoid cells and, in general, less apoptosis and a lower 

proliferation index than BL. DLBCLs express markers of mature B-cells, with or without 
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evidence of germinal center cell derivation, and a majority express BCL2. Genetically, 

only a small subset of DLBCLs have a MYC translocation and mutations in TCF3 or ID3 

are rare. However, mutations in genes encoding the components of the NF-kB and B-cell 

receptor signaling pathways are common (Campo et al. 2011; Zhang et al. 2013; Morin et 

al. 2013; Lohr et al. 2012; Savage et al. 2009; Barrans et al. 2010). 

Most cases of BL and DLBCL are diagnosed with high confidence using 

traditional histopathologic, immunophenotypic, and targeted genetic analyses.  However, 

it is not uncommon to encounter tumors with one or more features overlapping BL and 

DLBCL.  The 2008 WHO Classification of Lymphoid Tumors recognized these cases 

with the novel diagnostic category, “B-cell lymphoma unclassifiable, with features 

intermediate between DLBCL and BL” (BCL-U) (Campo et al. 2011). BCL-U is, by 

definition, a heterogeneous group, and its diagnosis requires that pathologists make subtle 

distinctions in histomorphology, immunophenotype, and genetics that may not be highly 

reproducible.  

Molecular classification of aggressive B-cell lymphomas using comprehensive 

gene-expression profiles (GEPs) of RNA isolated from frozen tumor samples accurately 

differentiates BL from DLBCL and confirms that a subset of cases has transcriptional 

signatures intermediate between BL and DLBCL (Dave et al. 2006; Hummel et al. 2006). 

However, the pathological diagnoses corresponding to these ‘biologically intermediate’ 

tumors have been inconsistent (Hummel et al. 2006).  
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Complicating the evaluation of aggressive lymphomas is the recognition that high 

MYC expression and biological activity, once thought to be only associated with BL, are 

major, independent predictors of poor clinical outcome among patients with primary 

DLBCL treated with R-CHOP (Johnson et al. 2012; Kluk et al. 2012; Zhou et al. 2014; 

Cook et al. 2014; Perry et al. 2014). In some series, the prognostic value of MYC is 

enhanced among tumors that co-express BCL2 (Johnson et al. 2012; Green et al. 2012; 

Horn et al. 2013; Hu et al. 2013). Indeed recent evidence suggests that high co-expression 

of MYC and BCL2 in tumor cells provides a biological basis for the inferior outcome 

among patients with the activated B-cell (ABC) type DLBCL when treated with standard 

chemotherapy (Hu et al. 2013). 

DLBCL with high MYC activity cannot be identified with certainty by 

morphologic or genetic studies alone (Kluk et al. 2012). The detection of MYC in fixed 

tumor biopsy specimens by immunohistochemistry (IHC) has the potential to identify 

DLBCLs with high MYC protein that corresponds to high MYC biological activity (Kluk 

et al. 2012). However, IHC methods are difficult to standardize between institutions and 

the interpretation of IHC staining is subjective (de Jong et al. 2007). 

These data highlight a need for quantitative methods that capture the phenotypic, 

genetic and molecular heterogeneity of aggressive B-cell lymphomas in clinical practice.  

Molecular classification based upon the unique gene expression profiles of BL, DLBCL, 

and MYC-driven B-cell lymphomas has the potential to satisfy this need, but, until 

recently, gene expression profiling (GEP) has not been amenable to FFPE tissues 
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(Rimsza et al. 2011; Scott et al. 2014; Masqué-Soler et al. 2013; Linton et al.). Here we 

report a method of targeted expression profiling followed by a 2-stage molecular 

classifier of aggressive mature B-cell lymphomas that is applicable to FFPE biopsy 

specimens. 

 

 Materials and Methods 3.3

3.3.1 Tumor and Patient Cohorts 

This study was performed with approval from the institutional review boards of 

Brigham and Women's Hospital (BWH) and Massachusetts General Hospital (MGH).  

For each case, one or both of the corresponding pathologists of this study (SJR and AS) 

reviewed hematoxylin and eosin (H&E) stained slides and the original diagnostic reports 

to ensure that the final diagnosis fulfilled 2008 WHO diagnostic criteria. 

The training set (n=41) comprises 12 BLs and 29 DLBCLs (one additional 

DLBCL later failed analytical quality control). The BLs were selected based on the 

quality of available tissue and include all BL subtypes, as well as pediatric and adult 

patients (median age of diagnosis 30.5 years, range 3-62 years, Supplementary Table 1).  

The DLBCLs were selected from a previously published larger series of adult patients 

(Kluk et al. 2012) who had all been diagnosed as ‘DLBCL-NOS’ (DLBCL not otherwise 

specified). Previously, MYC IHC-High was defined as >50% expression in tumor cells, 

and MYC IHC-Low was defined as ≤50% (Kluk et al. 2012). For training, cases were 

deliberately selected in order to represent the ‘extremes’ of MYC IHC-High (median 
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70%; n=13) and MYC IHC-Low (median 20-30%; n=16) in order to assist development 

of the MYC activity classifier. We did not select DLBCLs for either the training or test 

sets on the basis of ‘cell of origin’ (COO) subtype (Alizadeh et al. 2000). 

The test set (n=55) is composed of 9 BLs (all adult patients, 8 sporadic and 1 

immunodeficiency-associated), 41 DLBCLs and 5 BCL-Us (Table II.1). Four additional 

cases failed analytical quality control. The DLBCLs included 1 ‘single hit lymphoma’ 

(SHL), characterized by a MYC-rearrangement in isolation and 3 ‘genetic double hit 

lymphomas’ (DHL), characterized by a combination of MYC and BCL2-rearrangements. 

The DLBCLs were chosen on the basis of the quality of available biopsy material and in 

order to represent a full range of MYC IHC expression. The BCL-Us were selected on 

the basis of available cases and were all DHLs. Four of 5 BCL-Us were characterized by 

a combination of MYC and BCL2-rearrangements and the remaining case had concurrent 

MYC and BCL6-rearrangements. 

Patients included in an outcome cohort (‘Outcome series’; n=40, 22 patients from 

the training set and 18 from the test set) were derived from a single institution (BWH). 

All had confirmed primary DLBCL and received standard immuno-chemotherapy (R-

CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) as previously 

reported (Kluk et al. 2012). All clinical data were collected prior to, and independent of, 

the reference and index tests reported in this study 
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3.3.2 Immunohistochemistry and Cytogenetic Analyses 

MYC IHC was performed on 96 tumors using a rabbit monoclonal antibody 

(clone Y69, Epitomics/Abcam, cat. #ab32072) as described (Kluk et al. 2012). The status 

of the MYC locus was determined by fluorescence in situ hybridization (FISH) analysis 

for 96 tumors using Vysis LSI MYC "break-apart" probe set (cat. #05-J91-001), as 

described (Kluk et al. 2012). FISH analyses were performed on indicated cases using the 

BCL2-IgH dual fusion (cat. #05-J71-001), and BCL6-IgH "break-apart" (cat. #01N23-

020; Abbott Laboratories, Abbott Park, IL) probe sets respectively, following 

manufacturer's recommendations.  For a minority of cases, a karyotype was obtained as 

part of the original diagnostic evaluation (Kluk et al. 2012). 

 

3.3.3 RNA Extraction and Profiling 

FFPE tissue blocks were sectioned immediately prior to the RNA extraction.  For 

each block, the initial 10µm section was discarded and 3x 10 µm subsequent sections 

were taken for analysis.  If the estimated surface area of lesional tissue was < 5mm
2
 an 

extra 10µm section was taken. Total RNA was isolated using the Qiagen RNeasy kit 

(catalog # 73504, Qiagen, Hilden, Germany) and quantified using Nanodrop 

spectrophotometry (Nanodrop Products, Thermo Science, DE).  RNA was diluted to 150-

200ng / 5µL, aliquoted and stored at -80°C until use.  

For the multiplexed, digital gene expression analysis, 150-200ng of RNA for each 

sample was hybridized with 20µl of reporter probes / reaction buffer and 5 µl of capture 
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probes at 65°C for 20 hours. The hybridized samples were then processed on the 

NanoString nCounter preparation station for 2.5 hours and expression data were 

subsequently generated on the NanoString nCounter digital analyzer (NanoString 

Technologies, Seattle, WA) using the 600 fields of view setting over 4 hours (Geiss et al. 

2008). In total tumors from 96 patients were profiled, with a further 5 tumors (5%) failing 

analytical quality control. 

 

3.3.4 Target Selection for the Initial and Final Profiling Panels 

Candidate gene targets were initially selected from published GEPs of BL and 

DLBCL (Dave et al. 2006; Hummel et al. 2006) with preference given to genes within 

the TCF3/ ID3 signaling pathway (Schmitz et al. 2012), published MYC targets (Zeller et 

al. 2003; Mori et al. 2008; Schuhmacher et al. 2001; Kim et al. 2006; Chapuy et al. 2013; 

Schlosser et al. 2005; Yu et al. 2005), and GEPs of frozen tissue corresponding to 

DLBCL samples in the training set (Monti et al. 2012). These were supplemented by 

additional targets of interest including housekeeping genes (Figure II.1). 

The initial panel of 200 probes included 37 unique transcripts distilled from a 

previously published “TCF3 signature” (Schmitz et al. 2012). These were subsequently 

validated, by in silico differential analysis (DA), as best distinguishing BL from DLBCL 

in two independent series of B-cell non-Hodgkin lymphomas (Dave et al. 2006; Hummel 

et al. 2006) (Figure II.1). The panel also included transcripts from 7 published datasets of 

MYC targets (101 targets) (Zeller et al. 2003; Mori et al. 2008; Schuhmacher et al. 2001; 
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Kim et al. 2006; Chapuy et al. 2013; Schlosser et al. 2005; Yu et al. 2005) that were 

validated (False Discovery rate (FDR) < 0.25; fold change (FC) > 1.3) by DA against 

Affymetrix U133 microarray GEPs of frozen DLBCLs with corresponding MYC IHC 

scores from matched FFPE tissue in the training cohort(Kluk et al. 2012; Monti et al. 

2012) and differentially expressed genes suggested by DA of the GEPs of frozen 

DLBCLs with corresponding MYC IHC scores (FDR < 0.25; FC >2.0). Finally they were 

supplemented with BCL2 and related family members (5 targets), "house-keeping" 

control transcripts (15 targets), and select markers of specific cell lineages (CD3e, CD68, 

CD19, CD79a, CD20; Table II.2) 

The final profiling panel, targeting 80 transcripts was derived by analyzing data 

from the training set, by both ranking the importance of each included gene and 

estimating how many could be excluded without compromising the predicted accuracy 

(Table II.3). The predicted accuracy of each classifier was assessed on the training set 

using leave-one-out cross-validation (LOO-CV), as well as on an independent test 

dataset.  

 

3.3.5 Housekeeping gene transcripts 

Six housekeeping (HK) genes were selected based on the following criteria: i) low 

variation across samples; ii) even coverage along the expression range; iii) exclusion of 

the most highly expressed HK genes, since at very high levels, the variation level of the 

HK genes is comparable to the variation of the other genes, and iv) exclusion of genes 
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within regions of known recurrent copy number alteration in lymphoma (Monti et al. 

2012). Based on these criteria, we selected the following 6 gene targets: AAMP, HMBS, 

KARS, PSMB3, TUBB, and H3F3A. 

 

3.3.6 Data normalization 

Data from the preliminary targeted profiling panel (200 genes) and the final 

profiling panel (80 genes) were cross-normalized using expression data from 6 cases 

tested with both panels. Normalization of the NanoString data was performed using the R 

package NanoStringNorm (http://cran.rproject.org/web/packages/NanoStringNorm).  We 

used the sum of the expression values to estimate the technical assay variation, the mean 

to estimate background count levels and the sum of the six housekeeping genes to 

normalize for the RNA sample content.  Additionally, the data were log2 transformed. 

 

3.3.7 Classification models 

Classification models were selected based on the training cohort using a 

bootstrapping scheme, where 75% of the samples were drawn to train a classification 

model, which was then tested on the remaining 25% of the samples, with the train/test 

split repeated 100 times. Elastic nets (Hui Zou 2005), linear and polynomial support 

vector machines (SMV), shrunken centroids (Tibshirani et al. 2002) and a random forest 

algorithm (Breiman 2001) were evaluated as candidate prediction models. For the MYC 

http://cran.rproject.org/web/packages/NanoStringNorm
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activity classifier, samples with MYC IHC >50% and ≤50% were classified as MYC 

IHC-High and IHC-Low, respectively, and these labels were used in the training of the 

MYC activity classifier (Kluk et al. 2012). 

Features were selected based on differential expression, and their number 

determined based on LOO-CV performed on the training cohort; based on this procedure, 

21 genes were used for the diagnostic classifier and 61 for the MYC classifier (Table 

II.4). Based on their performance on the training dataset we selected the elastic net with 

an alpha parameter of 0.1 and a lambda of 0.1 as the classifier of choice for both stages.  

Classification accuracy of the final elastic net models was assessed on the training 

cohort using LOO-CV and comparing the predictions with the outcome of the IHC 

staining.  Unbiased validation was then performed by training elastic net models on the 

entire training dataset and applying them to the classification of cases in the test cohort. 

 

3.3.8 Creation and Validation of the Molecular Classifiers   

An elastic net (Hui Zou 2005) prediction model was selected for both classifiers, 

based on a bootstrapping evaluation scheme on the training set.  The Diagnostic classifier 

comprised 21 genes, the MYC activity classifier 61 genes, and 8 genes were common to 

both classifiers (Table II.4). In addition, 6 housekeeping genes complete the final 

profiling panel. 

Elastic net models output class probabilities between 0 and 1 for each class 

(probability of class BL in the diagnostic classifier, and of class MYC IHC-High in the 
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MYC Transcriptional Activity classifier), reflecting the confidence of a sample 

prediction.  Prior to analysis, and in order to reflect the concept of a biological 

‘intermediate’ between BL and DLBCL, we defined Diagnostic scores of >0.75 as 

representing ‘molecular BL’ (mBL), <0.25 ‘molecular DLBCL’ (mDLBCL), and 0.25-

0.75 ‘molecularly intermediate’, respectively.  MYC activity scores of "1" and “0” 

correspond to tumors with high MYC and low MYC (as modeled on IHC expression 

(Kluk et al. 2012)) with greatest probability, respectively  (detailed in Supplementary 

Methods).  During development of the MYC activity classifier 0.5 was optimized as the 

cut-off with the highest estimated accuracy to classify tumors with high and low MYC 

activity.  Therefore 0.5 is used for statistics regarding the efficacy of the classifier and for 

correlation to clinical outcome.  

 

3.3.9 Reproducibility of the Assay  

The test set and outcome series were profiled using 2 ‘builds’ of the 80-gene 

profiling panel.  The binding efficiency of probes varies between builds and therefore the 

final dataset was compiled by normalizing to both housekeepers and then between builds, 

using on the expression profiles of tumor RNA that were profiled on both.  RNA from a 

subset of cases was profiled multiple times over the course of the study to determine the 

reproducibility of the assay (Figure II.2).  
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 Results 3.4

RNA was isolated from FFPE tissue corresponding to 41 aggressive B-cell 

lymphomas (training set) and was profiled using an initial panel targeting 200 unique 

transcripts (Figure 3.1). The resulting data were used to derive a pair of molecular 

classifiers, firstly to distinguish BL from DLBCL and secondly to distinguish high and 

low MYC activity in DLBCL using a parsimonious, 80-gene signature (Figure 3.1 and 

Table II.3; Table II.4). 

 

Figure 3.1 Target gene selection and the creation of molecular classifiers.  

(A) Schematic showing the distribution of gene transcripts that were assayed in the initial and final profiling 

panels. (B) Schematic outlining the protocols for the molecular classification of  (i) all aggressive B-cell 

lymphomas, and (ii) cases with the pathological diagnosis of DLBCL and BCL-U.  Twenty-one genes were used 
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for the Diagnostic classifier and 61 genes were used for the MYC Activity classifier.  In addition 8 genes were 

common to both classifiers and there were 6 housekeeping genes. 

 

3.4.1 Unsupervised Clustering of Targeted Expression Profiles of Select Lymphomas 

Unsupervised clustering of the normalized expression data from the 200-gene 

signature segregated the 42 tumors into distinct groups that showed a close correlation 

(39/42, 92.9%) with the original pathological diagnoses of BL, DLBCL MYC IHC-High, 

and DLBCL MYC IHC-Low (Figure 3.2). Figure 3.2 was constructed using ‘one minus 

Pearson’ hierarchical clustering in Gene-e
6
 for the training dataset. This dataset was first 

normalized using Nanostring’s ‘nSolver’ software package and then transformed to Log2 

using Gene-e prior to hierarchical clustering. One case, diagnosed as BL, clustered with 

DLBCL MYC IHC-High cases.  Central review of this case confirmed that the tumor was 

originally diagnosed correctly. These data support the in silico methods used to develop 

the initial profiling panel and demonstrate the technical feasibility of the approach to 

broadly group aggressive lymphomas into clinically relevant categories.  

 

 

                                                 

 

6
 http://www.broadinstitute.org/cancer/software/GENE-E/ 

http://www.broadinstitute.org/cancer/software/GENE-E/
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Figure 3.2 Heatmap of trainings cohort 

Unsupervised clustering of the normalized transcript values from 42 tumors comprising the training cohort and 

including all probes in the initial profiling panel (1 case, DLBCL30 later failed quality control during 

classification).  The original pathological diagnosis (first line) and relative gene expression for the 185 genes 

comprising the initial profiling panel (heatmap) are shown (housekeeping genes excluded).   

 

3.4.2 Performance of the Diagnostic Molecular Classifier on the Training and Test 

sets 

We tested the diagnostic molecular classifier against data derived from the 

training set in a LOO-CV, Figure 3.3). When ranked by the diagnostic classifier scores, 

these data recapitulated the results obtained from the original unsupervised clustering 

analysis using the 200-gene panel.  Thirty-five of 41 (85%) cases classified as mBL or 
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mDLBCL with high confidence and correctly matched the pathological diagnoses of BL 

or DLBCL, respectively (Figure 3.3, Table 3.1). Six cases had diagnostic scores of >0.25 

and <0.75 and thus were not assigned to the categories of mBL or mDLBCL. 

Nevertheless, 3 of the “molecularly intermediate” cases had a pathological diagnosis of 

BL and 2 of these had a diagnostic score >0.5; three “molecularly intermediate” cases 

had a pathological diagnosis of DLBCL and 2 had a diagnostic score < 0.5.  We conclude 

that in our training cohort a 21-gene classifier can be used to distinguish the majority 

(85%) of pathological BL from DLBCL.  

 

Table 3.1: Performance Statistics of Molecular Classifiers 

Diagnostic Classifier: Only cases classified with high confidence (as mBL or mDLBCL) are included. The 

sensitivity refers to the ability of the test to identify pathological BL as molecular BL (‘mBL’). 

MYC Activity Classifier: Only cases with matched MYC IHC and MYC Activity scores are included. The 

sensitivity refers to the ability of the test to identify tumors with high MYC IHC expression (>50%) as having 

MYC Activity score >0.5. 

  Diagnostic 

Classifier* 

MYC Activity Classifier¶ 

 

Training Test 

Training 

(All) 

Training 

(non-BL) 

Test 

(All) 

Test  

(non-BL) 

Outcome 

Series 

Percentage of cases 

classified 

85% 92% 100% 100% 100% 100% 100% 

Accuracy 1 1 0.925 0.897 0.804 0.795 0.868 

Sensitivity 

(95% CI) 

1 

(0.66-

1 

(0.59-

0.917 

(0.73-

0.846 

(0.55-0.98) 

0.773 

(0.55-

0.688 

(0.41-

0.750 

(0.35-0.96) 
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We next profiled and classified an independent test set of 55 cases that included 9 

BL, 41 DLBCL, and 5 cases with the pathological diagnosis of BCL-U (Figure 3.3B).  

Among the non-BLs were one genetic “single-hit” lymphoma (genetic SHL, with isolated 

MYC-translocation, tDLBCL1) and 8 genetic “double-hit” lymphomas (DHLs), all with 

MYC-translocations. 7 DHLs had coexistent BCL2-translocation and one had a coexistent 

BCL6-translocation, tDHL1-8, (Figure 3.3B). 

1.0) 1.0) 0.99) 0.92) 0.89) 

Specificity 

(95% CI) 

1 

(0.87-

1.0) 

1 

(0.91-

1.0) 

0.938 

(0.70-

0.90) 

0.938 

(0.70-0.90) 

0.828 

(0.64-

0.94) 

0.857 

(0.67-

0.96) 

0.900 

(0.73-0.98) 

Positive Predictive 

Value (PPV) 

1 1 0.957 0.917 0.773 0.733 0.667 

Negative Predictive 

Value (NPV) 

1 1 0.882 0.882 0.828 0.828 0.931 
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Figure 3.3 Heatmaps of Diagnostic Classifier 

(A) Leave-one-out cross-validation (LOO-CV) of the final profiling panel and Diagnostic Classifier for the 

training cohort: BL and DLBCL cases categorized according to the original pathological diagnosis (first line), 

the assigned molecular diagnosis (second line, diagnostic scores of 0.25-0.75 categorized as 'molecularly 

intermediate'), diagnostic score (line graph, third line, intermediate values shaded), the relative expression of the 

indicated transcripts (heatmap) including the relative contribution of each to the classifier (horizontal shaded 

bar graphs, left side), and MYC-rearrangement status (bottom line). (B) Results of the Diagnostic Classifier for 

the test cohort: BL, BCL-U and DLBCL cases categorized according to the original pathological diagnosis (first 

line), the assigned molecular diagnosis (second line, diagnostic scores of 0.25-0.75 categorized as 'intermediate'), 

diagnostic score (line graph, third line, intermediate values shaded), the relative expression of the indicated 

transcripts (heatmap) including the relative contribution of each to the classifier (horizontal shaded bar graphs, 

left side), and MYC-rearrangement status (bottom line). The cases of genetic DHL are numbered and additional 

gene rearrangements are indicated by arrowheads (BCL2-) or a dot (BCL6-). The ‘single hit’ DLBCL, with 

MYC-rearrangement only, is indicated by an asterisk. 

 

The diagnostic classifier successfully segregated all pathological BL from all 

DLBCL (Figure 3.3, Table 3.1). Forty-six of 50 (92%) BL and DLBCL were classified 

with high confidence. Two BL and two DLBCL had intermediate diagnostic scores, but 

among these, the diagnostic scores for the BL were >0.5 and for the DLBCL ≤0.5.  The 

DLBCL with the highest diagnostic score (case tDLBCL1, score=0.5) was the genetic 

SHL.  The diagnostic classifier demonstrated a sensitivity of 1.0 (95% CI 0.66 - 1.0) and 

specificity of 1.0 (95% CI 0.87 - 1.0) in the test set, for all tumors classified as mBL or 

mDLBCL (Table 3.1). 

Molecular classification segregated subsets of non-BLs with the pathological 

diagnosis of BCL-U and/or genetic evidence for MYC-rearrangements into all three 
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diagnostic categories (Figure 3.3B). Three BCL-U/ DHLs (tDHL1, tDHL2, tDHL3) had 

high diagnostic scores (0.90, 0.85, and 0.77, respectively) and classified as mBL.  One 

DLBCL/ SHL (tDLBCL1) and one BCL-U/ DHL (tDHL4) had lower diagnostic scores 

(0.50 and 0.31, respectively) and classified as ‘molecularly intermediate’.  Finally, one 

BCL-U/ DHL (tDHL5) and three DLBCL/ DHLs (tDHL6, tDHL7, tDHL8) had low 

diagnostic scores (0.12, 0.05, 0.02, and 0.015, respectively) and classified as mDLBCL.  

We conclude that the diagnostic molecular classifier reveals molecular heterogeneity 

among BCL-Us and DLBCLs with MYC-translocations. 

 

3.4.3 Molecular and Histopathological Features of BCL-U/ DHL 

We next examined the molecular signatures and histopathology of the BCL-Us 

and DLBCLs with MYC-translocations in more detail (Figure 3.4).  BCL-U/ DHLs 

classified as mBL expressed both TCF3-associated transcripts and MYC-associated 

transcripts at levels that were comparable to BL (Figure 3.4A). DLBCL/ DHLs classified 

as mDLBCL expressed TCF3-associated transcripts at low levels and MYC-associated 

transcripts at intermediate levels that were comparable to many DLBCLs lacking a MYC-

translocation (Figure 3.4A). Additional transcripts (BCL2, CD44, NFKB1 and BCL2A1) 

differentially expressed between BL and DLBCL, also showed differential expression 

among the DHLs, and with the TCF3 and MYC signatures, resulted in the final 

classification indicated in Figure 3.3B.  
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Further review of the histopathology of the DHLs revealed distinct features 

between those that classify with high confidence as mBL and those that classified with 

high confidence as DLBCL (Figure 3.4B). Cases classified as mBL were composed of 

sheets of tightly packed, intermediate to large-sized cells with homogenous, round nuclei, 

and scant cytoplasm that resembles the morphological features of classic BL.  In contrast, 

cases classified as mDLBCL were composed of large-sized lymphoid cells with marked 

pleomorphism and nuclear irregularity typical of DLBCL. We conclude that the 

molecular classifications of DHLs are supported by multiple molecular signatures, and 

correlate with distinct histopathological characteristics. 
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Figure 3.4 MYC signature overview 

(A) Scatterplot showing the mean TCF3 signature (7 genes, x axis) and mean MYC signature (10 genes, y axis) 

for each tumor from the test cohort. The mean values for each signature are derived from transcript counts 

from these genes, as originally used in the diagnostic classifier.  Colors indicate the pathological / genetic 

diagnoses (black for BL, gray for DLBCL, yellow for genetic DHL). Shapes indicate the molecular classification 

assigned by the diagnostic classifier (triangle for mBL, circle for mDLBCL, square for molecularly 

intermediate).  (B) Histomorphological features of lymphomas with a MYC‐rearrangement and either a BCL2‐ 

or BCL6- rearrangement (genetic DHL).   Hematoxylin and eosin stained sections of DHL classified as 

molecular BL (top row), and molecular DLBCL (bottom row).  Unique identifiers and details of relevant 

translocations are shown. Cases were photographed at x1000 original magnification.  The tumors classified as 

mDLBCL have inserts highlighting nuclear morphology. 

 

3.4.4 Performance of the MYC Activity Classifier on the Training and Test sets 

The MYC activity classifier was tested in the training cohort by LOO-CV.  BLs 

were not used to build the classifier but, as expected, had very high MYC activity scores 

(Figure 3.5A). In addition, all non-BLs with MYC-translocation had MYC activity scores 

>0.5. The sensitivity and specificity of the molecular classifier for identifying MYC IHC-

High among all cases in the training set were 0.917 (95% CI 0.73-0.997) and 0.938 (95% 

CI 0.70-0.99), respectively (Table 3.1). Overall, the correlation between the optimized, 

molecular MYC activity score and MYC IHC score among non-BLs in the training set 

was high (Spearman  r= 0.80, p <0.0001, 95% CI 0.6-0.9, Figure 3.5A). 
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Figure 3.5 Heatmaps of MYC classifier 

(A) Leave-one-out cross-validation (LOO-CV) of the final profiling panel and MYC Activity Classifier for the 

training cohort.  BL (left side) and DLBCL (right side) are segregated by pathological diagnosis (first line), 

MYC activity score (second line and line graph), the relative expression of the indicated transcripts (heatmap) 

including the relative contribution of each to the classifier (horizontal, shaded bar graphs, left side), MYC IHC 

class (MYC IHC-Low ≤50%, IHC-High >50%; penultimate line) and MYC rearrangement status (bottom line).  

Inset is the correlation between MYC IHC and MYC activity score for DLBCL only (Spearman r = 0.80; 95% 

CI 0.6-0.9). (B) Results of the final profiling panel and MYC Transcriptional Activity Classifier for the test 

cohort: BL (left side), DLBCL and BCL-U (right side) are segregated by pathological diagnosis (first line), MYC 

activity score (second line and line graph), the relative expression of the indicated transcripts (heatmap) 

including the relative contribution of each to the classifier (horizontal, shaded bar graphs, left side), MYC IHC 

class (MYC IHC-Low ≤50%, IHC-High >50%; penultimate line) and MYC rearrangement status (bottom line).  

Genetic DHLs are indicated as in Fig 3(B).  Inset is the correlation between MYC IHC and MYC activity score 

for non-BL only (Spearman r = 0.66; 95% CI 0.44-0.8). 

 

We next applied the MYC activity classifier to expression data from the 

independent test set. Again, BL cases showed very high MYC activity scores (Figure 

3.5B). The sensitivity and specificity of the molecular classifier identifying MYC IHC-

High among all cases were 0.773 (95% CI 0.55-0.92) and 0.828 (95% CI 0.64-0.94), 

respectively (Table 3.1). The correlation between the molecular MYC score and the 

MYC IHC score for the test set (non-BLs) was lower than for the LOO-CV of the 

training set, but with overlapping confidence intervals (Spearman r= 0.66, p <0.0001, 

95% CI 0.44-0.8). 

Non-BLs with a MYC-translocation were expected to have upregulated MYC 

activity, and for 5 of 9 cases, tDHL1-4 and tDHL6, the MYC activity scores were high 



  92 

 

 

and comparable to those seen for BL (ranging from 0.98-1.00).  There was a range of 

values among the remaining cases. For tDLBCL1 (genetic SHL) and tDHL5, the MYC 

activity scores were 0.63 and 0.60 and for tDHL7 and tDHL8, the scores were lower at 

0.26 and 0.18 respectively. Non-BLs with MYC-translocations and high MYC activity 

scores had a pathological diagnosis of BCL-U whereas those with other MYC activity 

scores had a pathological diagnosis of DLBCL. We conclude that the MYC activity 

classifier captures a spectrum of MYC biological activity in BCL-U and DLBCL that 

shows good correlation with MYC IHC and reveals heterogeneity in MYC biological 

activity among non-BL with MYC translocations. 

 

3.4.5 Clinical Significance of the MYC Activity Score in DLBCL 

The MYC activity classifier was constructed in order to categorize aggressive B-

cell lymphomas according to MYC biological activity, rather than to predict clinical 

outcome. The MYC activity scores showed good, but not perfect, correlation with MYC 

IHC scores in the training and test sets.  Therefore, we wished to determine whether the 

results of the MYC classifier were sufficient to predict clinical outcome in a series for 

which MYC IHC has prognostic value (Kluk et al. 2012). The overall accuracy of the 

classifier in the outcome series, compared to a class defined by MYC IHC, was high 

(0.868, Table 3.1), but the correlation between the MYC activity and MYC IHC scores 

was lower (r= 0.64, Figure 3.6A) than observed for non-BLs in the training and test sets 

(r= 0.80 and 0.66, respectively). DLBCLs with MYC activity scores in excess of the 
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optimized classifier cut-point of 0.5 identified a patient population with inferior overall 

survival that was highly significant (nominal p = 0.0009, log-rank test; hazard ratio= 

6.73, Figure 3.6B).  We conclude that the MYC activity classifier, built upon MYC IHC 

data, is capable of dividing patients into high-risk and low-risk categories.   

 

 

Figure 3.6 Results of the MYC classifier and overall survival (OS)  

among patients with primary DLBCL treated with R-CHOP-based chemotherapy.  (A) The correlation between 

MYC score and MYC IHC for this outcome series (Spearman r = 0.64). (B) Kaplan-Meier (KM) curve showing 

Overall Survival (OS) for the outcome series with a MYC score >0.5 (red line) and a MYC score <0.5 (black 

line). 

 

 Discussion 3.5

The WHO currently considers histomorphologic, immunophenotypic and 

genomic data in order to categorize aggressive B-cell lymphomas (Campo et al. 2011). 

However, the interpretation of histomorphology and IHC remains subjective and requires 

expert review. Molecular profiling has the potential to aid diagnostic categorization by 

providing objective data from normalized gene expression signatures but until recently 
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the degradation of RNA due to formalin compromised the ability to utilize fixed biopsy 

specimens (Rimsza et al. 2011; Scott et al. 2014; Masqué-Soler et al. 2013; Linton et al.). 

We have described a framework for the molecular classification of MYC-driven 

B-cell lymphomas using targeted expression profiling of RNA isolated from FFPE tissue.  

The approach described has several features that make it appealing.  First, the assay 

requires only small amounts of FFPE tissue.  We and others find that RNA isolated from 

the equivalent of 2 to 6 X 5-µm FFPE tissue sections is sufficient for analysis (Scott et al. 

2014). Second, the assay is robust. We successfully profiled 96 FFPE tumor biopsy 

samples ranging from 0.5 to 13 years old, with only an additional 5 (5%) failing 

analytical quality control, and repeat testing of the same samples yielded nearly identical 

results.  Third, the step-wise application of the diagnostic and MYC activity classifiers 

mimics the diagnostic approach used to evaluate aggressive B-cell lymphomas in clinical 

practice. Finally, the molecular scores provide quantitative outputs that can be interpreted 

objectively.  

We framed our definition of BL in terms of high MYC and TCF3 transcriptional 

activity, as these are known major determinants of tumor behavior (Hecht & Aster 2000; 

Schmitz et al. 2012; Love et al. 2012). DLBCL was defined by variable MYC activity, 

low TCF3 activity, and high BCL2 and targets of NFKB (Dave et al. 2006). This limited 

signature was sufficient to categorize >90% of BL and DLBCL in the test set with high 

confidence and with perfect accuracy (Table 3.1). The results are comparable to those 

reported in a prior, exploratory study comparing categorization of BL and non-BL using 
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targeted GEP against a ‘gold standard’ global GEP (Masqué-Soler et al. 2013), and 

validate a molecular, diagnostic classification for cases of well-defined BL and DLBCL. 

BCL-U are ‘intermediate’ tumors that share features with BL and DLBCL 

according to traditional diagnostic evaluation, but 'intermediate' tumors are also identified 

by molecular analyses (Campo et al. 2011; Dave et al. 2006; Hummel et al. 2006). It is 

important to note that ‘histomorphologically intermediate’ and ‘molecularly intermediate’ 

are non-synonymous terms and will categorize mature, aggressive B-cell lymphomas in 

different ways (Salaverria & Siebert 2011). For example, in our test cohort, 3 BCL-Us 

classified as mBL. This must be considered inaccurate in the context of WHO 

classification but is consistent with prior molecular characterization of B-cell lymphomas 

in which most 'atypical BLs' and a proportion of 'unclassifiable aggressive B-cell 

lymphomas' classified as mBL (Hummel et al., Figure 2 [2006] (Hummel et al. 2006)). 

Similarly, small numbers of BL, BCL-U, and DLBCL in our series had diagnostic 

molecular scores 'intermediate' between mBL and mDLBCL. This result is also 

consistent with prior analyses in which subsets of atypical BL, 'unclassifiable aggressive 

B-cell lymphoma', and DLBCL classified as 'molecularly intermediate' (Hummel et al. 

2006). These results support the concept that BCL-U is not a discrete diagnostic category, 

but includes tumors with molecular profiles of mBL, mDLBCL, and intermediate 

between mBL and mDLBCL. 

Non-BL with MYC-rearrangement is also a heterogeneous group that includes 

tumors with the pathological diagnoses of BCL-U and DLBCL by WHO criteria (Campo 
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et al. 2011; Salaverria & Siebert 2011; Aukema et al. 2014; Gebauer et al. 2013; Gebauer 

et al. 2015). We found DHLs that classified as mBL, 'molecularly intermediate', and 

mDLBCL. This result also has precedence. A comprehensive GEP analysis of aggressive 

B-cell lymphomas highlighted groups of DHLs that classified as mBL and MYC-

rearranged DLBCLs that classified as mDLBCL (Dave et al., Figure 2 [2006]). 

Our results were further supported by the examination of the molecular sub-

signatures and the histomorphology of the DHLs. We found that a subset of DHLs have a 

TCF3 signature that is comparable to, or exceeding that of BL. This result was surprising, 

given recent reports that the TCF3 signature is specific for BL (Schmitz et al. 2012; Love 

et al. 2012), although a recent study found that ID3 mutations can occur in DHL 

(Gebauer et al. 2013). It will be of interest to correlate TCF3/ ID3 mutation status with 

molecular diagnosis in future studies. 

DHLs that classified as mBL were histomorphologically typical of BL and cases 

that classified as mDLBCL were histomorphologically typical of DLBCL. Morphological 

heterogeneity among DHLs is recognized and may have clinical significance (Johnson et 

al. 2009). It will be important to determine, using larger cohorts, whether the molecular 

classifier reliably identifies subsets of DHL with distinct histomorphological 

characteristics, and to relate these data to clinical outcomes. 

The prognostic role of MYC in DLBCL is well established, especially in the 

context of BCL2 expression, and an assessment of MYC activity has been proposed to be 

an important part of the diagnostic work-up (Johnson et al. 2012; Kluk et al. 2012; Zhou 
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et al. 2014; Green et al. 2012; Horn et al. 2013; Hu et al. 2013; Friedberg 2012). MYC 

IHC is a single biomarker that serves as a surrogate for MYC activity. The threshold for 

MYC IHC that separates low from high-risk disease varies between studies from 10-50%, 

with most suggesting 40% (Valera et al. 2013; Johnson et al. 2012; Kluk et al. 2012; 

Zhou et al. 2014; Green et al. 2012; Horn et al. 2013; Hu et al. 2013). However IHC is 

difficult to standardize between centers, even if an automated platform is used (de Jong et 

al. 2007). An advantage of expression profiling is that the analysis of a large number of 

gene-transcripts provides redundancy to the assay and captures a transcriptional signature 

of MYC activity that IHC for MYC alone cannot offer.  

The MYC activity classifier was trained using the gene expression profiles of 

DLBCLs alone, excluding BLs.  Its subsequent application to BLs in the training and test 

sets revealed high MYC activity scores for all cases, which supports the validity of the 

classifier.  We anticipated that the MYC activity scores would show good, but not 

perfect, correlation with MYC IHC scores, which we observed. This imperfect 

correlation is likely to reflect the comparison between a single data point for each tumor 

(MYC protein expression by IHC) and the combination of a more broad set of data as 

derived from the normalized expression of MYC-target transcripts (MYC activity score).  

It is also possible that additional MYC targets, not included in our final profiling panel 

would improve the validity of the MYC activity score. Finally, there are a number of pre-

analytical and analytical variables that we must consider when reviewing MYC IHC data, 

such as time to tissue fixation and intra-observer variability.  
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Importantly, 5 of the 6 non-BLs with the highest MYC activity scores in the test 

set had MYC-translocations.  Yet, we also observed tumors with MYC-translocations and 

intermediate/low scores; indicating variable MYC activity among SHLs and DHLs 

(Hummel et al. 2006; Aukema et al. 2014). 

To evaluate the clinical relevance of these data, we correlated the MYC activity 

scores to clinical outcome in a small series of R-CHOP-treated patients with primary, de 

novo DLBCL. Segregating tumors into those with high (>0.5) and low (<0.5) MYC 

activity scores identified patient populations that differed significantly with respect to 

overall survival (nominal p = 0.0009). The results provide evidence that the MYC 

activity score, while showing imperfect correlation with IHC and genetics, captures a 

biological signature of clinical significance. The limited number of primary DLBCLs 

with documented treatment and outcome required that we include cases from the training 

and test sets, therefore a more formal validation of the MYC classifier using an 

independent case series is needed. Ideally, such a study would compare the inter-

institutional reproducibility and the prognostic value of the MYC classifier with MYC 

IHC in a large, multi-institutional cohort.  

In summary we have developed a quantitative method for classifying and 

stratifying aggressive B-cell lymphomas that is applicable to FFPE tissue samples.  The 

molecular classifiers are robust, but likely to improve with further testing and with the 

inclusion of additional, select gene signatures (Scott et al. 2014). In addition to 

distinguishing BL from DLBCL, the diagnostic classifier provides unique data regarding 
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the further classification of BCL-Us and DHLs that inform the standard diagnostic 

methods and warrant further investigation. This platform will allow for the standardized 

analysis of an expanded cohort of BCL-U and DHL, from which correlations between 

GEP and traditional pathology, genetics, and somatic mutational analysis can be further 

examined.  The MYC activity classifier captures a key biological and prognostic 

hallmark of DLBCL and also has the potential to standardize assessment across 

institutions. The ability of this classifier to predict outcome requires further validation, 

initially in a large independent cohort where MYC IHC expression is known to be 

predictive of outcome, and then in the context of a clinical trial. 
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4 Comprehensive Consensus Clustering classification of diffuse large B-cell 

lymphoma on Nanostring 
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 Introduction 4.1

Diffuse large B-Cell lymphoma (DLBCL) is the most common type of non-

Hodgkin’s lymphoma in adults. Even though DLBCL is a very heterogeneous disease 

both in terms of underlying molecular mechanisms as well as morphological features, 

virtually all patients are treated with the standard rituximab(R)/CHOP regimen. While 

this standard chemotherapeutic treatment is able to cure around two thirds of patients, the 

rest dies from the disease (Friedberg & Fisher 2008), highlighting the need of a further 

stratification of the patient population into treatable subgroups.  

The heterogeneity of DLBCL has been captured in multiple complementary 

taxonomies based on transcriptional profiling. One well established approach 

distinguishes DLBCLs based on their transcriptional similarity to normal B-cell subtypes 

related to cell-of-origin (COO), which makes a distinction between activated B-cells 

(ABC) and germinal center B-cells (GCB) (Lenz & Staudt 2010) (Basso & Dalla-Favera 

2015). This classification was recently translated onto the clinically deployable 

Nanostring platform using formalin-fixed paraffin-embedded tissue samples (Geiss et al. 

2008) (Scott et al. 2014). However, while the COO classification is significantly 

associated with disease prognosis (with ABC DLBCLs predicted to have significant 

worse outcome), it has of yet no direct impact on the treatment course.  

Another purely transcription-based molecular stratification of DLBCL is the 

comprehensive consensus clustering (CCC) classification described in (Monti et al. 

2005), which identifies three distinct subtypes: B-cell receptor (BCR), Host Response 
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(HR) and Oxidative Phosphorylation (OxPhos) tumors. The BCR-type DLBCLs have 

increased expression of proximal components of the B-cell receptor (BCR) pathway and 

increased reliance upon proximal BCR signaling and survival pathways (Monti et al. 

2005; Chen et al. 2013; Chen et al. 2008). The HR-type have a characteristic 

inflammatory/immune cell infiltrate and include the morphologically defined subset of T-

cell/histiocyte-rich B-cell lymphomas (Monti et al. 2005). Finally, the OxPhos-type 

DLBCL exhibit enhanced mitochondrial energy transduction and selective reliance on 

fatty acid oxidation (Caro et al. 2012). 

In Polo et al. 2007, an ensemble classifier was introduced for the robust prediction of the 

CCC subtypes from Affymetrix-based DLBCL datasets. The ensemble classifier was 

further used to predict the CCC phenotye in DBLCL cell-lines, and the predictions were 

functionally validated in vitro. Further validation of the ensemble classifier predictions 

was carried out in (Caro et al. 2012; Chen et al. 2013), thus providing strong support to 

the reliability of the approach. However, the ensemble classifier in its current form is 

limited, since it relies on the Affymetrix platform, which is not reproducible enough for 

clinical applications and cannot be used to classify single samples. Furthermore, its 

reliance on a complex combination of multiple classification rules, each using a distinct 

set of transcripts, makes its predictions difficult to interpret, hence not easily applicable 

in clinical settings. Finally, its reliance on the Affymetrix platform makes it not 

applicable to the analysis of FFPE samples, thus further reducing its clinical relevance.   
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Here, we describe our successful effort at developing a Nanostring-based (Geiss 

et al. 2008) parsimonious classifier for the accurate and robust CCC classification of 

patient’s expression profiles from frozen tissue samples amenable to the classification of 

single samples in preclinical and clinical settings. Furthermore, we show a parsimonious 

two-way classifier that is able to distinguish the host response subtype from the other two 

classes in formalin-fixed paraffin-embedded (FFPE) tissue. 

 

 Materials and Methods 4.2

4.2.1 Affymetrix data 

Our Discovery Set I (Monti et al. 2005) consists of 141 DLBCL tumor samples 

profiled for gene expression on the Affymetrix U133A/B chip pair. This dataset was used 

to derive the comprehensive consensus clustering (CCC) labels (Monti et al. 2005). A 

second DLBCL dataset (Monti et al. 2012) contains 116 DLBCL samples profiled on the 

Affymetrix U133Plus2.0 chip, with its CCC labels derived based on the ensemble 

classifier described in (Polo et al. 2007). For 44 of these 116 samples, expression profiles 

from formalin-fixed material were also available. We refer to the 44-sample dataset as the 

validation set, and the remaining 72-sample dataset as Discovery Set II. Two additional 

datasets profiled on the Affymetrix U133Plus2.0 chip were used for validation: the Lohr 

dataset an unpublished in-house dataset, consisting of 57 primary DLBCL samples; and 

the Lenz dataset (E-GEOD-10846), consisting of 414 primary DLBCL samples. The 

Lenz dataset consists of two distinct cohorts: a 181-sample cohort corresponding to 

https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-10846/?keywords=lymphoma%20&organism=Homo%20sapiens&exptype%5B0%5D=%22rna%20assay%22&exptype%5B1%5D=&sortby=assays&sortorder=descending&page=1&pagesize=100
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patients treated with the older CHOP (cyclophosphamide, doxorubicin, vincristine, and 

prednisone) regimen; and a 233-sample cohort corresponding to patients treated with the 

current Rituximab-CHOP or R-CHOP regimen. Although all samples were collected pre-

treatment, initial exploratory analysis showed a considerable batch effect between the 

CHOP and R-CHOP cohorts; hence we handled them separately throughout this 

publication. 

 

4.2.2 Selection of markers 

We used linear models for microarrays (Smyth 2005) as implemented in the 

R/Bioconductor package limma to identify differentially expressed genes, and gene set 

enrichment analysis (GSEA) (Subramanian et al. 2005) to look for differentially 

regulated pathways. 

 

4.2.3 Housekeeping genes 

Since the Nanostring platform relies on designated housekeeping genes for cross-

sample normalization, we selected a list of genes based on the following criteria 

evaluated in Discovery Set I: i) minimum variance across samples; ii) even coverage of 

the range of measured gene expression in the data, by partitioning the expression range 

into eight tiers, from 4 to 12 (in log2 space), and by selecting two genes from each tier; 
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and iii) lack of differential expression with respect to the CCC and COO classifications. 

The resulting 16 genes are listed in Table III.3. 

 

4.2.4 Nanostring Profiling on Validation Cohort. 

For 44 samples from the recently published DLBCL dataset (Monti et al. 2012) 

with known CCC annotations (ensemble classifier(Polo, et al. 2007) Best10/13) we had 

frozen and paired formalin-fixed, paraffin-embedded (FFPE) tissue available which we 

used as our validation cohort. Of note, the 44 samples were excluded from the feature 

selection process to ensure unbiased classification performance testing. RNA extraction 

from frozen tissue was performed using Trizol as previously described (Monti et al. 

2012). For RNA extraction from FFPE tissue we followed standard protocols using the 

Qiagen FFPE-RNA extraction kit. The Nanostring assay was performed in the Dana-

Faber Cancer Institute Microarray core following standard protocols. Briefly, RNA were 

assessed for quality and concentration using Agilent Bioanalyzer RNA Nano or Pico 

chips and a smear analysis was performed using Agilent 2100 Expert software to quantify 

the percentage of RNA fragments greater than 300nt in each sample. Thereafter, 100ng of 

RNA with a fragment size of greater than 300nt was profiled using the custom probe set 

on the Nanostring (Geiss et al. 2008). The custom probe set was composed of 275 probes 

ordered directly from Nanostring (55 BCR, 104 OxPhos, 80 HR, 16 housekeeping, 20 

COO genes). Capture and Reporter Code sets were added to the samples following 

manufacturer’s protocol and allowed to hybridize at 65°C for 16 hrs. Samples were 
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washed and loaded onto a cartridge using the nCounter Analysis System Prep Station per 

manufacturer's recommendations.  The cartridge was scanned using the nCounter Digital 

Analyzer at the maximum resolution of 1150 FOV. 

 

4.2.5 Data preprocessing  

All Affymetrix microarray data were normalized based on the Robust Multi-Array 

Average (RMA) procedure (Irizarry 2003) implemented in the R/Bioconductor package 

affy.  Probes’ annotation by Ensembl gene identifiers was based on custom Brainarray 

CDFs version 18 (Dai et al. 2005). The Nanostring data was normalized using the R 

package NanoStringNorm (Waggott et al. 2012). Mapping from Ensembl gene 

identifiers to Gene Symbols was performed using the R/Bioconductor package biomaRt 

(Kasprzyk 2011). 

To minimize potential batch effects among different datasets, we performed gene-

specific normalization, whereby the expression level yij of gene i in sample j in the test 

dataset is transformed as follows:  

 𝑦𝑖𝑗 =
𝑦𝑖𝑗−𝑦𝑖̅

𝜎𝑦𝑖
𝜎𝑥𝑖 + 𝑥𝑖̅  

where  𝑥𝑖̅   and 𝑦𝑖̅  are gene i’s means within the training and test dataset, 

respectively, and 𝜎𝑥𝑖  and 𝜎𝑦𝑖 are the corresponding standard deviations. This 

transformation is based on the assumption that samples in both datasets are drawn from 

the same population and corrects for systematic measuring biases. 
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4.2.6 Classification Models 

Most prediction models were inferred based on the Elastic net algorithm (Hui Zou 

2005) as implemented in the R package glmnet. We selected Elastic net because of its 

superior predictive performance within the Discovery Sets and because of its 

interpretability, since the resulting classifier outputs gene-specific coefficients that can be 

directly mapped to the genes’ importance in driving the classification. For comparison 

purposes, we also tested Random forest (Breiman 2001) and Shrunken Centroid (Hastie 

et al. 2011) classifiers as implemented in the R packages randomForest and pamr, 

respectively. For the assessment of each classifier’s prediction performance, we measured 

accuracy, sensitivity and specificity for the three way classification models. At this stage 

it is not clear whether sensitivity or specificity are clinically more relevant, thus all the 

models were optimized for overall training set accuracy. For the two class prediction 

models we also report the area under the receiver operating characteristic (ROC) curve 

(AUC) as implemented in the R/Bioconductor package ROC. The prediction performance 

within a dataset was assessed by 10-fold cross-validation (10-CV) in the larger 

Affymetrix datasets, and leave-one-out cross-validation (LOO-CV) in the Nanostring 

datasets. 

 

 Results 4.3

An overview of the experimental design is presented in Figure 4.1. First, a 

parsimonious classifier based on a carefully selected set of CCC genes (CCC signature) 
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was inferred. To this end, we used cross-validation within Discovery Set I to compare 

competing classification methods; we then applied the best performing classifier to 

multiple publicly available Affymetrix DLBCL datasets and compared its predictions to 

those of the original ensemble classifier (Polo et al. 2007). The parsimonious classifier 

was then validated on the fresh frozen validation dataset, and finally on the FFPE 

validation dataset, both profiled on the Nanostring platform. 

 

Figure 4.1: Overview of the workflow.  

In grey we show the different cohorts used, on top are all the Affymetrix based datasets, on the bottom are the 

Nanostring data. As gold standard labels we used the ensemble classifier CCC prediction described in (Polo et 

al. 2007; Monti et al. 2012). Based on the discovery set I we trained an multinominal elastic net classification 

model that is able to predict CCC classes based on 142 genes. This parsimonious classifier was applied to all 

datasets and the results were compared to the ensemble classifier results. Of note is that the three validation sets 

(one Affymetrix and both Nanostring sets) are based on the same 44 tumor biopsy sample, which have been 
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processed and assayed in a different manner; hence the gold standard labels were derived on the Affymetrix set 

and then used in the Nanostring sets.  

 

4.3.1 CCC signature selection 

An initial set of candidate genes was identified based on their significant 

enrichment in KEGG, Biocarta and Reactome pathways as tested by GSEA with respect 

to the CCC phenotype. We used the union of the leading edge genes of the top 20 gene 

sets in each class. We then filtered this initial list based on signal robustness and 

significance within Discovery Sets I and II, by selecting only genes with fold-change 

higher than 2.5, false discovery rate (FDR) less than 0.05, and average microarray 

intensity value greater than 64 (2
6
). The significance of the differential expression was 

assessed by moderated t-test as implemented in limma (Smyth 2005). Finally, we built an 

Elastic Net model (Hui Zou 2005) from Discovery Set I, and used the estimated genes’ 

coefficients to further prune the candidate list, since the Elastic net-based estimation 

shrinks to zero the weights of those genes that do not contribute to the classification. The 

final signature consists of 141 genes (Table III.1), which we used with all classification 

models in all subsequent evaluations.  

 

4.3.2 Selection of classification model 

We ran 10-fold cross-validation on both discovery sets and compared three 

classifiers: Elastic Net, Random Forest and Shrunken Centroids. The results are 
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summarized in Table III.5. In both datasets, Elastic Net outperformed the Random Forest 

model, and in one set the Shrunken Centroids (with accuracies of 96.5 vs. 92.2 and 97.1% 

in Discovery Set I, and 91.8 vs. 91.8% and 90.4% in Discovery Set II). Based on these 

results, Elastic Net was our classifier of choice, to be evaluated on our validation 

datasets.  

The optimal parameters for classification were selected by maximization of 

accuracy as estimated by 10-fold cross-validation. Both the parameter alpha, which 

determines the trade-off between LASSO (Tibshirani 1994) and Tikhonov regularization, 

and the shrinkage parameter lambda were set to 0.1. A final parsimonious Elastic Net 

model was then trained based on the entire Discovery Set I. The weights of the signature 

genes are listed in Table III.4. 

 

4.3.3 Composition of the CCC signature 

The elastic net weights provide a data-driven measure of each gene’s importance 

in distinguishing between the three different subtypes. In this section we will describe the 

most relevant of these genes. The genes that are up-regulated in the BCR subtype include 

TRMU, CKAP5, PLCG2, FUS, WEE1, ITPR3, SNRPA, PKMYT1, SUPT5H. Those up-

regulated in the host response subtype include PD-L1, CTLA4, IL15RA, GNS, PTPRM, 

AMICA, CFH, CD2, ITGAL, ACTN1, A2M and IL2RB, most of which are related to the 

adaptive T cell response of the immune system. And finally the genes that have a high 

weight in the OxPhos subtype include: SPCS3, SUCLG1, NDUFAB1, FADD, MRPS16, 
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ATP6V1D, NDUFB1, NDUFB3, SEC11A, PARK7, many of which are associated with 

oxidative phosphorylation or the electron transport chain. 

 

4.3.4 CCC predictor in Affymetrix  

We applied the parsimonious Elastic net model based on the CCC signature on 

each of the available Affymetrix datasets, and compared its predictions to those of the 

Ensemble classifier (Polo et al. 2007). The results, shown in Table 4.1, indicate an 

accuracies ranging from 81.8 to 93.2%. For comparison, the 10-fold cross-validation on 

both discovery sets and the validation set (Affymetrix) yielded accuracies between 0.969 

and 0.997, while the accuracies were between 81.8 and 96.5% 

 

Table 4.1: CCC prediction results across all datasets.  

All predictions in this table are derived by building an elastic net model on the discovery set I, which we then 

used to predict the class labels across all sets after using gene specific normalization to reduce the batch effect. 

(ACC: accuracy, SENS: sensitivity, SPEC: specificity) 

 
Discovery II 

Lenz 
CHOP 

Lenz 
R-CHOP 

Lenz 
Lohr 

Validation 
Affymetrix 

Validation 
Nanostring 

frozen 

Validation 
Nanostring 

FFPE 

Technology Affymetrix Nanostring 

Samples 72 181 233 57 44 44 44 

ACC 0.932 0.818 0.906 0.860 0.931 0.886 0.591 

SENS – BCR 0.920 0.873 0.932 0.909 0.949 0.929 0.929 

SPEC – BCR 0.979 0.833 0.917 0.886 0.961 0.967 0.6 

SENS – HR 0.955 0.847 0.897 0.789 0.919 0.938 0.688 
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SPEC – HR 0.941 0.963 0.952 1 0.962 0.893 0.893 

SENS – OxP 0.923 0.600 0.883 0.875 0.925 0.786 0.143 

SPEC – OxP 0.979 0.921 0.987 0.902 0.974 0.967 0.9 

 

4.3.5 CCC predictor in Nanostring 

With the parsimonious classifier established in the Affymetrix Discovery set, we 

next tested its performance on Nanostring. Thanks to the availability of paired samples 

profiled on Affymetrix for each of the patients in the Nanostring validation set, whole-

transcriptome CCC predictions based on the ensemble classifier (Polo et al. 2007) were 

used as the gold standard. 

 We tested the classification performance on the Nanostring data using our 

parsimonious model trained on Discovery set I. As shown in Table 4.1, we achieved 

classification accuracy of 88.6% in the frozen set and 59.1% in the FFPE data. The 

heatmaps in Figure 4.2 show the actual gene expression profiles in the Nanostring frozen 

dataset, with the samples ranked by their class probabilities and grouped by subtypes. For 

comparison, we show the corresponding heatmap for the 44 samples profiled on 

Affymetrix in Figure III.1 and the ones processed in Nanostring FFPE in Figure III.2 in 

the Appendix. 
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 Figure 4.2: CCC Heatmap for Nanostring fresh frozen dataset.  

The samples are ordered by class probabilities, based on the predictions of an elastic net model trained on the 

discovery set I. The top barplot shows the single class probabilities of the classifier, the color-bars below shows 

the gold standard and predicted CCC subgroups. Each row corresponds to a gene in our CCC signature, which 

are grouped by class and weights within the elastic net model. 

 

In addition to the classification based on the Affymetrix model, we also used 

leave-one-out cross-validation (LOOCV) within the Nanostring datasets. In the LOOCV 

scheme train and test set were both profiled on the same platform, thus potentially 

eliminating sources of difference between platforms. On the other hand, the sample size 

was considerably reduced, since each CV fold defined a 43-sample training set, rather 
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than the 141-sample training set available in the Affymetrix platform. Interestingly, 

elimination of cross-platform differences were not sufficient to compensate for the 

smaller sample size, and the LOOCV prediction performance was reduced to 81.8% and 

59.9% accuracy in the frozen and fixed datasets, respectively (Table III.6). The heatmaps 

are shown in Figure III.3 and Figure III.4. 

We investigated the reason for the poor performance of the FFPE dataset. In 

Figure 4.3 we show within vs. across histograms, where we look at the correlations of the 

same gene across platforms (in blue) versus different genes (in red) across platforms. 

When looking at the Affymetrix frozen samples vs. Nanostring frozen samples there is a 

very clear separation between the two groups. The vast majority of within correlations are 

above 0.6, only a few genes did not work. The same is not true when looking at 

Affymetrix versus Nanostring FFPE. While there is still a separation between the two 

groups, the overlap is much larger and most correlations are below 0.6. 
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Figure 4.3 Within vs. across correlation between Affymetrix and Nanostring Frozen/FFPE 

The two plots show histograms of the across correlations (between different genes on different platforms) in red 

and within correlations (between the same genes on different platforms) in blue. The across correlations are 

centered at 0. On the left we show the correlations between Affymetrix and Nanostring frozen, whereas on the 

right side we show the correlations between Affymetrix and Nanostring FFPE. 

 

4.3.6 Learning Curves for sample size estimation 

To determine whether the available sample size was sufficient to achieve 

maximum prediction accuracy, we carried out down-sampling experiments to estimate 

learning curves relating classification accuracy to sample size. In particular, starting from 

a training set consisting of 13 samples, up to the total number of  samples  (n=44) in 

increments of 3, properly stratified datasets were randomly sampled 1000 times for each 

sample size, and accuracy means and standard deviations were estimated based on leave-



  116 

 

 

one-out cross-validation within each of the sampled datasets. The estimated AUCs and 

their corresponding number of compounds for the frozen set is shown in Figure 4.4, the 

one for the FFPE set in Figure III.5, together with linear regression lines fitted on the 

[sample size; accuracy] pairs.  

 

Figure 4.4: CCC Learning curves for the 44 sample Nanostring frozen dataset.  

Here we show how well classification works depending on differing sample sizes. For each increment we reran 

classification 50 times based on random sampled subsets. The red line shows the trend of classification 

performance, while the blue lines show the 95% confidence intervals based on the 50 reruns. There is a 

significant upward trend indicating that a larger sample size would result in a better classification performance. 

4.3.7 Introducing a host response (HR) classifier 

The 3-way classification in NanoString FFPE underperforms in comparison to the 

classification on the frozen samples, but this is not the case for all classes equally. Table 

4.1 shows that the sensitivity for BCR is 0.591 and 0.143 for OxPhos, while it is 0.688 

for HR. This can easily be seen in Figure III.2, where most OxPhos samples are classified 
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as BCR samples. As discussed later, FFPE has significant advantages over a freezing 

with liquid nitrogen, mostly relating to its clinical application. Given that the 

stratification of the HR samples performs much better than the other two classes we 

decided to build a two class prediction model that is able to separate host response 

samples from both OxPhos and BCR samples. Figure 4.5 shows the updated workflow 

that we used for this two-way classifier.  

 

 

Figure 4.5: Overview of the HR workflow.  

In grey we show the different cohorts used, on top are all the Affymetrix based datasets, on the bottom are the 

Nanostring data.  As gold standard labels we used the ensemble classifier CCC prediction described in (Polo et 

al. 2007; Monti, et al. 2012). Based on the discovery set I we trained an elastic net classification model that 

stratifies host response (HR) samples from the rest, instead of using three classes. This parsimonious classifier 

was applied to all datasets and the results were compared to the ensemble classifier results. 
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4.3.8 HR signature and model selection 

We used the same preprocessing as described in 4.3.1 to acquire a raw list of 

genes. Based on these genes we again trained an Elastic Net model on Discovery Set I, 

and used the estimated genes’ coefficients to further prune the candidate list. The final 

signature consists of 91 genes (Table III.8), which we used with all HR classification 

models in all subsequent evaluations. 

We also reran a 10-fold cross-validation on both discovery sets and compared our 

three classifiers; the results are shown in Table III.7. In both datasets, Elastic Net 

outperformed the other two, with accuracies of 97.9 vs. 95.8 and 93.6% in Discovery Set 

I, and 90.4 vs. 87.7% and 89.0% in Discovery Set II. Based on these results, Elastic Net 

was again chosen as the classification model. Both the parameter alpha, and the shrinkage 

parameter lambda were set to 0.1. A final parsimonious host response model was then 

trained based on the entire Discovery Set I. The weights of the signature genes are listed 

in Table III.8. 

 

4.3.9 Composition of the HR signature 

The elastic net weights provide a data-driven measure of each gene’s importance 

in distinguishing between the HR subtype and other DLBCL samples. In this section we 

will describe the most relevant of these genes. The genes that are up-regulated in the HR 

subtype include PD-L1, CTLA4, IL15RA, GNS, PTPRM, AMICA, CFH, CD2, ITGAL, 

ACTN1, A2M and IL2RB, most of which are related to the adaptive T cell response of 
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the immune system. The down-regulated part of the HR signature is more heterogeneous, 

but includes many genes related to the electron transport chain and oxidative 

phosphorylation: SLC19A1, PKMYT1, CDK1, SHMT2, WEE1, MRPS25/16/9, TRMU, 

CCNB2, SPCS3, CASP3, UQCR10, RPL35A and MTHFD2. 

 

4.3.10 Host response predictor in Affymetrix and Nanostring 

We applied the parsimonious Elastic net model based on the HR signature on 

each of the available Affymetrix datasets, and compared its predictions to those of the 

Ensemble classifier (Polo et al. 2007). The results, shown in Table 4.2, indicate an area 

under the ROC curves (AUC) ranging from 0.967 to 0.989, and accuracies between 90.4 

and 96.5%. For comparison, the 10-fold cross-validation on both discovery sets and the 

validation set (Affymetrix) yielded AUCs between 0.969 and 0.997, while the accuracies 

were between 90.91 and 97.87%.  

As for the Nanostring data, we achieved classification accuracies of 90.9% in the 

frozen set and of 86.4% in the FFPE data, with AUCs of 0.938 and 0.877, respectively. 

Figure III.6 shows the ROC curves for both classifications. The heatmaps in Figure 4.6 

show the actual gene expression profiles in Nanostring, with the samples ranked by their 

probability of belonging to the HR group. Of notice, the genes that are up-regulated in the 

HR class are stronger and more robust across the two sets, which is in concordance with 

the results we saw on the three-way CCC classifier. As a term of comparison, we show 

the corresponding heatmap for the 44 samples profiled on Affymetrix in Figure III.7. 
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In addition to the classification based on the Affymetrix model we also used 

leave-one-out cross-validation (LOOCV) within the Nanostring datasets. The models in 

the LOOCV are trained on 43 samples as opposed to the 141 samples that we used to 

train the Affymetrix model, and as for the three-class problem, the predictive accuracy 

was reduced to 84.1% and 79.6%, with an AUC of 0.893 for the frozen and 0.828 for the 

FFPE samples ( 

Table III.9). The heatmaps and ROC curves are shown in Figure III.8 and Figure 

III.9. 

 

Table 4.2 – HR prediction results across all datasets.  

All predictions in this table are derived by building an elastic net model on the discovery set I, which we then 

used to predict the class labels across all sets after using gene specific normalization to reduce the batch effect. 

(ACC: accuracy, SENS: sensitivity, SPEC: specificity, PPV: positive predictive value, NPV: negative predictive 

value, FDR: false discovery rate, AUC: area under the receiver operating characteristic (ROC) curve) 

 
Discovery II 

Lenz 

CHOP 

Lenz 

R-CHOP 

Lenz 

Lohr 

Validation 

Affymetrix 

Validation 

Nanostring 

frozen 

Validation 

Nanostring 

FFPE 

Technology Affymetrix Nanostring 

Samples 72 181 233 57 44 44 44 

ACC 91.78 90.61 92.70 94.74 90.91 90.91 84.09 

SENS 95.45 79.17 94.12 89.47 81.25 87.5 68.75 

SPEC 90.20 98.17 92.12 97.37 96.43 92.86 92.86 

PPV 80.77 96.61 83.12 94.44 92.86 87.5 84.62 

NPV 97.87 87.70 97.44 94.87 90 92.86 83.87 

FDR 19.23 3.34 16.88 5.56 7.14 12.5 15.39 
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AUC 0.987 0.984 0.978 0.991 0.967 0.94 0.877 

 

 

  

Figure 4.6: Heatmaps for Nanostring frozen and FFPE datasets.  

On the left we show a heatmap of the Nanostring fresh frozen samples, which are ordered by the HR class 

probabilities resulting from an elastic net model trained on the discovery set I. The top barplot shows the 

probabilities of the classifier, the color-bar below shows the CCC subgroups, which are our gold-standard. Each 

row corresponds to a gene in the HR signature and the barplot on the left indicates the coefficient weights of the 

elastic net model. On the right side we show the same heatmap for the FFPE Nanostring set. 

 

4.3.11 Learning Curves for host response classifier 

We built learning curves again, this time relating classification AUC to 

compound's sample size using the same scheme as for the CCC classifier, with the one 

difference that we use the more robust AUCs instead of the accuracies. The estimated 
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AUCs and their corresponding number of samples for both frozen and FFPE sets are 

shown in Figure III.10 together with linear regression lines fitted on the [sample size; 

AUC] pairs.  

 

 Discussion 4.4

The CCC and HR biomarker genes were selected based on a purely data-driven 

approach. This resulted in the inclusion of several well-known genes in their respective 

subtypes. For the HR subtype, genes that reduce the activity of the specific immune 

system based on T-cell were included. Namely PD-L1 that was found to be relevant in a 

host of recent studies, e.g. (Green et al. 2010; Zitvogel & Kroemer 2012; Herbst et al. 

2014) and CTLA4, which restrains the adaptive immune response of T cells towards 

tumor associated antigens 27. For the BCR subtype the signature most notably includes 

SYK, a well-known gene that helps to promote survival in hematopoetic malignancies 

(Friedberg et al. 2010), while the OxPhos portion includes several genes related to 

oxidative phosphorylation and the electron transport chain such as SUCLG1, NDUFAB1, 

ATP6V1D, MRPS16. 

From the learning curves in Figure 4.4 and Figure III.10 we can conclude that 44 

samples are not sufficient to achieve maximum prediction performance. All three curves 

show an upward trend with no ‘plateauing’, suggesting that an increased sample size 

would indeed lead to increased classification accuracy. This also explains the 

considerable difference in accuracy between the predictions based on the models trained 
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on the 141-sample discovery set and those based on LOOCV within the validation set, 

where each model is trained only on 43 samples. 

Interestingly, Figure 2 shows that the host response portion of the CCC signature 

appears to be more robust to the translation from Affytmetrix to Nanostring, which is 

even more pronounced when going across tissue preservation technologies. The overall 

CCC accuracy within the FFPE set drops to 59.1%, while the prediction of the HR 

samples has a sensitivity of 68.8% and a specificity of 89.3%. 

Based on these findings, we showed that a simple host response biomarker was 

very robust across both platforms and preservation technologies; we showed that 

predictions based on a model trained on Affymetrix and tested on Nanostring, as well as 

across preservation methods (training on frozen, testing on fixed samples), still resulted 

in an AUC of 0.877. Furthermore, with an adequate sample size, we expect that a model 

trained on FFPE samples profiled on Nanostring would increase prediction performance 

even further.  

 

 Conclusions 4.5

We were successfully able to build parsimonious biomarkers for both CCC and 

HR. However, this study also showed the difficulty of validating molecular subtypes 

purely based on their gene expression profiles. A fact that is often glossed over is that 

absolute gene expression value for a sample is heavily dependent on many external 

factors, such as amount of RNA, preservation technology and assaying technology. This 
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means that a classifier that is trained on a particular dataset is also dependent on all the 

external factors that are used to create that dataset and as a consequence, predictions 

based on gene expression profiles of the same biological samples using different 

technologies can lead to different results. We showed an example of this when switching 

from fresh frozen tissue on Nanostring to FFPE, which works for the HR classifier, but 

not for the more challenging three-class CCC classifier. When external gold standards are 

available they can be used to show inconsistencies, however in our case this was not as 

straightforward. Careful study design (i.e. the same samples profiled using both 

preservation technologies as well as Affymetrix and Nanostring) was necessary to 

translate our findings from fresh frozen samples in Affymetrix to frozen and FFPE in 

Nanostring. 

Going forward, we plan to use patient derived xenograft (PDX) models – primary 

tumors grafted onto immunocompromised mouse models – to functionally validate our in 

silico predictions. To this end, we will profile the PDX samples on the Nanostring 

platform and treat them with the selective inhibitors specific to each class (e.g., with SYK 

inhibitors to test BCR class membership) (Chen et al. 2013; Chen, et al. 2008). This 

approach will allow for an independent functional validation of our predictions. 
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5 IDENTIFYING TUMORS DEPENDENT ON OXIDATIVE 

PHOSPHORYLATION ACROSS DIFFERENT CANCER TYPES 
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I co-developed ASSIGN, a method used in this chapter: 

Shen Y, Rahman M, Piccolo SR, Gusenleitner D, EI-Chaar NN, Cheng L, Monti S, Bild 

AH and Johnson WE, 2015. ASSIGN: context-specific genomic profiling of multiple 

heterogeneous biological pathways. Bioinformatics (Oxford, England), 31(11), pp.1745–

53. 

 

 Introduction 5.1

In the presence of oxygen, non-proliferating tissues rely primarily on oxidative 

phosphorylation (OxPhos) to produce ATP. In this process pyruvate, which is 

metabolized from glucose during glycolysis, is completely oxidized into carbon di-oxide. 

In anaerobic condition, i.e. in the absence of oxygen, oxidative phosphorylation is not 

possible and lactate is generated instead after glycolysis. Fast proliferating cells, on the 

other hand meet most of their energy demands primarily through glycolysis even in the 

presence of sufficient oxygen and most glucose is converted into lactate. This aerobic 

glycolysis is well established and termed the Warburg effect (Warburg 1956). In 

comparison to oxidative phosphorylation the ATP output of glycolysis is minimal, 

however, recent studies suggest that the excess lactate can be used as chemical ‘‘building 

blocks’’ required for the anabolic processes that must occur prior to cell division (Vander 

Heiden et al. 2009). Cancers cells are typically glycolytic since one of the hallmarks of 

cancer is an increased proliferation, however, they usually retain a degree of 

mitochondrial respiration and derive a significant fraction of their ATP from oxidative 

phosphorylation (Ward & Thompson 2012).  
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Besides efficient ATP production, mitochondrial oxidative phosphorylation is 

also a major cellular source of reactive oxygen species (ROS) and enhanced and 

unbalanced metabolic activity can lead to an increase in ROS (Hanahan & Weinberg 

2011). This increase can be both a gift and a curse for a cancer cell. It can confer 

advantages in proliferation (Gatenby & Gillies 2004; Locasale & Cantley 2011) and can 

also promote genomic instability through oxidative damage (Weinberg & Chandel 2009), 

but high levels of ROS are toxic to cells, which can lead to damage and eventual cell 

death (Trachootham et al. 2009; Diehn et al. 2009). Thus cancer cells are usually adaptive 

in their response to oxidative stress.  

As described in Chapter 4, we identified three molecular subtypes in diffuse large 

B-Cell lymphoma, one of which heavily relies on oxidative phosphorylation (OxPhos) 

and co-regulated mechanisms that protect tumors from ROS (Monti et al. 2005). A 

follow-up study (Caro et al. 2012) expanded on these findings and showed OxPhos-

dependent DLBLC cell-lines are targetable by PPARG inhibitors, suggesting a 

therapeutic relevance. Furthermore, DLBCL was not the only cancer type where OxPhos 

dependency has been shown. Vazquez et al. 2013 demonstrated that high expression 

levels of PGC1a, a key regulator of mitochondrial respiration, metabolically define 

melanomas with high levels of ROS detoxification capacities. This subtype of high 

PGC1a expressing tumors shows a higher survival rate under increased levels of 

oxidative stress. Given that this dependence on metabolic pathways to maintain survival 
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rates was found in at least two tissue types we hypothesize that this might be a broader 

mechanism of cancer biology that might be relevant also in other tissue types. 

Here we show our attempt to test this hypothesis by investigating four additional 

tissue types. An overview of the analyses done in this chapter is provided in Figure 5.1. 

 

 

Figure 5.1: Analysis workflow 

I. Derivation of a lymphoma centered OxPhos signature based on the DLBCL dataset that was used to derive 

the CCC subtypes. II. Use of ASSIGN to look for differences in OxPhos activity in a variety of different tumor 

types. III. Functional validation on cell-lines, assessing OxPhos activity and OxPhos dependency. 

IV. Determination of the overlap among tissue specific OxPhos signatures to derive a PanOxPhos signature. 

V. Search for associations between OxPhos activity and somatic mutations or copy number alterations. 

VI. Investigation of the potential mechanism of actions driving the differences in OxPhos activity.  
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 Materials  5.2

For this study we used only publicly available datasets. As shown in Table 5.1, 

we focused on gene expression profiles (GEP) derived both from fresh frozen primary 

tissue and cancer cell-lines. Four of the eight primary tumor datasets are part of The 

Cancer Genome Atlas (TCGA): BRCA (TCGA 2012b), LUAD (Collisson et al. 2014), 

LUSC (TCGA 2012a) and HNSC (Lawrence et al. 2015). For these four sets we 

downloaded the FPKM normalized level 3 RNASeq data from https://tcga-

data.nci.nih.gov/tcga/. We also acquired the matching somatic copy-number alteration 

(SCNA) data, which were called using GISTIC 2.0 (Mermel et al. 2011) and mutation 

(MUT) data which were called using MutSigCV (Lawrence et al. 2013). Both MUT and 

SCNA data were downloaded from the Firehose pipeline (Marx 2013) at the Broad 

Institute (http://gdac.broadinstitute.org/). 

In addition to the TCGA sets we downloaded the Curtis breast cancer dataset 

(Curtis et al. 2012), another FPKM normalized RNASeq dataset, and three Affymetrix 

datasets: Lymphoma 2003 (Monti et al. 2005), which was profiled on both Affymetrix 

U133A and B, Lymphoma 2010 (Monti et al. 2012), profiled on Affymetrix U133Plus2.0 

and the Melanoma Riker set (Riker et al. 2008), profiled on Affymetrix U133A.  

Furthermore, we used the breast, lung and melanoma cell-lines from the cancer 

cell-line encyclopedia (CCLE) (Barretina et al. 2012) assayed on Affymetrix 

U133Plus2.0, and an in-house 22-sample DLBCL dataset (Polo et al. 2007), which was 

also profiled on the Affymetrix U133A/B pair.  

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://gdac.broadinstitute.org/
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All Affymetrix dataset were normalized using frozen Robust Multiarray Analysis 

(fRMA) (McCall et al. 2010). Probes’ annotation by Ensembl gene identifiers was based 

on custom Brainarray CDFs version 18 (Dai et al. 2005). 

 

Table 5.1: Cancer datasets 

On the top we list all primary tumor datasets we used for the study, on the bottom all cancer cell-line 

sets. We show the sample numbers for gene expression profiles and indicate the availability (X) of somatic copy 

number alteration data (SCNA) and mutation data (MUT). 

Fresh frozen  Samples SCNA MUT Platform 

TCGA Breast  977 X X Illumina RNASeq 

TCGA Head and neck  303 X X Illumina RNASeq 

TCGA Lung adenocarcinoma  455 X X Illumina RNASeq 

TCGA Lung squamous  408 X X Illumina RNASeq 

Melanoma Riker  86   Affymetrix U133A 

Lymphoma 2003  176   Affymetrix U133A/B 

Lymphoma 2010  116   Affymetrix U133Plus2.0 

Breast Curtis  1981 X  Illumina RNASeq 

Cell-lines     

CCLE breast  58   Affymetrix U133Plus2.0 

CCLE lung  179   Affymetrix U133Plus2.0 

CCLE melanoma  61   Affymetrix U133Plus2.0 

DFCI - DLBCL  22   Affymetrix U133A/B 
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 METHODS 5.3

5.3.1 Stratification using ASSIGN 

We applied Context-specific Genomic Profiling of Multiple Heterogeneous 

Biological Pathways – ASSIGN  (Shen et al. 2015) to estimate relative OxPhos activity 

within all datasets. ASSIGN utilizes a flexible Bayesian factor analysis approach similar 

to clustering, which adapts to differences in backgrounds among samples while scoring 

the OxPhos activity in each sample.  

ASSIGN assigns weights to each gene indicating their importance for the 

phenotype stratification. This allowed us to rank not only the samples by their respective 

signature activity, but also the importance of the involved genes. Unlike standard 

supervised classification or regression methods, ASSIGN can be applied to a dataset 

without prior knowledge of the phenotype, i.e. it discovers the dimension of the largest 

variance within a given gene signature space and ranks samples accordingly, while 

determining gene importance. This has the significant advantage that a gene signature 

that was derived with a certain background, e.g. tissue type or assaying technology, can 

be adapted to other backgrounds, overcoming tissue specific effects and differences in 

assaying technology. However, the underlying assumption of the method is that the main 

source of variation in the subspace defined by the studied signature is associated to the 

phenotype of interest. If this assumption is violated (e.g., if the main source of variation 

in the signature-projected dataset were to be a batch effect), than the algorithm will likely 
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fail.  A related potential downside to ASSIGN is that it will always force a separation of 

samples, regardless of whether or not this stratification is biologically meaningful.   

 

5.3.2 Establishing significance for ASSIGN 

Figure 5.2 shows an example of two signatures in the TCGA LUAD dataset. On 

the left we show the set in the OxPhos signature space (Table IV.2), described in the next 

section. On the right we show the same dataset in BCR signature space (Table IV.1), as 

described in Chapter 4. For both signatures we used only genes that are up-regulated in 

the respective subtype. The two example signatures were chosen, because BCR signaling 

is not expected to show a significant activity in breast cancer, while differences in 

OxPhos activity are.  

Both heatmaps show a stratification within the datasets, indicating some samples 

with high signature activity scores (purple bar plots on top) and some with no activity. 

However, while the set in OxPhos space shows a very clear up-regulation in the OxPhos 

samples, the same is not true when looking at the BCR signature space. Furthermore, 

unlike the left heatmap, the right heatmap contains not only up-regulated genes (green bar 

plots on the left), but also a significant portion of down-regulated genes (in grey). While 

it is possible for a signature to have both up and down-regulated genes, the BCR 

signature contains only genes that are up-regulated in the DLBCL BCR subtype.  
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Figure 5.2 Comparison of OxPhos and BCR signatures in breast cancer 

Both heatmaps show the gene expression of the TCGA LUAD samples; in OxPhos signature space on the left 

and BCR signature space on the right side. Up-regulated genes are in red, down-regulated in blue. The samples 

are ordered according to activity scores (in purple on top) derived from ASSIGN, the genes are ordered by gene 

weights derived from the ASSIGN models. The gene weights are colored by significance; in green we show 

significant genes with positive weights. 

 

We tested the difference between actual stratifications and random noise more 

systematically, by comparing the distribution of the gene weights resulting from 1000 

ASSIGN reruns based on random signatures with the absolute scaled gene weights of the 

OxPhos and BCR signatures. The left panel of Figure 5.3 shows that the gene weights 

from the OxPhos signature can be easily distinguished from the random weights, whereas 

the BCR gene signature weights on the right are indistinguishable from the random gene 

signature weights. For active signatures or pathways many genes contribute to the 

stratification, as indicated by a large number of genes with a higher weights, while the 

OxPhos Activity BCR Activity 
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weights of randomly picked genes follow an exponential distribution, where the 

stratification is driven by very few genes while most others have a minor contribution. 

The weights of active pathways do not follow an exponential distribution, which can be 

exploited to test for an active pathway. Hence, for the rest of this study we used a 

Kolmogorov-Smirnov (KS) test to determine whether the absolute scaled gene weights of 

a signature follow an exponential distribution, in order to get a significance of 

stratification. 

 

  

Figure 5.3: Gene weights of the actual gene signature vs. random sets 

In these plots we show the absolute scaled (to 1.0) gene weights as derived by ASSIGN on TCGA LUAD versus 

gene signatures ordered by their weights. In grey we show the weights for 1000 randomly chosen gene sets, 

whereas in red we show the weights for the DLBCL OxPhos gene signature on the left and the DLBCL BCR 

signature on the right.  

 

 

OxPhos                                                 BCR 
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5.3.3 Testing for associations with mutations and SCNAs 

With the Oxphos activity established in our datasets, we were interested in 

potential drivers for the OxPhos phenotype. Somatic alterations are among the potential 

candidates, so we looked for associations with mutation data from MutSigCV (Lawrence 

et al. 2013) and somatic copy number alteration (SCNA) from GISTIC 2.0 (Mermel et al. 

2011). To that end, we assembled mutational and SCNA profiles across all TCGA 

datasets, only including calls with a false discovery rate <0.25, and we used a two sample 

Kolmogorov-Smirnov test to test for association between signature activity score and 

somatic alterations. Figure 5.4 shows the workflow of this analysis.  

 

Figure 5.4: Workflow of the association between OxPhos activity and mutations 

First we derive only significantly recurrent (FDR<0.25) mutations or SCNA for each sample in a given dataset. 

We then assemble a mutational/SCNA profile for each gene in a given dataset and use a Kolmogorov-Smirnov 

test to look for associations with gene signature activity, which allows us to derive a p-value for each gene.  
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 Results 5.4

5.4.1 Deriving an OxPhos signature from DLBCL 

In Chapter 4, I described the development of a parsimonious classifier for the 

CCC (Monti et al. 2005) classes in DLBCL. As part of this parsimonious classifier we 

derived streamlined signatures for each of the three subtypes. Table IV.2 includes the 108 

genes of the CCC-OxPhos signature, which we used as a starting point for the rest of this 

chapter.  

 

5.4.2 Assessing OxPhos activity using ASSIGN across tissue types 

Next we set to systematically determine whether we could find the same subtype 

in more than these two tissue types using ASSIGN (Shen et al. 2015). Figure 5.5 shows a 

comparison between the two methods on the Lymphoma 2010 gene expression dataset. 

On the left we show a simple hierarchical clustering in OxPhos signature space. It is 

evident, that the samples with an up-regulation, correspond to the OxPhos CCC type, 

however, due to the nature of hierarchical clustering there is not ranking in terms of 

“oxphos-ness” as well as gene importance. The panel on the right shows the same data, 

ordered by the ASSIGN output and gives a much clearer indication on how active 

OxPhos is in each sample and as a bonus it gives weight to the importance of each gene. 
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Figure 5.5: Heatmaps of the lymphoma 2003 dataset in OxPhos gene signature space.  

Both heatmaps show the 116 samples from the Lymphoma 2010 dataset in the 108 OxPhos gene signature space. 

Red indicates up-regulated, blue indicates down-regulated genes. The color bars on top show the comprehensive 

consensus clustering (CCC) classification for each sample. On the left we show the samples clustered by 

hierarchical clustering. On the right the samples are ordered by OxPhos activity and genes are ordered by gene 

weights derived from an ASSIGN model.  

 

Next, we used ASSIGN on each of our cancer dataset and calculated p-values for 

each set testing whether the observed stratification is significantly different from 

randomly drawn gene set (as described in the methods section). The results are reported 

in Table 5.2. All fresh frozen datasets showed significant results, the only not significant 

results was observed in a DLBCL cell-line dataset, which we suspect might be due to the 

small sample size. 
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Table 5.2: Significance of OxPhos activity across different cancer datasets 

Here we show the p-values indicating the significance of sample stratification (see methods section) within 

OxPhos signature space in comparison to random signatures across all primary cancer and cancer cell-line 

dataset.  

Dataset p-value 

DLBCL 2003  9.77E-09 

DLBCL 2010  6.36E-08 

TCGA Lung adenocarcinoma  3.28E-06 

CCLE lung  5.53E-06 

TCGA Lung squamous carcinoma  8.84E-06 

TCGA Head and neck squamous carcinoma  1.30E-05 

Breast Curtis  0.000111 

CCLE breast  0.00013 

CCLE melanoma  0.00088 

Melanoma Riker  0.000881 

TCGA Breast cancer  0.00162 

DFCI -DLBCL  0.15789 

 

5.4.3 Generalizing the OxPhos signature 

One of the major advantages of ASSIGN is that it adapts the weights of a gene 

signature to a context, i.e. when we use our signature derived from DLBCL in another 

tissue type it will down-weight genes that are specific to lymphoma. In a similar manner, 

ASSIGN can also be used to add genes that might be relevant to our signature, but were 

not included in the context the signature was originally derived from. For that we 

assembled a generalized oxphos gene set from 6 gene sets of MSigDB 3.0 (Liberzon et 

al. 2011): oxidative phosphorylation, respiratory electron transport, TCA cycle, 

mitochondria pathway, electron transport chain and oxidoreductase activity acting on 
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NADH or NADPH. The union of these 6 sets results in a total of 232 genes. There is an 

overlap with the 108 gene DLBCL OxPhos signature, leading to a total of 287 gene 

superset. ASSIGN allows for the specification of prior probabilities of genes being 

significant through the parameter θ1. By default this parameter is set to 0.9 for genes in a 

signature, which we still used for the 108 genes that were included in the DLBCL 

OxPhos signature. For the other 179 genes in the generalized signature we used a prior 

probability of 0.1, giving them the chance to be included in the resulting list of genes, but 

making sure that the stratification is still driven by the original DLBCL OxPhos gene 

signature. We ran this modified version of our ASSIGN analysis on every dataset; 

graphical representations of most of the primary tumor sets can be found in Figure 5.6 

(TCGA LUAD) and Figure IV.1 (TCGA BRCA, LUSC, HNSC and Melanoma Riker). 
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Figure 5.6: Heatmap of generalized OxPhos signature in breast cancer 

Here we show the 455 samples in the TCGA LUAD dataset. Red indicates up-regulated genes, whereas blue 

indicates down-regulated ones. The samples are ordered by OxPhos activity scores derived from an ASSIGN 

model, which is also shown on top in purple. On the left we show the gene weights from the ASSIGN model, in 

green the genes from the original DLBCL OxPhos signature, in orange the genes that were added from the 

generalized OxPhos gene signature and in grey the genes that have either a negative weight or are insignificant.  

 

5.4.4 DLBCL OxPhos signature vs. PGC1α subgroup in melanoma 

Our first test of the hypothesis that OxPhos dependency may be relevant in tumor 

types other than DLBCL was performed in melanoma, based on the results of a recent 

study that characterized a melanoma subtype exhibiting a strong up-regulation of 

PPARGC1 (PGC1α) gene expression and dependency on oxygen supply for survival 

(Vazquez et al. 2013). In particular, the study showed that hypoxia conditions or drugs 

inhibiting oxidative phosphorylation such as PPARγ inhibitors selectively killed PGC1α 

high cell-lines.  

We started by downloading and processing the 86 primary melanoma samples 

used by the authors and carried out hierarchical clustering within the space of our 108 

DLBCL-OxPhos signature space (see Figure 5.7 on the left side). This heatmap shows 3 

distinct clusters, which we color coded: red for the samples that seem up-regulated, light 

blue for the down-regulated ones and grey for the intermediate cluster. On the right side 

of Figure 5.7, we then show boxplots for PGC1α expression in each of these three 
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clusters. A t-test comparing the difference between OxPhos high (red) and low (light 

blue) group resulted in a significant p-value of 0.003711. 

 

Figure 5.7: Differences in melanoma samples in OxPhos signature space 

On the left we show a heatmap of the 86 melanoma Riker samples. Each row corresponds to one of the 108 

genes in the OxPhos signature, whereas each column represents one sample. Red indicates up-regulation, blue 

indicates down-regulation. We used hierarchical clustering to cluster similar samples and colored the three main 

clusters in the color bar on top. On the right side we show the same three groups of samples, only looking at the 

expression of PGC1α. 

 

We also preformed gene set enrichment analysis (GSEA) (Subramanian et al. 

2005) using the canonical pathways of collection 2 (C2) of the molecular signature 

database (MSigDB v.3.0) (Liberzon et al. 2011) between the samples in the red cluster 

and the light blue cluster. Out of the 1256 gene sets there were no significantly down-

regulated gene sets. 199 gene sets were significantly (FDR <25%) up-regulated and 40 

gene sets had a nominal p-value <1%. See Table IV.3 for the top 25 gene sets; these 
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include oxidative phosphorylation, TCA cycle and respiratory electron transport and 

glyoxylate and dicarboxylate metabolism, which are all related to our OxPhos signature. 

This confirmed that the differences in the clusters were not only driven by a potential 

batch effect, but by differences in metabolism. 

5.4.5 Validation in Cell-lines 

For the first round of validation we used the cell-line annotations for melanoma 

cell-lines from Vazquez et al. 2013. In this publication the authors distinguish between a 

PCG1α positive (OxPhos) and PCG1α negative (non-OxPhos) phenotype, which they 

functionally validated by measuring the differences in glucose, lactate and ATP levels. 

All cell-lines tested in the publication are also in the cancer cell-line encyclopedia 

(CCLE) (Barretina et al. 2012), for which gene expression data are publicly available. We 

used ASSIGN to predict the OxPhos activity in each cell-line and then compared the 

predictions with the functional validation (see Figure 5.8). There was only one cell-line 

(A-375) where the prediction is not concordant with the functional validation. 
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Figure 5.8: OxPhos predictions in melanoma cell lines 

Here we show the OxPhos activity predictions of the melanoma cell-lines that were functionally validated in 

Vasquez et al 2013. The PGC1α positive cell-lines, which are functionally shown to be OxPhos dependent, are 

shown in red, the OxPhos independent cell-lines in blue. The cell-lines are ordered by our OxPhos activity 

predictions. 

 

Based on these first successful results, we next turned to the functional 

characterization of lung and breast cancer cell lines. To this end, we selected the cell lines 

corresponding to the 3 top OxPhos predictions and the 3 top non-OxPhos predictions 

from each of the CCLE lung and breast datasets, and performed functional validation on 

these cell-lines through our collaborators in the Danial laboratory. Three metabolic assays 

were performed on the selected cell lines, with the inclusion of DLBCL cell lines as 

additional control in every experiment. Based on the result of previous studies with 

DLBCL cell lines (Caro et al. 2012), OxPhos dependency can be functionally defined by: 
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1) sensitivity to hypoxia; 2) higher mitochondrial oxygen consumption rates (OCR) in the 

presence of palmitate as a sole substrate; and 3) lower glucose derived lactate. 

Survival in Hypoxia conditions (Figure 5.9 and Figure IV.2): Hypoxia is a way to 

trigger anaerobic glycolysis due to oxygen deprivation. Cells with non-OxPhos 

phenotypes are predicted to survive hypoxic conditions as in Warburg-type cancers. 

OxPhos-dependent cells are expected to selectively die under the same conditions (as 

seen with DLBCL cell lines). However, as shown in the Figures, tests performed in both 

tissue types (lung and breast) did not show any significant difference in the sensitivity of 

the predicted OxPhos and non-OxPhos cell lines to hypoxia. 

OCR assays (Figure 5.10): Due to the morphological and growth rate differences 

between all cell lines, each experiment was optimized per cell line and normalized for 

protein content. There is no marked difference in OCR when lung or breast cancer cells 

were provided with the fatty acid Pamitate vs. no substrate. For breast cancer cells, the 

predicted non-OxPhos subgroup did not respire on Palmitate and was not suitable for 

OCR experiments. As a comparison, OCR traces for Ly4 and U2932 DLBCL cell lines 

are shown on the right. 

Lactate assays (Figure 5.11): In this assay, the non-OxPhos phenotype is 

predicted to have higher glucose-derived lactate that OxPhos cells. However, there are no 

significant differences between the cells predicted to be OxPhos vs. non-OxPhos in either 

lung or breast cancers. 
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Figure 5.9: Survival of lung cancer cell-lines after 72h in 1% hypoxia and normoxia conditions 

(Courtesy of Nika Danial) In this barplot we show the survival rate of lung and DLBCL cell-lines in dependence 

on oxygen availability. On the right we show the gold standard DLBCL cell-lines. Ly4 a OxPhos dependent cell-

line shows a strong decrease in survival rate when comparing normal oxygen levels (purple) and hypoxia 

conditions (yellow), while U2932, which is not OxPhos dependent does not show a similar drop in survival rates 

(dark vs. light green) On the left we show the comparison between normoxia and hypoxia conditions for 7 lung 

cancer cell-lines that were predicted as OxPhos dependent (red) and cell-lines that were predicted as nonOxPhos 

(blue).   
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Figure 5.10: Representative oxygen consumption rate (OCR) assay in cell-lines 

(Courtesy of Nika Danial) OCR traces in the presence (dotted line) or absence (solid line) of Palmiate for lung, 

breast and DLBCL cell-lines. Red and blue traces the predicted OxPhos and nonOxPhos, respectively. For each 

OCR trace the first dip ~25 min indicates addition of the ATP synthase inhibitor Oligomycin and the second dip 

~55 min indicates addition of rotenone and antimycine.  
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Figure 5.11: Glucose-derived lactate in the indicated lung and breast cancer cell lines.  
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(Courtesy of Nika Danial) (A) Cumulative data per predicted subtypes for each cancer is shown. (B) Lactate 

production per individual cell lines used to derive 3A. Ly4 and U2932 DLCBL cell lines were used as OxPhos 

and non-OxPhos controls, respectively. 

 

5.4.6 Deriving a Pan-OxPhos signature 

Adapting the generalized version of the DLBCL OxPhos signature to different 

tissue types gave us the opportunity to determine how many of the genes were 

concordantly up-regulated in a variety of different cancers and to also identify tissue 

specific genes. Figure 5.12 shows a Venn-Diagram of all TCGA datasets as well as the 

lymphoma and melanoma sets. There is only one gene difference between the TCGA 

lung adenocarcinomas and lung squamous carcinomas, so we intersected these two sets 

as representative for lung cancer. There is a large agreement among all sets and an 

overlap of 85 genes, which we define as our tissue-independent Pan-OxPhos signature. 

The genes in this signature are shown in Table IV.4 and were used for most of the 

analyses in the following sections. Interestingly, the second biggest overlap of 23 genes is 

between all four TCGA sets, excluding the Affymetrix datasets. We suspect that this is 

due to differences in detection levels, since RNASeq as a technology can detect genes at 

a lower expression level than one-color microarrays.    
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Figure 5.12: Overlap of tissue specific OxPhos signatures 

In this Venn-diagram we show intersects of all tissue specific OxPhos gene sets as derived from ASSIGN. Lung 

represents both TCGA LUSC (lung squamous carcinoma) and LUAD (lung adenocarcinoma), since these two 

differed only by one gene. Lung, breast and head and neck represent RNASeq datasets, whereas DLBCL and 

melanoma are Affymetrix datasets.  

5.4.7 Association with mutations and somatic copy number variations 

As described in the methods section, we preprocessed mutation (MutSigCV) 

(Lawrence et al. 2013) and somatic copy number variation (GISTIC 2.0) (Mermel et al. 

2011) data for all TCGA sample and tested for association between somatic alterations 

and the OxPhos phenotype by a Kolmogorov-Smirnov (KS) test. After correcting for 

multiple testing by the false discovery rate method, we found only one significant 

(FDR<0.25) mutation in breast cancer in the TBL1XR1 gene. We show the OxPhos 
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activity and the corresponding TBL1XR1 mutations for the TCGA BRCA samples in 

Figure 5.13. There are only 10 mutations of that gene in that dataset and they seem to be 

enriched in the non-OxPhos side.  

 

Figure 5.13: Association between OxPhos activity and TBL1XR1 mutation in breast cancer 

TBL1XR1 
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In this heatmap, we show the gene expression of the TCGA BRCA dataset, in OxPhos gene signature space. Red 

values show up-regulated gene expression, blue down-regulated. The samples are ordered according to 

predicted OxPhos activity (purple) by ASSIGN. The genes are ordered by ASSIGN gene weight (original 

DLBCL OxPhos gene signature members in green, expanded set in orange). The black and white bar on top of 

the heatmap shows the presence (black) of TBL1XR1 mutations, which are enriched in the OxPhos active 

samples. 

 

5.4.8 Finding upstream regulators using Ingenuity 

Next, we performed Ingenuity Pathway Analysis (Krämer et al. 2014) to 

investigate possible mechanisms of action contributing to the OxPhos phenotype. 

Ingenuity offers a suite of tools that allows for the annotation of gene signatures, but also 

includes more sophisticated regulatory network based approaches such as the Upstream 

Regulator Analysis (URA). URA determines likely upstream regulators and is not limited 

to transcription factors, but includes any gene or small molecule that has been observed 

experimentally to affect gene expression in some direct or indirect way (Krämer et al. 

2014). Table 2.1 shows the results of an URA on our 85 gene Pan-OxPhos signature. Of 

note is that the gene RICTOR, which is the binding partner of MTOR in the MTORC2 

complex, has a very significant p-value of 5.06E-60. 
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Table 5.3: Ingenuity upstream regulators 

Predicted up-stream regulators of the PanOxPhos signature as derived by Ingenuity.  

Upstream Regulator Molecule Type p-value  

RICTOR Other 5.06E-60 

guanidinopropionic acid chemical - endogenous  3.35E-15 

IGF1R transmembrane receptor 6.90E-14 

5-fluorouracil chemical drug 1.69E-13 

sirolimus  chemical drug 3.15E-13 

Esrra  transcription regulator 5.35E-13 

MAPT Other 1.37E-11 

CD 437 chemical drug 2.32E-11 

INSR kinase  7.06E-10 

mono-(2-ethylhexyl)phthalate chemical toxicant 8.34E-10 

MYCN transcription regulator 2.56E-09 

FOXO1 transcription regulator 3.39E-09 

VEGFA growth factor 1.30E-08 

interferon beta-1a biologic drug 2.52E-08 

PSEN1 peptidase 2.32E-07 

HTT transcription regulator 4.70E-07 

NRF1 transcription regulator 1.18E-06 

APP Other 4.51E-06 

MYC transcription regulator 2.01E-05 

 

5.4.9 Identification of related compounds using connectivity map 2.0 

An additional approach of annotating a list of genes is through the Connectivity 

Map or cMap (Lamb et al. 2006; Lamb 2007). The cMap 2.0 

(http://www.lincscloud.org/) contains more than a million gene expression signatures 

corresponding to hundreds of thousands of perturbations in multiple cell lines. 

Perturbations include treatments with a large panel of drugs, as well as knock-down and 

over-expression experiments of single genes. These perturbation signatures can be 

http://www.lincscloud.org/
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queried with a custom list of genes, such as our PanOxPhos signature, yielding a list of 

signatures that are most correlated or anti-correlated. We show the outcome of this cMap 

2.0 analysis for chemical compounds in Table 5.4. Of note is that the top anti-correlated 

signature belongs to the compound wortmannin, which is known to inhibit PI3K related 

enzymes such as mTor (Feldman & Shokat 2010) and torin-2 is a potent and selective 

mTOR inhibitor (Liu et al. 2013). 

 

Table 5.4: Compounds signatures (anti-)correlated to the PanOxPhos signature 

For this analysis we submitted our 85 gene PanOxPhos signature to the connectivity map 2.0 and looked for 

compounds that show correlated gene expression signatures. On the left we show the compounds that are anti-

correlated and on the right we show compounds that are correlated.   

pert_iname mean rank 

 
pert_iname mean rank 

wortmannin -98.3578 

 
RHO-kinase-inhibitor-III[rockout] 98.1762 

 torin-2 -98.2349 

 
SJ-172550 97.5339 

withaferin-a -97.9292 

 
Triptolide 96.5122 

Oxetane -97.5076 

 
Linezolid 96.03 

ST-4029573 -97.3765 

 
AS-703026 96.0037 

Salermide -96.7146 

 
Dexamethasone 95.8667 

BRD-K58214070 -96.5766 

 
Orteronel 95.8092 

SCH-79797 -96.5565 

 
Isoxicam 95.644 

Calyculin -96.4921 

 
BRD-K11671649 95.5445 

EMF-sumo1-11 -96.1698 

 
Nifedipine 95.4223 

 

5.4.10 Looking at RICTOR and MTOR expression 

Since both the ingenuity pathway analysis and the connectivity map analysis 

showed a potential link between our 85 gene PanOxPhos signature and the mTOR 

(mammalian target of rapamycin) and its binding partner RICTOR (rapamycin-
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insensitive companion of mTOR), we next investigated the correlation between the gene 

expression of these two genes and the OxPhos activity in all of our datasets. The results 

for RICTOR, shown in Figure IV.3, indicate a consistent weak negative correlation 

between -0.18 and -0.682 in all of the TCGA datasets. The results for mTOR, shown 

Figure 5.14, indicate a strong negative correlation between -0.511 and -0.654, which is 

consistent with the results in the previous sections. However, when we performed the 

same analysis in cell-lines we saw a positive correlation between mTOR and OxPhos 

activity between 0.138 and 0.478. This indicates a systematic difference of the metabolic 

characteristics between cancer cell-lines and primary tumors, possibly suggesting in-vitro 

growth conditions that do not adequately mimic their in-vivo counterpart.. 
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Figure 5.14: Expression of MTOR vs. OxPhos activity across primary tumor datasets 

We show the gene expression of MTOR in comparison to OxPhos activity (Raw ASSIGN score) in TCGA 

BRCA, the oral cavity samples in TCGA HNSC, TGCA LUAD and TCGA LUSC. Red shows the trend-line 

based on a linear model.   
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Figure 5.15: Expression of MTOR vs. OxPhos activity across cell-line datasets 

We show the gene expression of MTOR in comparison to OxPhos activity (Raw ASSIGN score) in TCGA 

BRCA, the oral cavity samples in our in-house DLBCL cell-lines, CCLE breast, lung and melanoma lines.   
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 Discussion 5.5

Based on our analysis we show that the therapeutically relevant OxPhos subtype 

described in (Monti et al. 2005; Polo et al. 2007) is associated with the PGC1α-high 

subtype described in (Vazquez et al. 2013). Both the heatmap in Figure 5.7 and the gene 

set enrichment analysis in Table IV.3 support this conclusion. With the link between 

those two subtypes established, we expanded our analysis to additional cancer types, 

which would suggest a broad relevance in cancer biology.  

For this purpose we applied ASSIGN, a pathway-activity scoring method that is 

capable of adapting its predictions to different molecular contexts, as well as of assigning 

importance weights to a signature genes. ASSIGN has several advantages over simple 

clustering, but most importantly it provides a ranking of both the analyzed samples and 

genes with respect to the phenotype of interest. The generalized use of ASSIGN we 

adopted, where we add potentially interesting genes with a low prior probability of 

significance, makes it capable of fully adapting gene signatures not only across different 

tissue types, but also across quantification assays. We show an instance of these 

capabilities in the Venn diagram of Figure 5.12, where the RNAseq-based TCGA 

datasets include 23 genes that are either not present or very lowly expressed in the 

Affymetrix profiled datasets.   

Using ASSIGN we were able to quantify OxPhos activity and to compare the 

predicted activation levels with functional validations in 12 melanoma cell-lines 

(Vazquez et al. 2013), which showed a strong concordance with our predictions. 
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However, when extending our validation to 6 breast cancer cell-lines and 7 lung cancer 

cell-lines, we did not find a similar concordance. Neither differences in OxPhos 

dependency, as measured by growth rates in hypoxia conditions, nor in OxPhos activity, 

as measured by oxygen consumption rate (OCR) assays, were detected.  

We investigated potential links between the OxPhos activity and genomic 

alterations such as mutations and somatic copy number variations, using a KS-test as 

described in the methods section, but could not find any strong associations. The only 

significant result with an FDR of less than 25% was the TBL1XR1 gene in breast cancer. 

However, literature research did not yield any evidence that supports this link.  

Finally, we used the intersection of all tissue specific OxPhos signatures to 

establish a tissue independent 85 gene PanOxPhos signature. We used Ingenuity Pathway 

Analysis and the Connectivity Map to annotate this list of genes. Both analyses 

highlighted a potential link between OxPhos activity and the mTor2 complex, which 

involves the proteins RICTOR and mTOR and has been shown to modulate resistance 

against oxidative stress in cancer cells (Lu et al. 2015; Cai & Andres 2014). Closer 

inspection of the correlation between OxPhos activity and mTor/RICTOR (Figure 5.14 

and Figure IV.3) confirmed the association with mTorC2 in primary tumors of different 

tissue types. However, when looking at the same correlations in cell-lines (Figure 5.15), 

we detected a positive yet not significant correlation, instead of the strong negative 

correlation observed in primary tissues, indicating that the cell lines do not adequately 

capture in vivo conditions. We suspect this might be due to differences in available 
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nutrients; cell-lines are usually grown with an abundance of nutrients, however, short of 

reprofiling the gene expression of cell-lines grown in conditions that resemble primary 

tumors more closely, this remains speculation. 
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APPENDIX I   

 

Genomic models of short-term exposure accurately predict long-term chemical 

carcinogenicity and identify putative mechanisms of action 

 

Figure I.1: Overview of the analysis.  

The study presented here consists of three parts: 1) Preprocessing, annotation and exploration of the data. 2) 

Building classification models to predict carcinogenicity in rats, which includes the investigation of the effects of 

dose-, time-, and tissue-specificity, effects of sample size, and others. 3) Biology of exposure, where we defined 

carcinogenicity signatures, investigated enriched pathways and derived putative modes of action.  
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Discussion 

Cost-benefit analysis.  

If we assume that about 10% of the 84,000 chemicals currently in commercial use 

are carcinogens (Waters et al. 2010), classification of the complete set based on our 

classifier optimized on a 1:1 FP/FN cost function would yield approximately 4400 

predicted carcinogens – of which 1285 would be expected false positive (based on the 

sensitivity/specificity as assessed by training on DM and testing on TGG, see Figure 2.3) 

– and about 5200 carcinogens would be missed (FN). If we wished to reduce the number 

of FPs to 500, corresponding to a specificity of ~99.3%, this would translate into a 

sensitivity of ~20.9%, and lead to the detection of 1756 out of the expected 8400 true 

carcinogens. Conversely, adopting a 1:2 FP/FN cost function would lead to an increased 

sensitivity of 88.4% and a drop in specificity to 36.3%. These scenarios are presented to 

show the considerable flexibility afforded by the classifier, and to emphasize that the 

appropriate specificity/sensitivity trade-off will be determined by the main purpose for 

which the classifier is used. If its primary purpose is to prioritize compounds for further 

screening, a high sensitivity (few FNs) would be preferable, even at the cost of a lower 

specificity (more FPs). On the other hand, if its purpose is to prove conclusively that a 

compound is carcinogenic (e.g., for regulatory purposes), then increasing the specificity 

even at the cost of a lower sensitivity might be preferable.   
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Structural features as predictors.  

Evaluation of the relative predictive power of gene expression and chemicals’ 

structural features conclusively shows the higher information content of the former over 

the latter, but also shows that augmenting the prediction models with such structural 

information marginally improves classification, in particular genotoxicity. The top 

structural features as ranked by the Random Forest variable importance include 

chloride.p.alkyl, halde..p.alkyl, nitrosamine, nitrose and benzene.1.alkyl.4.carbonyl, 

among others, which enable compound-DNA interaction and consequently are predictive 

of genotoxicity. Since the 3D structural features are easily accessible for most 

compounds, it seems sensible to incorporate these in any future classifier. 

Material 

For the Gene set enrichment analysis as well as the projection into pathway space 

we used the gene sets of the canonical pathways in the second compendium of the 

molecular signature database (MSigDB) (Subramanian et al. 2005) version 3.0, which 

includes 880 gene sets. All gene sets were mapped from human gene symbols to rat 

Ensembl gene identifiers using the R/Bioconductor package BiomaRt. 

For the DrugMatrix, each compound is annotated with 1,902 dichotomous 

chemical structure descriptors extracted from the Leadscope Enterprise 3.0 software 

package (Columbus, Ohio). All samples were profiled on the Affymetrix Rat 230.2 

microarray. 
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Methods 

Exploratory analysis 

In order to reduce the dimension of the dataset and have a 2 or 3-dimensional 

representation of the dataset we used Principal Component Analysis (PCA) using the R 

package prcomp and Multidimensional Scaling (MDS) using the R package ggplot2.  

Defining the Perturbational Transcriptome  

The list of genes that significantly respond to chemical perturbation was identified 

by carrying out a two-group moderated t-test between the control samples and the 

corresponding treatment samples for each compound (at a given dose) separately, while 

correcting for the confounding effect of time. Only the genes with FDR-corrected 

q-value≤0.01 and fold-change≥1.5 (in either direction) in at least five compounds were 

included. A gene-by-compound matrix was then constructed, with each column 

representing the vector of “control vs. treatment” t-scores for the corresponding 

compound. A total of 191 compound-dose instances, corresponding to 138 distinct 

compounds for which either carcinogenicity or genotoxicity information was available, 

were included in this analysis. Hierarchical clustering of both the compounds and the 

genes based on the t-scores’ matrix was performed, and the results visualized in a 

heatmap with the color-coding based on the t-test’s q-values and the direction of the up-

regulation (Figure 2.2). The procedure yielded a clear two-cluster stratification, with one 

of the clusters highly enriched for carcinogenic compounds. Association between cluster 
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membership and carcinogenicity (genotoxicity) status of the compounds was assessed by 

Fisher test. 

Each gene was tested for its association with carcinogenicity, by performing a 

Fisher test between the gene status (0: not differentially expressed; 1: differentially 

expressed) and the compound status (+: carcinogenic; –: non-carcinogenic) across 

compounds, and the nominal p-values were corrected for multiple hypothesis testing by 

the FDR procedure (Figure 2.2b, columns grouped under ‘Enrichment’). 

 

 

To test whether the number of genes up-/down-regulated by each compound was 

significantly higher in carcinogens than in non-carginogens, a Kolmogorov-Smirnoff test 

was performed as shown in Figure I.2. The test evaluates whether the distribution of 

carcinogenic compounds is significantly skewed toward either ends of the list of 

compounds sorted according to the number of genes they up-/down-regulate. The results 

show a significant over-representation of carcinogenic compounds toward the high-end of 

the sorted list. 
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Figure I.2 - Distribution of differentially regulated genes 

Number of up-/down-regulated genes across compounds. The carcinogenic compounds (red ticks) are 

significantly skewed toward the right-end of the distribution, as measured by a KS test (bottom). 

 

Tissue-agnostic carcinogenicity classifiers  

We first assessed whether it is possible to predict the carcinogenicity of a 

compound independent of the tumor site. To this end, Random Forest classifiers were 

built from the DrugMatrix liver samples using tissue agnostic carcinogenicity labels, 

whereby a compound is labeled as carcinogenic if it is found to induce cancer in any 
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tissue type at any dose. The random resampling-based estimation of classification 

performance yielded an AUC of 64.8% when predicting carcinogenicity in this fashion 

(Table I.1 and corresponding ROC curves in Figure I.3). 

Mode of Action Figure  

For Figure 2.6b we used the top 50 pathways as ranked their variable importance 

for classifying the carcinogenic potential of a chemical compound. The pathways as well 

as the chemical compound were grouped using hierarchical clustering. In order to acquire 

the driving genes for each cluster or mode of action we clustered the chemical 

compounds only in the space of the pathways of a given mode of action. We then split 

these hierarchical clusters in two groups at the top node of the dendrogram and went back 

to the actual gene expression data for these two groups, where we performed differential 

gene expression analysis (limma) between those groups in order to get a gene ranking. 

We then reduced the list of genes to those that are present in any of the pathways that 

defined a given mode of action and reported the top ranking genes (Figure 2.6c – right 

column). 
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Figure I.3 - Tissue-agnostic carcinogenicity prediction  

ROC curves corresponding to random forest classifiers trained on liver samples but using tissue-agnostic 

carcinogenicity labels. The red curves show the means over 200 iterations of a 70%/30% train/test dataset split, 

whereas the dashed curves indicate the first and third quartiles respectively.  
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Figure I.4 – Prediction based on chemicals’ structural features  

ROC curves corresponding to random forest classifiers using chemicals’ structural features as predictors. The 

red curves show the means over 200 iterations of a 70%/30% train/test dataset split, whereas the dashed curves 

indicate the first and third quartiles respectively. 
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Figure I.5 – Prediction based on gene expression and chemicals’ structural features 

 ROC curves corresponding to random forest classifiers using the expression of the 500 genes with highest 

variance and chemicals’ structural features as predictors. The red curves show the means over 200 iterations of 

a 70%/30% train/test dataset split, whereas the dashed curves indicate the first and third quartiles respectively. 
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Figure I.6 – ROC of models trained on the DrugMatrix and tested on TG-GATEs 

 We trained a prediction model on all liver samples in the DrugMatrix and predicted the class labels of samples 

in the TG-GATEs treated with chemicals not included in the DrugMatrix. a) ROC curve for the gene-based 

predictions and b) ROC curve for the pathway-based predictions (see Methods).  

 

 

Figure I.7 – ROC of TG-GATEs cross-validation tests  

ROC curves corresponding to random forest classifiers trained and tested on TG-GATEs. The train/test split 

was repeated 200 times to get estimates on the 95% confidence interval. a) results of the gene-based predictions 

and b) results of the pathway-based predictions (see Methods). The red curves show the means over 200 
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iterations of a 70%/30% train/test dataset split, whereas the dashed curves indicate the first and third quartiles 

respectively. 

 

 

Figure I.8 – Effect of dose dependence on prediction  

ROC curves corresponding to random forest classifiers trained on a) dose-specific carcinogenicity labels; and b) 

dose-independent carcinogenicity labels. For the dose-independent labels we used the annotation at the 

maximum dose and used it for all other doses. The red curves show the means over 200 iterations of a 70%/30% 

train/test dataset split, whereas the dashed curves indicate the first and third quartiles respectively. 
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Figure I.9 – Random resampling scheme 

 Chemical compounds are split into a 70% training set and a 30%  test set (stratified with respect to the 

phenotype to be predicted). The gene expression profiles associated with the training set are then used to train a 

classification model, which is used to predict the class labels of the test set. The predicted class labels are then 

compared with the actual labels and the prediction performance (AUC) can be evaluated. To achieve a robust 

evaluation and get an estimate of the standard error the random 70%/30% split is repeated 200 times.  

.   
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Figure I.10 - Overview gene set projection  

For each compound, a vector of n gene set enrichment scores were computed based on the “Compound vs. 

control” phenotype, where n is the number of gene sets. The original matrix of gene-by-compound is thus 

transformed into a gene set-by-compound matrix. 
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Figure I.11- Detailed Modes of Action of carcinogenic chemical compounds  

Heatmaps of the top 50 pathways as ranked by their variable importance derived from a random forest 

classifier of hepato-carcinogenicity. Rows correspond to pathways, clustered into biological processes; columns 

correspond to chemical compounds. The heatmap shows all carcinogenic compounds in the DrugMatrix, 
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respectively. Only profiles corresponding to maximum duration and dose treatments, with replicates averaged, 

are displayed.  

Table I.1 - Differential expression of carcinogens vs. non-carcinogens 

 Comparison of gene expression between rats exposed to carcinogens and non-carcinogens in the Drug Matrix. 

Multiple replicates were averaged while controlling for the exposure time. 

Class FC adj.P.Val Name Description 

CARC 1.69 3.91E-21 DACT2 dapper, antagonist of beta-catenin, homolog 2 (Xenopus laevis) 

CARC 1.72 1.95E-20 ZDHHC2 zinc finger, DHHC-type containing 2 

CARC 1.42 7.37E-17 PTER phosphotriesterase related 

CARC 1.83 1.76E-16 CIDEA cell death-inducing DFFA-like effector a 

CARC 1.38 5.36E-16 ANXA7 annexin A7 

CARC 1.58 7.44E-16 HSDL2 hydroxysteroid dehydrogenase like 2 

CARC 1.78 8.08E-16 ACOT1 acyl-CoA thioesterase 1 

CARC 1.47 2.64E-15 HEBP2 heme binding protein 2 

CARC 1.52 5.80E-15 MYO5B myosin VB 

CARC 1.41 2.03E-14 PQLC3 PQ loop repeat containing 3 

CARC 1.79 2.55E-14 ACOT1 acyl-CoA thioesterase 1 

CARC 1.39 1.21E-13 NUDT7 nudix (nucleoside diphosphate linked moiety X)-type motif 7 

CARC 1.89 3.20E-13 CPT1B carnitine palmitoyltransferase 1B (muscle) 

CARC 3.99 6.13E-13 ACOT1 acyl-CoA thioesterase 1 

CARC 1.65 1.87E-12 AQP7 aquaporin 7 

CARC 1.6 2.49E-12 ECI1 enoyl-CoA delta isomerase 1 

CARC 1.54 3.05E-12 ME1 malic enzyme 1, NADP(+)-dependent, cytosolic 

CARC 1.45 5.16E-12 SNX10 sorting nexin 10 

CARC 1.42 1.12E-11 POLR3G polymerase (RNA) III (DNA directed) polypeptide G (32kD) 

CARC 1.7 2.01E-11 PEX11A peroxisomal biogenesis factor 11 alpha 

CARC 1.75 3.03E-11 AIG1 androgen-induced 1 

CARC 1.35 3.63E-11 CYP2J2 cytochrome P450, family 2, subfamily J, polypeptide 2 

CARC 1.38 1.22E-10 GNAI1 guanine nucleotide binding protein (G protein), alpha inhibiting 
activity polypeptide 1 

CARC 1.65 1.30E-10 PDK4 pyruvate dehydrogenase kinase, isozyme 4 

CARC 1.47 7.67E-10 CCND1 cyclin D1 

CARC 1.61 1.08E-09 VNN1 vanin 1 

CARC 1.42 1.15E-09 SLC22A5 solute carrier family 22 (organic cation/carnitine transporter), member 
5 

CARC 1.37 1.22E-09 TMBIM1 transmembrane BAX inhibitor motif containing 1 

CARC 1.42 2.34E-09 ECH1 enoyl CoA hydratase 1, peroxisomal 

CARC 1.51 3.12E-09 HSPB1 heat shock 27kDa protein 1 

CARC 1.56 3.60E-09 RAB30 RAB30, member RAS oncogene family 

CARC 1.42 5.72E-09 CRAT carnitine O-acetyltransferase 

CARC 1.66 8.63E-09 HDC histidine decarboxylase 

CARC 1.37 2.21E-08 SPC24 SPC24, NDC80 kinetochore complex component, homolog (S. 

cerevisiae) 

CARC 1.36 3.55E-08 SLC25A30 solute carrier family 25, member 30 

CARC 1.36 4.66E-08 ACSL3 acyl-CoA synthetase long-chain family member 3 

CARC 1.41 5.06E-08 MCM6 minichromosome maintenance complex component 6 

NONCARC 0.48 5.07E-08 STAC3 SH3 and cysteine rich domain 3 

NONCARC 0.73 3.11E-08 IL1R1 interleukin 1 receptor, type I 

NONCARC 0.64 1.60E-08 NOX4 NADPH oxidase 4 

NONCARC 0.7 1.30E-08 FMO1 flavin containing monooxygenase 1 

NONCARC 0.73 8.87E-09 IL33 interleukin 33 

NONCARC 0.69 8.36E-09 XPNPEP2 X-prolyl aminopeptidase (aminopeptidase P) 2, membrane-bound 

NONCARC 0.71 3.83E-09 INHBC inhibin, beta C 

NONCARC 0.52 3.51E-09 CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating 
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activity, alpha) 

NONCARC 0.73 1.71E-12 FAM46C family with sequence similarity 46, member C 

NONCARC 0.74 7.41E-13 HSD3B2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-
isomerase 2 

NONCARC 0.73 1.46E-13 ARMC9 armadillo repeat containing 9 

NONCARC 0.73 3.62E-14 CITED2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-

terminal domain, 2 

NONCARC 0.64 3.30E-14 CYP1A2 cytochrome P450, family 1, subfamily A, polypeptide 2 

NONCARC 0.68 2.55E-14 LIN7A lin-7 homolog A (C. elegans) 

NONCARC 0.68 2.26E-14 SLC16A10 solute carrier family 16, member 10 (aromatic amino acid transporter) 

NONCARC 0.71 3.90E-16 NTF3 neurotrophin 3 

NONCARC 0.52 3.77E-16 SEZ6 seizure related 6 homolog (mouse) 

NONCARC 0.39 3.54E-18 A2M alpha-2-macroglobulin 

Table I.2 – Differential analysis of genotoxic carcinogens vs. non-genotoxic carcinogens 

 Comparison of gene expression between rats exposed to genotoxic carcinogens and non-genotoxic carcinogens 

in the DrugMatrix. Multiple replicates were averaged while controlling for the exposure time. 

Class FC adj.P.Val Name Description 

CARC_GT 1.37 9.02E-07 FAM49A family with sequence similarity 49, member A 

CARC_GT 1.69 9.02E-07 JAM3 junctional adhesion molecule 3 

CARC_GT 1.76 6.06E-06 C8orf46 chromosome 8 open reading frame 46 

CARC_GT 1.47 0.000148 PLN phospholamban 

CARC_GT 1.37 0.000188 SDC4 syndecan 4 

CARC_GT 1.5 0.000203 CAV2 caveolin 2 

CARC_GT 1.73 0.000402 CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 

CARC_GT 1.52 0.000502 MDM2 Mdm2, p53 E3 ubiquitin protein ligase homolog (mouse) 

CARC_GT 1.39 0.000906 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

zeta 

CARC_GT 1.42 0.000906 EDNRB endothelin receptor type B 

CARC_GT 1.37 0.000927 SULF2 sulfatase 2 

CARC_GT 1.6 0.001673 CTGF connective tissue growth factor 

CARC_GT 1.35 0.001983 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 

CARC_GT 1.45 0.002101 DUSP6 dual specificity phosphatase 6 

CARC_GT 1.4 0.002585 HYAL3 hyaluronoglucosaminidase 3 

CARC_GT 1.37 0.002585 NHEJ1 nonhomologous end-joining factor 1 

CARC_GT 1.39 0.003549 AHR aryl hydrocarbon receptor 

CARC_GT 1.63 0.00428 CYP1A2 cytochrome P450, family 1, subfamily A, polypeptide 2 

CARC_GT 1.37 0.005501 PHLDA3 pleckstrin homology-like domain, family A, member 3 

CARC_GT 1.39 0.00833 CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 

CARC_GT 1.44 0.00833 SLC25A25 solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 

25 

CARC_GT 2.26 0.008475 CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1 

CARC_GT 1.42 0.008501 RGS2 regulator of G-protein signaling 2, 24kDa 

CARC_GT 1.43 0.008933 TP53INP1 tumor protein p53 inducible nuclear protein 1 

CARC_GT 1.36 0.009854 CCNG1 cyclin G1 

CARC_GT 1.74 0.010164 BCL6 B-cell CLL/lymphoma 6 

CARC_GT 1.75 0.010827 CYP2C18 cytochrome P450, family 2, subfamily C, polypeptide 18 

CARC_GT 1.57 0.012712 BTG2 BTG family, member 2 

CARC_GT 1.37 0.012782 HLA-DRA major histocompatibility complex, class II, DR alpha 

CARC_GT 1.53 0.013334 DUSP1 dual specificity phosphatase 1 

CARC_GT 1.64 0.01764 EGR1 early growth response 1 

CARC_GT 1.63 0.02163 TSKU tsukushi small leucine rich proteoglycan homolog (Xenopus laevis) 

CARC_GT 1.35 0.022342 CCND1 cyclin D1 

CARC_GT 1.78 0.022968 CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 

CARC_GT 1.38 0.024595 PPP1R3C protein phosphatase 1, regulatory subunit 3C 

CARC_GT 1.58 0.03165 SLC6A6 solute carrier family 6 (neurotransmitter transporter, taurine), member 6 

CARC_GT 1.51 0.033326 CDH17 cadherin 17, LI cadherin (liver-intestine) 
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CARC_GT 1.46 0.041069 ZNF354A zinc finger protein 354A 

CARC_GT 1.46 0.041205 KLF6 Kruppel-like factor 6 

CARC_GT 1.43 0.043475 USP2 ubiquitin specific peptidase 2 

CARC_NGT 0.56 0.049227 AQP3 aquaporin 3 (Gill blood group) 

CARC_NGT 0.55 0.044921 HDC histidine decarboxylase 

CARC_NGT 0.66 0.039928 EPHX2 epoxide hydrolase 2, cytoplasmic 

CARC_NGT 0.67 0.038885 PRLR prolactin receptor 

CARC_NGT 0.67 0.032504 ABHD1 abhydrolase domain containing 1 

CARC_NGT 0.57 0.03165 CYP8B1 cytochrome P450, family 8, subfamily B, polypeptide 1 

CARC_NGT 0.52 0.025887 QPCT glutaminyl-peptide cyclotransferase 

CARC_NGT 0.65 0.023538 CRAT carnitine O-acetyltransferase 

CARC_NGT 0.7 0.022888 DACT2 dapper, antagonist of beta-catenin, homolog 2 (Xenopus laevis) 

CARC_NGT 0.59 0.020686 PDK4 pyruvate dehydrogenase kinase, isozyme 4 

CARC_NGT 0.56 0.017979 ACOT1 acyl-CoA thioesterase 1 

CARC_NGT 0.63 0.017556 PNPLA3 patatin-like phospholipase domain containing 3 

CARC_NGT 0.55 0.016964 EHHADH enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase 

CARC_NGT 0.64 0.01516 CIDEA cell death-inducing DFFA-like effector a 

CARC_NGT 0.63 0.015132 ECI1 enoyl-CoA delta isomerase 1 

CARC_NGT 0.57 0.013334 AQP7 aquaporin 7 

CARC_NGT 0.62 0.013334 HSD3B2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 

CARC_NGT 0.57 0.013013 VNN1 vanin 1 

CARC_NGT 0.64 0.012782 MYO5B myosin VB 

CARC_NGT 0.73 0.012188 DDHD1 DDHD domain containing 1 

CARC_NGT 0.46 0.011624 CPT1B carnitine palmitoyltransferase 1B (muscle) 

CARC_NGT 0.63 0.011563 FADS2 fatty acid desaturase 2 

CARC_NGT 0.68 0.011184 GALE UDP-galactose-4-epimerase 

CARC_NGT 0.69 0.010164 NUDT7 nudix (nucleoside diphosphate linked moiety X)-type motif 7 

CARC_NGT 0.68 0.009674 ABHD3 abhydrolase domain containing 3 

CARC_NGT 0.62 0.009674 ANGPTL4 angiopoietin-like 4 

CARC_NGT 0.72 0.008501 TOR3A torsin family 3, member A 

CARC_NGT 0.71 0.00833 CYP2J2 cytochrome P450, family 2, subfamily J, polypeptide 2 

CARC_NGT 0.72 0.008325 MIOX myo-inositol oxygenase 

CARC_NGT 0.67 0.008276 ACSM2A acyl-CoA synthetase medium-chain family member 2A 

CARC_NGT 0.66 0.008157 SLC25A30 solute carrier family 25, member 30 

CARC_NGT 0.73 0.007972 ACOX1 acyl-CoA oxidase 1, palmitoyl 

CARC_NGT 0.66 0.007972 G6PD glucose-6-phosphate dehydrogenase 

CARC_NGT 0.52 0.007972 PEX11A peroxisomal biogenesis factor 11 alpha 

CARC_NGT 0.62 0.006138 ECH1 enoyl CoA hydratase 1, peroxisomal 

CARC_NGT 0.55 0.005281 CYP4A11 cytochrome P450, family 4, subfamily A, polypeptide 11 

CARC_NGT 0.59 0.005185 ACSM5 acyl-CoA synthetase medium-chain family member 5 

CARC_NGT 0.65 0.004088 C2orf88 chromosome 2 open reading frame 88 

CARC_NGT 0.54 0.003376 ACOT1 acyl-CoA thioesterase 1 

CARC_NGT 0.47 0.003363 AIG1 androgen-induced 1 

CARC_NGT 0.16 0.001673 ACOT1 acyl-CoA thioesterase 1 

CARC_NGT 0.72 0.001063 DECR1 2,4-dienoyl CoA reductase 1, mitochondrial 

CARC_NGT 0.67 0.000773 IMPA2 inositol(myo)-1(or 4)-monophosphatase 2 

CARC_NGT 0.73 0.00077 CLYBL citrate lyase beta like 

CARC_NGT 0.74 0.000511 SLC22A25 solute carrier family 22, member 25 

CARC_NGT 0.55 0.000148 ME1 malic enzyme 1, NADP(+)-dependent, cytosolic 

Table I.3 - Random forest with tissue agnostic labels 

Random forest cross-validation results using tissue agnostic class labels for genotoxicity and carcinogenicity in 

liver and cell culture in the DrugMatrix. Each value represents the mean and 95% confidence interval over 200 

iterations of a 70%/30% train/test dataset split.  

 

LIVER 

GenTox 

CELL CULTURE 

GenTox 

LIVER 

Carcinogen 

CELL CULTURE 

Carcinogen 
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AUC 73.64 ± 1.0 79.56 ± 1.0 64.76 ± 1.0 63.35 ± 1.2 

ACC 75.3 ± 0.8 76.56 ± 0.8 61.27 ± 0.8 61.93 ± 1.0 

SENS 41.76 ± 1.8 56.77 ± 2 72.43 ± 1.4 71.91 ± 1.6 

SPEC 87.14 ± 0.8 86.72 ± 1.0 43.15 ± 2.0 45.24 ± 2.5 

PPV 52.65 ± 2.2 67.39 ± 2.2 70.31 ± 1.2 71.11 ± 1.6 

NPV 81.45 ± 1.0 80.62 ± 1.2 45.6 ± 1.6 46.2 ± 1.8 

FDR 47.35 ± 2.2 32.61 ± 2.2 29.69 ± 1.2 28.89 ± 1.6 

Table I.4 - Prediction using tissue-specific labels 

Random forest cross-validation results for genotoxicity and carcinogenicity in liver and cell culture in the 

DrugMatrix. Each value represents the mean and 95% confidence interval over 200 iterations of a 70%/30% 

train/test dataset split.  

 

LIVER 

GenoToxicity 

LIVER 

Carcinogenicity 

#Samples 1260 1221 

#Chemicals 130 127 

AUC 75.08 ± 1.2 76.73 ± 1.0 

ACC 75.62 ± 0.8 72.95 ± 0.8 

SENS 42.82 ± 2.2 56.78 ± 1.8 

SPEC 87.25 ± 0.8 82.91 ± 1.0 

PPV 52.79 ± 2.4 66.61 ± 1.8 

NPV 81.88 ± 1.0 76.37 ± 1.2 

FDR 47.21 ± 2.4 33.39 ± 1.8 

Table I.5 – Prediction with tissue specific labels using SVM 

  Support Vector Machine (SVM) cross-validation results for genotoxicity and carcinogenicity in liver 

and cell culture in the DrugMatrix. Each value represents the mean and 95% confidence interval over 200 

iterations of a 70%/30% train/test dataset split.  

 

LIVER 

GenTox 

CELL CULTURE 

GenTox 

LIVER 

Carcinogen_liv 

CELL CULTURE 

Carcinogen_liv 

AUC 
65.63 ± 4.3 75.15 ± 5.5 61.31 ± 4.1 56.4 ± 7.3 

ACC 73.05 ± 3.3 78.83 ± 4.7 63.94 ± 3.7 65.99 ± 5.5 

SENS 49.42 ± 8.8 63.24 ± 11.6 50.16 ± 8.4 35.14 ± 14.9 

SPEC 81.83 ± 4.1 87.06 ± 6.3 72.46 ± 5.9 77.65 ± 6.5 

PPV 48.3 ± 10.6 70.34 ± 12.5 50.6 ± 9.6 35.4 ± 13.1 

NPV 82.15 ± 5.5 83.07 ± 6.1 71.97 ± 6.5 76.97 ± 7.1 
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FDR 51.7 ± 10.8 29.66 ± 12.5 49.4 ± 9.6 64.6 ± 13.1 

Table I.6 - Prediction with tissue specific labels using PAMR 

 Shrunken centroid (PAMR) cross-validation results for genotoxicity and carcinogenicity in liver and 

cell culture in the DrugMatrix. Each value represents the mean and 95% confidence interval over 200 iterations 

of a 70%/30% train/test dataset split. 

 

LIVER 

GenTox 

CELL CULTURE 

GenTox 

LIVER 

Carcinogen_liv 

CELL CULTURE 

Carcinogen_liv 

AUC 
70.36 ± 1.0 76.73 ± 1.2 77.3 ± 0.8 58.79 ± 1.8 

ACC 73.22 ± 0.8 75.69 ± 1.0 72.66 ± 0.8 66.59 ± 1.2 

SENS 16.11 ± 1.4 47.36 ± 2.2 53.29 ± 1.6 21.53 ± 2.2 

SPEC 93.87 ± 0.8 90.64 ± 1.4 84.4 ± 0.8 86.76 ± 1.4 

PPV 53.02 ± 3.3 74.97 ± 2.7 66.45 ± 1.8 43.97 ± 3.7 

NPV 76.03 ± 1.0 77.67 ± 1.2 75.31 ± 1.2 71.93 ± 1.4 

FDR 46.98 ± 3.3 25.03 ± 2.7 33.55 ± 1.8 56.03 ± 3.7 

Table I.7 - Prediction with tissue specific labels using structural features alone 

  

Random forest cross-validation results for genotoxicity and carcinogenicity in liver and cell culture in 

the DrugMatrix based on structural features. Each value represents the mean and 95% confidence interval over 

200 iterations of a 70%/30% train/test dataset split.  

 

LIVER 

GenTox 

CELL CULTURE 

GenTox 

LIVER 

Carcinogen_liv 

CELL CULTURE 

Carcinogen_liv 

AUC 70.94 ± 4.1 85.59 ± 2.2 59.89 ± 8.8 54.68 ± 9.2 

ACC 82.33 ± 2.2 73.09 ± 14.1 56.72 ± 3.1 58.65 ± 5.1 

SENS 44.91 ± 12.7 93.75 ± 12.2 30.58 ± 9.4 25 ± 29.4 

SPEC 96.4 ± 2.9 68.72 ± 16.1 73.63 ± 16.5 76.84 ± 32.9 

PPV 83.01 ± 9.2 46.1 ± 34.3 42.7 ± 16.5 35 ± 29.4 

NPV 82.42 ± 4.1 96.51 ± 6.9 63.28 ± 5.9 71.12 ± 17.4 

FDR 16.99 ± 9.2 53.9 ± 34.3 57.3 ± 16.5 65 ± 29.4 

Table I.8 - Prediction with tissue specific labels using gene expression and structural features 

Random forest cross-validation results for genotoxicity and carcinogenicity in liver and cell culture in 

the DrugMatrix based on structural features and gene expression profiles. Each value represents the mean and 

95% confidence interval over 200 iterations of a 70%/30% train/test dataset split.  

 

LIVER 

GenTox 

CELL CULTURE 

GenTox 

LIVER 

Carcinogen_liv 

CELL CULTURE 

Carcinogen_liv 

AUC 80.11 ± 1.8 79.76 ± 1.8 77.74 ± 1.4 65.22 ± 2.2 
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ACC 81.39 ± 1.2 75.7 ± 1.4 72.61 ± 1.0 68.08 ± 1.4 

SENS 53.33 ± 3.5 59.78 ± 3.1 59.63 ± 2.7 29.62 ± 3.3 

SPEC 91.05 ± 1.2 84.13 ± 1.8 81.4 ± 1.6 84.87 ± 2.0 

PPV 67.37 ± 3.3 64.12 ± 3.5 66.12 ± 2.5 45.93 ± 4.5 

NPV 85.16 ± 1.4 81.75 ± 1.8 76.84 ± 1.8 74.18 ± 1.8 

FDR 32.63 ± 3.3 35.88 ± 3.5 33.88 ± 2.5 54.07 ± 4.5 

 

Table I.9: Prediction results on TG-GATEs of a model trained on the DrugMatrix 

Random forest classification results including the 95% confidence interval for carcinogenicity in liver, 

based on genes and pathways. The model was trained on the DrugMatrix and tested on TG-GATEs.  

 

Genes Pathways 

#Samples 2064 2064 

#Chemicals 47 47 

AUC 76.64 ± 1.8 78.50 ± 1.8 

ACC 81.62 ± 1.8 80.56 ± 1.8 

SENS 37.36 ± 2.2 48.48 ± 2.2 

SPEC 98.25 ± 0.6 92.57 ± 1.2 

PPV 88.89 ± 1.4 70.97 ± 2.0 

NPV 80.68 ± 1.8 82.75 ± 1.6 

FDR 11.11 ± 1.4 29.03 ± 2.0 

 

Table I.10 - Cross-validation results in the TG-GATEs dataset 

Random forest cross-validation results for carcinogenicity in liver, based on genes and pathways in the 

TG-GATEs dataset. Each value represents the mean and 95% confidence interval over 200 iterations of a 

70%/30% train/test dataset split. 

 

Genes Pathways 

AUC 82.67 ± 1.0 80.6 ± 0.8 

ACC 80.07 ± 0.8 78.99 ± 0.6 

SENS 63.35 ± 1.8 56.72 ± 1.6 

SPEC 90.22 ± 0.8 91.75 ± 0.6 

PPV 78.88 ± 1.6 78.93 ± 1.4 

NPV 80.99 ± 1.0 79 ± 1.0 

FDR 21.12 ± 1.6 21.07 ± 1.4 

Table I.11 – Classification performance with and without dose specific annotation 
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Random forest cross-validation results for carcinogenicity in liver, based on genes and pathways in the 

TG-GATEs dataset. Classification results of both dose-specific and -unspecific carcinogenicity labels are 

included. Each value represents the mean and 95% confidence interval over 200 iterations of a 70%/30% 

train/test dataset split.  

 

Dose dependent 

 

Dose Independent 

AUC 82.67 ± 1.0 

 

69.26 +/- 0.9 

ACC 80.07 ± 0.8 

 

80.9 +/- 0.4 

SENS 63.35 ± 1.8 

 

31.97 +/- 1.3 

SPEC 90.22 ± 0.8 

 

93.06 +/- 0.6 

PPV 78.88 ± 1.6 

 

52.26 +/- 1.5 

NPV 80.99 ± 1.0 

 

84.99 +/- 0.5 

FDR 21.12 ± 1.6 

 

47.74 +/- 1.5 

 

 

Table I.12 - Gene set projection of the DrugMatrix samples 

Random forest cross-validation results for tissue genotoxicity and carcinogenicity in liver and cell 

culture based on pathway projected profiles in the DrugMatrix. Each value represents the mean and 95% 

confidence interval over 200 iterations of a 70%/30% train/test dataset split.  

 

LIVER 

GenTox 

CELL CULTURE 

GenTox 

LIVER 

Carcinogen_liv 

CELL CULTURE 

Carcinogen_liv 

AUC 68.32 ± 1.0 79.86 ± 1.2 73.27 ± 0.8 64.87 ± 1.4 

ACC 72.62 ± 0.8 78.36 ± 1.0 71.52 ± 0.7 66.19 ± 1.0 

SENS 27.54 ± 1.7 59.2 ± 2.0 51.96 ± 1.6 38.11 ± 2.5 

SPEC 88.9 ± 0.8 88.53 ± 1.2 83.91 ± 0.9 78.82 ± 1.3 

PPV 46.76 ± 2.1 72.22 ± 2.3 66.33 ± 1.8 43.06 ± 2.4 

NPV 77.95 ± 1.1 81.51 ± 1.2 74.08 ± 1.1 75.23 ± 1.3 

FDR 53.24 ± 2.1 27.78 ± 2.3 33.67 ± 1.8 56.94 ± 2.4 

 

 

Table I.13 – Comparison with published signatures 
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Comparison of classification results for tissue carcinogenicity in liver. The random forest model is 

compared to two published signatures that were tested with a support vector machine. The first three columns 

show models trained on the DrugMatrix and tested on TG-GATEs, while the fourth columns shows the mean 

over 200 iterations of a 70%/30% train/test dataset split of the non-genotoxic compounds in the DrugMatrix.  

 

Random Forest 

Ellinger-

Ziegelbauer 2008 Fielden 2011 

Fielden 2011 (Non-

GT) 

AUC 

76.64 61.75 69.56 62.59 ± 0.6 

ACC 

81.62 71.57 83.05 66.16 ± 1.0 

SENS 

37.36 40.11 39.84 37.76 ± 2.0 

SPEC 

98.25 83.38 99.28 87.42 ± 1.1 

PPV 

88.89 47.56 95.39 67.49 ± 2.3 

NPV 

80.68 78.75 81.46 67.99 ± 1.5 

FDR 

11.11 52.44 4.61 32.51 ± 2.2 

 

Table I.14 - Testing different numbers of features using a variance filter 

Random forest cross-validation results for carcinogenicity in liver using different numbers of features, 

based on variance ranking. Each value represents the mean and 95% confidence interval over 200 iterations of a 

70%/30% train/test dataset split in the DrugMatrix.  

 

200 Genes 500 Genes 1000 Genes 2000 Genes 

AUC 76 ± 0.8 76.1 ± 0.8 75.50 ± 0.8 75.8 ± 1.0 

ACC 72 ± 0.8 72.8 ± 0.8 72.50 ± 0.8 72.5 ± 0.8 

SENS 52.2 ± 1.8 52.1 ± 1.8 51.30 ± 1.6 54.1 ± 1.8 

SPEC 83.8 ± 1.2 85.00 ± 1.0 84.90 ± 1.0 83.4 ± 1.2 

PPV 64.1 ± 2.0 66.00 ± 2.0 66.40 ± 1.8 64.3 ± 2.0 

NPV 76.2 ± 1.2 75.60 ± 1.2 75.40 ± 1.2 76.8 ± 1.2 

FDR 35.9 ± 2.0 34.00 ± 2.0 33.60 ± 1.8 35.6 ± 2.0 

 

Table I.15– Testing different numbers of features using differential expression 
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Random forest cross-validation results for carcinogenicity in liver using different numbers of features, 

based on differential expression ranking. Each value represents the mean and 95% confidence interval over 200 

iterations of a 70%/30% train/test dataset split in the DrugMatrix.  

 

200 Genes 500 Genes 1000 Genes 2000 Genes 

AUC 75.2 ± 0.8 75.4 ± 0.8 74.8 ± 0.8 74.3 ± 0.8 

ACC 73 ± 0.8 73.1 ± 0.8 72.3 ± 0.8 72 ± 0.8 

SENS 51.3 ± 1.8 53.6 ± 1.6 50.4 ± 1.8 48.5 ± 1.8 

SPEC 85.3 ± 0.8 84.2 ± 1.0 85.1 ± 1.0 86 ± 1.0 

PPV 65.7 ± 1.8 64.8 ± 1.8 65.6 ± 1.8 66.3 ± 1.8 

NPV 76 ± 1.2 77 ± 1.0 75.3 ± 1.2 74.5 ± 1.2 

FDR 34.3 ± 1.8 35.2 ± 1.8 34.4 ± 1.8 33.7 ± 1.8 

 

Table I.16 – Prediction results with lower variance features 

Random forest cross-validation results for carcinogenicity in liver using 500 features with decreasing 

variance. Each value represents the mean and 95% confidence interval over 200 iterations of a 70%/30% 

train/test dataset split in the DrugMatrix. 

  

Features 

1-500 

Features 

501-1000 

Features 

1001-1500 

AUC 77.74 ± 1.4 75.16 ± 0.8 74.58 ± 0.8 

ACC 72.61 ± 1.0 72.09 ± 0.8 71.95 ± 0.8 

SENS 59.63 ± 2.7 53.16 ± 1.8 53.04 ± 1.8 

SPEC 81.4 ± 1.6 83.63 ± 1.0 83.7 ± 1.0 

PPV 66.12 ± 2.5 65.29 ± 2.0 66.17 ± 1.8 

NPV 76.84 ± 1.8 75.55 ± 1.2 75.09 ± 1.2 

FDR 33.88 ± 2.5 34.71 ± 2.0 33.83 ± 1.8 

 

Table I.17 – Samples in Drugmatrix with carcinogenicity annotation 

Overview of samples in the DrugMatrix with either carcinogenicity or genotoxicity annotation, 

according to tissue type.   
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 LIVER 

CELL 

CULTURE KIDNEY HEART 

THIGH 

MUSCLE All 

All samples 2195 813 1410 862 158 5438 

Untreated 279 113 335 231 36 994 

Treated 1916 700 1075 631 122 4444 

Non-Genotoxic 942 362 463 339 77 2183 

Genotoxic 318 171 245 125 77 936 

Non-Carcinogen 765 341 51 / / 1157 

Carcinogen 456 141 51 / / 648 

Compounds 199 104 139 88 21 551 

 

 

Table I.18 – Samples in TG-GATEs  

Overview of samples in the TG-GATEs with either carcinogenicity or genotoxicity annotation, 

according to tissue type.  

 Liver Kidney 

 single repeat in-vitro single Repeat 

All samples 6264 6249 3140 1872 1856 

Untreated 1572 1572 768 468 468 

# Compounds 131 131 131 39 39 

 

 

Table I.19 – Overlapping compounds between TG-GATEs and DrugMatrix 

Overview of 25 compounds that were both tested in the TG-GATEs and DrugMatrix, showing the 

differences in treatment doses.  

  TG-GATEs doses (mg/kg)     DrugMatrix doses (mg/kg) 

acetaminophen 300 600 1000 

  

100 - - - 

allyl alcohol 3 10 30 

  

16 25 32 - 

aspirin 45 150 450 

  

35 167 375 - 

carbamazepine 30 100 300 

  

490 - - - 

carbon tetrachloride 30 100 300 

  

400 1175 - - 

clofibrate 30 100 300 

  

130 500 - - 

clomipramine 10 30 100 

  

115 - - - 

diazepam 25 75 250 

  

710 - - - 
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diclofenac 1 3 10 

  

10 - - - 

ethanol 400 1200 4000 

  

6000 - - - 

fenofibrate 10 100 1000 

  

43 100 215 430 

gemfibrozil 30 100 300 

  

100 700 - - 

indomethacin 0.5 1.6 5 

  

12 - - - 

ketoconazole 10 30 100 

  

114 227 - - 

meloxicam 3 10 30 

  

33 - - - 

methapyrilene 10 30 100 

  

100 - - - 

methimazole 10 30 100 

  

100 - - - 

naproxen 6 20 60 

  

10 - - - 

phenobarbital 10 30 100 

  

25 54 - - 

promethazine 20 60 200 

  

2.3 113 - - 

propylthiouracil 10 30 100 

  

625 

 

- - 

simvastatin 40 120 400 

  

15 1200 - - 

tamoxifen 6 20 60 

  

2.5 64 - - 

thioacetamide 4.5 15 45 

  

200 

 

- - 

valproic acid 45 150 450 

  

1340 1500 - - 

 

Table I.20 – Performance measurements 

Equations to calculate the performance measurements. True Positive (TP), True Negative (TN), False 

Positive (FP), False Negative (FN)  

Accuracy (TP+TN)/(TP+TN+FP+FN) 

Sensitivity TP / (TP+FN) 

Specificity TN / (TN + FP) 

Positive Predictive Value (PPV) TP / (TP+FP) 

Negative Predictive Value (NPV) TN / (TN + FN) 

False Discovery Rate (FDR) FP/ (TP+FP) 
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APPENDIX II  

 

Figure II.1 - Schematic depicting target gene selection. 

(i) TCF3 genes were derived from Schmitz et al1 and then validated in silico by differential analysis against 

GEPs of BL and DLBCL from 2 prior publications2,3.  Transcripts with “false discovery rates” (FDR) <0.25 

were ranked by signal to noise ratio and the top 37 within the union of the two analyses were selected for the 

initial profiling panel.  Analysis of expression data from the training cohort and the construction of molecular 

classifiers resulted in the inclusion of 7 gene targets in the final probe set that was tested in the test cohort.  (ii) 

MYC biological activity signature was derived from the differential analysis of 457 published MYC targets4-10 

against the global GEP of frozen DLBCLs with corresponding MYC IHC class (MYC IHC high versus MYC 

IHC low) from the training cohort.  DA analysis of the entire 18,400 transcripts within the GEP of the frozen 

tissue with respect to the corresponding MYC IHC class was also performed.  
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Figure II.2 - Unsupervised hierarchical clustering of data  

for 3 tumors tested on more than one occasion during the test study. Heatmap data are normalized to the 6 

housekeeping genes but are not normalized between ‘profiling panel builds’. The ‘profiling panel build’ and 

experiment number (first line), the relative expression of the transcripts used in the final profiling panel are 

shown (heatmap, housekeeping gene data not shown).  *The mean MYC activity score (third line) and bar 

charts of respective MYC activity scores by build and experiment number (fourth line) use the final classifier 

output, following normalization of data between profiling panel builds.  
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Figure II.3 - Kaplan-Meier (KM) curves showing Overall Survival (OS) 

for the outcome series where matched MYC IHC and MYC Activity score data are available.  Two cases lacked 

MYC IHC score therefore n=38 rather than n=40 in Figure 6.   (A) Segregated by MYC IHC:  MYC IHC-High  

>50% (red line) and MYC IHC-Low ≤50% (black line). (B) Segregated by MYC Activity Score: MYC Activity 

High (>0.5, red line) and MYC Activity Low (<0.5, black line). 
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Table II.1 Clinical details of the training and test cohorts are shown. 

Tumors with no recorded values for the diagnostic and MYC activity classifiers failed analytical quality control.  

Training Cohort: Burkitt Lymphoma 

Case Figure 

Code 

Diagnosis Age of 

Biopsy 

(years) 

Diagnostic 

Score 

MYC 

Activity 

Score 

MYC 

IHC 

(%) 

MYC 

Rearrange

ment* 

1 BL1 
Burkitt 

Lymphoma 
6 0.999 0.945 80 NA 

2 BL2 
Burkitt 

Lymphoma 
12 0.996 1 60 1 

3 BL3 
Burkitt 

Lymphoma 
6 0.996 0.998 NA 1 

4 BL4 
Burkitt 

Lymphoma 
6 0.996 0.994 60 NA 

5 BL5 
Burkitt 

Lymphoma 
9 0.893 0.982 70 1 

6 BL6 
Burkitt 

Lymphoma 
9 0.85 0.996 80 1 

7 BL7 
Burkitt 

Lymphoma 
5 0.845 0.997 100 1 

8 BL8 
Burkitt 

Lymphoma 
4 0.841 0.994 100 1 

9 BL9 
Burkitt 

Lymphoma 
9 0.829 1 100 1 

10 BL10 
Burkitt 

Lymphoma 
9 0.632 0.629 80 1 

11 BL11 
Burkitt 

Lymphoma 
6 0.551 0.999 100 1 

12 BL12 
Burkitt 

Lymphoma 
6 0.306 0.952 70 1 

 

Training Cohort: DLBCL 

Case Figure 

Code 

Diagnosis Age of 

Patient 

(years) 

Diagnosti

c Score 

MYC 

Activity 

Score 

MYC 

IHC 

(%) 

BCL2 

IHC (%) 

MYC 

Rearrang

ement* 

1 DLBCL1 DLBCL-NOS 64 0.527 0.91 80 10 1 

2 DLBCL2 DLBCL-NOS 57 0.348 1 90 100 1 

3 DLBCL3 DLBCL-NOS 49 0.305 1 90 60 1 

4 DLBCL4 DLBCL-NOS 83 0.207 0.58 70 0 1 

5 DLBCL5 DLBCL-NOS 49 0.164 0.84 70 0 0 

6 DLBCL6 DLBCL-NOS 70 0.122 0.76 60 100 0 

7 DLBCL7 DLBCL-NOS 66 0.113 0.49 70 0 0 

8 DLBCL8 DLBCL-NOS 65 0.107 0.84 70 10 1 

9 DLBCL9 DLBCL-NOS - 0.08 0.22 30 0 0 

10 DLBCL10 DLBCL-NOS 63 0.08 0.11 30 0 0 

11 DLBCL11 DLBCL-NOS 75 0.065 0.98 70 100 0 

12 DLBCL12 DLBCL-NOS 68 0.05 0.02 10 100 0 

13 DLBCL13 DLBCL-NOS 46 0.046 0.42 20 10 0 

14 DLBCL14 DLBCL-NOS 72 0.027 0.46 70 100 0 
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15 DLBCL15 DLBCL-NOS 40 0.022 0.46 40 100 0 

16 DLBCL16 DLBCL-NOS 81 0.021 0.88 60 70 1 

17 DLBCL17 DLBCL-NOS - 0.019 0.12 30 40 0 

18 DLBCL18 DLBCL-NOS 69 0.018 0.19 10 90 0 

19 DLBCL19 DLBCL-NOS 60 0.016 0.01 20 70 0 

20 DLBCL20 DLBCL-NOS 76 0.014 0.02 20 100 0 

21 DLBCL21 DLBCL-NOS 75 0.013 0.98 30 100 0 

22 DLBCL22 DLBCL-NOS 62 0.013 0.95 80 90 1 

23 DLBCL23 DLBCL-NOS 45 0.011 0.13 30 0 0 

24 DLBCL24 DLBCL-NOS 55 0.011 0.63 90  0 

25 DLBCL25 DLBCL-NOS 38 0.008 0.1 20 70 0 

26 DLBCL26 DLBCL-NOS 30 0.006 0.01 20 0 0 

27 DLBCL27 DLBCL-NOS 78 0.005 0.01 20 100 0 

28 DLBCL28 DLBCL-NOS 67 0.003 0.02 30 10 0 

29 DLBCL29 DLBCL-NOS 57 0.001 0 30 0 0 

30 DLBCL30 DLBCL-NOS 68 - - 80  0 

 

 

Test Cohort: Burkitt Lymphoma 

Case Figure 

Code 

Diagnosis Age Diagnostic 

Score 

MYC Activity 

Score 

MYC IHC 

(%) 

MYC 

Rearrange

ment* 

1 tBL1 
Burkitt 

Lymphoma 
3 0.946 0.996 80 1 

2 tBL2 

Burkitt 

Lymphoma 

(Atypical) 

10 0.883 0.996 0 1 

3 tBL3 
Burkitt 

Lymphoma 
0.5 0.877 0.955 0 1 

4 tBL4 
Burkitt 

Lymphoma 
11 0.845 0.862 90 1 

5 tBL5 
Burkitt 

Lymphoma 
7 0.811 0.919 60 1 

6 tBL6 
Burkitt 

Lymphoma 
10 0.802 0.963 90 1 

7 tBL7 
Burkitt 

Lymphoma 
10 0.766 0.969 10 1 

8 tBL8 
Burkitt 

Lymphoma 
7 0.682 0.991 80 NA 

9 tBL9 
Burkitt 

Lymphoma 
9 0.641 0.975 90 1 

10 tBL10 
Burkitt 

Lymphoma 
1 - - 100 1 

11 tBL11 
Burkitt 

Lymphoma 
1 - - 100 1 

12 tBL12 
Burkitt 

Lymphoma 
2 - - 90 1 

 

Test Cohort: Genetic Double Hit Lymphoma 
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Case Figure 

Code 

Diagno

sis 

Age  Diagno

stic 

Score 

MYC 

Activity 

Score 

MYC 

IHC 

(%) 

BCL2 

IHC 

(%) 

MYC-

R* 

BCL2-

R* 

BCL

6-R* 

1 tDHL1 BCL-U 55 0.901 0.981 100 0 1 1 0 

2 tDHL2 BCL-U 86 0.849 1 90 0 1 0 1 

3 tDHL3 BCL-U 64 0.773 0.986 100 100 1 1 0 

4 tDHL4 BCL-U 40 0.305 0.983 80 50 1 1 0 

5 tDHL5 BCL-U 68 0.119 0.598 60 100 1 1 0 

6 tDHL6 
DLBC

L 
46 0.046 0.997 80 0 1 1 0 

7 tDHL7 
DLBC

L 
41 0.02 0.259 70 100 1 1 0 

8 tDHL8 
DLBC

L 
62 0.015 0.177 70 100 1 1 0 

 

 

Test Cohort: DLBCL 

Case Figure 

Code 

Diagnosi

s 

Age Diagno

stic 

Score 

MYC 

Activity 

Score 

MYC 

IHC 

(%) 

BCL2 

IHC 

(%) 

MYC

-R* 

BCL2-

R* 

BCL

6-R* 

1 tDLBCL1 
DLBCL, 

NOS 
43 0.501 0.629 70 0 1 0 0 

2 tDLBCL2 
DLBCL, 

NOS 
76 0.332 0.122 90 80 0 0 NA 

3 tDLBCL3 
DLBCL, 

NOS 
58 0.167 0.638 90 100 0 NA NA 

4 tDLBCL4 
DLBCL-

NOS 
72 0.15 0.51 40 0 0 0 0 

5 tDLBCL5 
DLBCL-

NOS 
65 0.09 0.85 50 0 0 0 0 

6 tDLBCL6 

DLBCL, 

Immuno

blastic 

91 0.086 0.661 80 100 0 0 0 

7 tDLBCL7 
DLBCL-

NOS 
80 0.06 0.38 40 10 0 0 0 

8 tDLBCL8 
DLBCL, 

NOS 
71 0.062 0.35 60 100 0 0 0 

9 tDLBCL9 
DLBCL, 

NOS 
44 0.055 0.816 90 100 0 0 NA 

10 
tDLBCL1

0 

DLBCL, 

HIV+ 
41 0.052 0.076 10 0 0 0 0 

11 
tDLBCL1

1 

DLBCL, 

NOS 
78 0.049 0.06 20 60 0 0 0 

12 
tDLBCL1

2 

DLBCL-

NOS 
53 0.05 0.18 30 20 0 NA NA 

13 
tDLBCL1

3 

DLBCL, 

NOS 
54 0.046 0.024 60 10 0 0 0 

14 
tDLBCL1

4 

DLBCL-

NOS 
80 0.04 0.27 50 0 0 0 0 

15 
tDLBCL1

5 

DLBCL, 

NOS 
46 0.04 0.517 40 10 0 0 0 
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Case Figure 

Code 

Diagnosi

s 

Age Diagno

stic 

Score 

MYC 

Activity 

Score 

MYC 

IHC 

(%) 

BCL2 

IHC 

(%) 

MYC

-R* 

BCL2-

R* 

BCL

6-R* 

16 
tDLBCL1

6 

DLBCL, 

NOS 
68 0.035 0.594 30 90 0 NA NA 

17 
tDLBCL1

7 

DLBCL, 

NOS 
73 0.034 0.047 40 80 0 1 0 

18 
tDLBCL1

8 

DLBCL, 

NOS 
44 0.031 0.004 10 0 0 0 0 

19 
tDLBCL1

9 

DLBCL-

NOS 
77 0.03 0.09 20 100 0 NA NA 

20 
tDLBCL2

0 

DLBCL, 

NOS 
62 0.026 0.032 20 100 0 0 0 

21 
tDLBCL2

1 

DLBCL, 

NOS 
76 0.024 0.121 20 0 0 0 1 

22 
tDLBCL2

2 

DLBCL-

NOS 
33 0.02 0.3 20 0 0 0 1 

23 
tDLBCL2

3 

DLBCL-

NOS 
78 0.02 0.46 40 30 0 0 0 

24 
tDLBCL2

4 

DLBCL, 

NOS 
54 0.016 0.983 70 100 0 0  

25 
tDLBCL2

5 

DLBCL-

NOS 
72 0.02 0.02 40 90 0 NA NA 

26 
tDLBCL2

6 

DLBCL-

NOS 
27 0.02 0.04 40 80 0 0 0 

27 
tDLBCL2

7 

DLBCL, 

NOS 
58 0.015 0.378 30 90 0 0 1 

28 
tDLBCL2

8 

DLBCL-

NOS 
69 0.01 0.02 50 0 0 NA NA 

29 
tDLBCL2

9 

DLBCL-

NOS 
46 0.01 0.04 30 50 0 NA NA 

30 
tDLBCL3

0 

DLBCL, 

NOS 
49 0.012 0.038 10 90 0 0 0 

31 
tDLBCL3

1 

DLBCL-

NOS 
32 0.01 0 10 100 0 0 0 

32 
tDLBCL3

2 

DLBCL, 

NOS 
60 0.008 0.009 30 30 0 0 1 

33 
tDLBCL3

3 

DLBCL-

NOS 
68 0.01 0.03 40 30 0 NA NA 

34 
tDLBCL3

4 

DLBCL-

NOS 
69 0.01 0 - 90 0 0 0 

35 
tDLBCL3

5 

DLBCL-

NOS 
40 0 0.003 40 0 0 0 0 

36 
tDLBCL3

6 

DLBCL-

NOS 
59 0 0.27 50 90 0 0 0 

37 
tDLBCL3

7 

DLBCL-

NOS 
62 0 0.1 40 0 0 0 0 

38 
tDLBCL3

8 

DLBCL-

NOS 
79 0 0 - 0 0 0 0 

39 
tDLBCL3

9 

DLBCL, 

NOS 
72 - - - 80 0 0 0 

 

Table II.2 - 200-gene Initial Profiling panel. 
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The 200 genes targets used in the initial profiling panel are listed and are organized into groups as derived (see 

Supplementary Fig.1 and Supplementary methods).  ‘Data driven’ targets are genes that were not previously 

published as MYC targets but that were differentially expressed in the training set in either MYC IHC-High or 

MYC IHC-Low DLBCL.   

Published MYC Targets 

 Gene Symbol Accession Number Target Region (base pairs) 

1 ACHY NM_000687.2 1805-1905 

2 AKAP1 NM_139275.1 2725-2825 

3 AMD1 NM_001634.4 810-910 

4 APEX1 NM_001641.2 727-827 

5 APITD1 NM_199294.2 950-1050 

6 AURKA NM_003600.2 405-505 

7 BUB1B NM_001211.4 835-935 

8 FAM216A / C12ORF24 NM_013300.2 722-822 

9 CCNB1 NM_031966.2 715-815 

10 CDC25A NM_001789.2 690-790 

11 CDK4 NM_000075.2 1055-1155 

12 CHN1 NM_001025201.2 1965-2065 

13 CIRH1A NM_032830.2 84-184 

14 CTPS NM_001905.2 2570-2670 

15 CYCS NM_018947.4 1735-1835 

16 DDX21 NM_004728.2 685-785 

17 DDX47 NM_016355.3 1180-1280 

18 DHX33 NM_001199699.1 2873-2973 

19 DKC1 NM_001363.3 2255-2355 

20 DLEU1 NR_002605.1 173-273 

21 EIF1AX NM_001412.3 3818-3918 

22 ETFA NM_001127716.1 630-730 

23 EXOSC8 NM_181503.1 655-755 

24 FBL NM_001436.3 883-983 

25 FKBP4 NM_002014.3 2755-2855 

26 FXN NM_001161706.1 515-615 

27 GEMIN4 NM_015721.2 1925-2025 

28 GEMIN5 NM_015465.3 4760-4860 

29 GINS2 NM_016095.2 990-1090 

30 GOT2 NM_002080.2 2145-2245 

31 GPD1L NM_015141.2 2565-2665 

32 HSPE1 NM_002157.2 65-165 

33 IDH3A NM_005530.2 1521-1621 

34 IMPA2 NM_014214.1 545-645 

35 KIAA0101 NM_014736.4 65-165 

36 LDHB NM_001174097.1 1190-1290 

37 LMNB2 NM_032737.2 3630-3730 

38 LRPPRC NM_133259.3 6220-6320 

39 LSM7 NM_016199.2 150-250 

40 LYAR NM_001145725.1 230-330 

41 MCC NM_001085377.1 5578-5678 

42 MDM1 NM_017440.2 1360-1460 

43 MGST1 NM_145764.1 330-430 



  195 

 

 

 Gene Symbol Accession Number Target Region (base pairs) 

44 MKI67IP NM_032390.4 215-315 

45 MRPS2 NR_051968.1 1512-1612 

46 MRPS34 NM_023936.1 719-819 

47 MYB NM_005375.2 3145-3245 

48 MYC NM_002467.3 1610-1710 

49 NAP1L1 NM_004537.4 543-643 

50 NME1 NM_000269.2 500-600 

51 NOLC1 NM_004741.3 3405-3505 

52 NOP2 NM_001033714.1 1800-1900 

53 NPM1 NM_002520.5 10-110 

54 NUDCD2 NM_145266.4 368-468 

55 PA2G4 NM_006191.2 2475-2575 

56 PAICS NM_001079524.1 2604-2704 

57 PDHA1 NM_000284.3 1080-1180 

58 PDLIM3 NM_014476.4 897-997 

59 PHB NM_002634.2 1270-1370 

60 PHB2 NM_007273.3 1210-1310 

61 POLR3K NM_016310.2 395-495 

62 PPAT NM_002703.3 1210-1310 

63 PPRC1 NM_015062.3 4640-4740 

64 PRMT1 NM_001536.4 444-544 

65 PSMG1 NM_203433.1 655-755 

66 RAB8B NM_016530.2 4157-4257 

67 RANBP1 NM_002882.2 380-480 

68 RFC3 NM_002915.3 740-840 

69 RIN2 NM_018993.2 690-790 

70 RPIA NM_144563.2 1588-1688 

71 RPL22 NM_000983.3 1270-1370 

72 RPL23 NM_000978.3 71-171 

73 RRS1 NM_015169.3 1247-1347 

74 SFRS7 NM_001031684.2 532-632 

75 SRM NM_003132.2 254-354 

76 SSBP1 NM_003143.1 235-335 

77 STRAP NM_007178.3 1535-1635 

78 STRBP NM_001171137.1 1150-1250 

79 TFDP1 NM_007111.4 1826-1926 

80 TIPIN NM_017858.2 230-330 

81 TMEM97 NM_014573.2 2055-2155 

82 TRAP1 NM_016292.2 1293-1393 

83 TYMS NM_001071.1 555-655 

84 UBE2CBP (UBE3D) NM_198920.1 834-934 

85 UCHL3 NM_006002.3 375-475 

86 WDR3 NM_006784.2 90-190 
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Additional Published 

 Gene Symbol Accession Number Target Region (base pairs) 

1 ABCE1 NM_001040876.1 635-735 

2 AIMP2 NM_006303.3 507-607 

3 BRD2 NM_005104.2 1890-1990 

4 BRD3 NM_007371.3 2645-2745 

5 BRD4 NM_014299.2 745-845 

6 CAD NM_004341.3 2380-2480 

7 CD44 NM_001001392.1 429-529 

8 CDK4 NM_000075.2 1055-1155 

9 EBNA1BP2 NM_006824.2 318-418 

10 EEF1A2 NM_001958.2 1045-1145 

11 EXOSC8 NM_181503.1 655-755 

12 FASN NM_004104.4 5387-5487 

13 HNRNPA2B1 NM_002137.3 435-535 

14 IARS NM_002161.3 3952-4052 

15 LDHA NM_001165414.1 1690-1790 

16 LRP8 NM_033300.2 1590-1690 

17 MAT2A NM_005911.4 805-905 

18 MAX NM_002382.3 240-340 

19 MITF NM_000248.3 3240-3340 

20 MRPL3 NM_007208.2 350-450 

21 MYCL1 NM_001033081.2 568-668 

22 MYCN NM_005378.4 1545-1645 

23 NCL NM_005381.2 1492-1592 

24 p50 (NFKB1) NM_003998.2 1675-1775 

25 p65 (GORASP1) NM_031899.2 2755-2855 

26 PEBP1 NM_002567.2 1335-1435 

27 POLD2 NM_006230.1 505-605 

28 POLR2H NM_006232.2 317-417 

29 PRDX4 NM_006406.1 540-640 

30 PYCR1 NM_006907.2 513-613 

31 RPL23 NM_000978.3 71-171 

32 RRP1B NM_015056.2 1070-1170 

33 SLC16A1 NM_003051.3 635-735 

34 SLC39A14 NM_001128431.2 1245-1345 

35 SLC39A6 NM_012319.2 1580-1680 

36 TBL3 NM_006453.2 1070-1170 

37 UCK2 NM_012474.3 730-830 

 

Data-driven MYC High 

 Gene Symbol Accession Number Target Region (base pairs) 

1 KIAA1737 NM_033426.2 3868-3968 

2 FAM211A-AS1 / C17orf76-AS1 NR_027164.1 214-314 

3 PCDH9 NM_020403.3 3580-3680 

4 SAMD13 NM_001010971.2 672-772 

5 SERHL2 NM_014509.3 637-737 

6 TCL1A NM_001098725.1 867-967 

7 TMEM100 NM_018286.2 655-755 

 



  197 

 

 

Data-driven MYC Low 

 Gene Symbol Accession Number Target Region (base pairs) 

1 SHISA8 NM_001207020.1 1111-1211 

2 EGFL6 NM_015507.2 1495-1595 

3 IGFBP2 NM_000597.2 675-775 

4 P2RY12 NM_022788.3 230-330 

5 SLAMF1 NM_003037.2 580-680 

6 SLC12A8 NM_024628.5 770-870 

7 TDO2 NM_005651.1 0-100 

8 TMEM119 NM_181724.2 1490-1590 

 

TCF3 

 Gene Symbol Accession Number Target Region (base pairs) 

1 ALDH5A1 NM_001080.3 455-555 

2 ATF4 NM_001675.2 1151-1251 

3 BMP7 NM_001719.1 525-625 

4 KIAA0226L / C13orf18 NM_025113.2 1071-1171 

5 CBFA2T3 NM_005187.5 3195-3295 

6 CCRL1 NM_178445.1 2200-2300 

7 CD38 NM_001775.2 1035-1135 

8 CXCR4 NM_003467.2 1335-1435 

9 NSG1 / D4S234E NM_014392.3 1860-1960 

10 DNMT3B NM_175850.1 1950-2050 

11 DVL2 NM_004422.2 1025-1125 

12 DYRK3 NM_003582.2 1310-1410 

13 E2F2 NM_004091.2 3605-3705 

14 FUT1 NM_000148.3 3660-3760 

15 GPLD1 NM_001503.2 465-565 

16 GRAP NM_006613.3 1918-2018 

17 ICOSLG NM_015259.4 1190-1290 

18 ID3 NM_002167.3 195-295 

19 IGLL1 NM_020070.2 188-288 

20 LHFP NM_005780.2 460-560 

21 LZTS1 NM_021020.2 3970-4070 

22 MME NM_000902.2 5059-5159 

23 MRPS35 NM_021821.2 250-350 

24 N4BP3 NM_015111.1 5435-5535 

25 NEIL1 NM_024608.2 1675-1775 

26 NEIL3 NM_018248.2 842-942 

27 PPM1A NM_021003.4 550-650 

28 PPP2R5C NM_002719.3 1240-1340 

29 PRKAR2B NM_002736.2 1350-1450 

30 RAPGEF5 NM_012294.3 3420-3520 

31 RIMS3 NM_014747.2 3580-3680 

32 SLC1A4 NM_003038.4 3030-3130 

33 SYNE2 NM_182914.2 20435-20535 

34 TBC1D1 NM_001253915.1 1926-2026 

35 TCF3 NM_003200.2 4325-4425 

36 TNFSF8 NM_001244.3 518-618 

37 YPEL1 NM_013313.3 2270-2370 
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BCL2 

 Gene Symbol Accession Number Target Region (base pairs) 

1 BCL-W/BCL2L2 NM_004050.2 2300-2400 

2 BCL2 NM_000657.2 5-105 

3 BCL2A1 NM_004049.2 80-180 

4 BCL2L1 NM_138578.1 1560-1660 

5 MCL1 NM_021960.3 1260-1360 

 

Lineage-specific (‘Constitutional’) 

 Gene Symbol Accession Number Target Region (base pairs) 

1 CD3E NM_000733.2 75-175 

2 CD19 NM_001770.4 1770-1870 

3 CD20/MS4A1 NM_152866.2 620-720 

4 CD68 NM_001251.2 1140-1240 

5 CD79A NM_001783.3 695-795 

 

Housekeeping Genes 

 Gene Symbol Accession Number Target Region (base pairs) 

1 AAMP NM_001087.3 1646-1746 

2 ACTB NM_001101.2 1010-1110 

3 FTL NM_000146.3 85-185 

4 GAPDH NM_002046.3 972-1072 

5 GNB2L1 NM_006098.4 375-475 

6 H3F3A NM_002107.3 190-290 

7 HMBS NM_000190.3 315-415 

8 KARS NM_005548.2 1885-1985 

9 PPIA (Cyclophyllin A) NM_021130.2 925-1025 

10 PSMB3 NM_002795.2 340-440 

11 PSMD2 NM_002808.3 771-871 

12 PTDSS1 NM_014754.1 2375-2475 

13 TBP NM_001172085.1 587-687 

14 TCFL1 (VPS72) NM_005997.1 1112-1212 

15 TUBB NM_178014.2 320-420 

 

Table II.3 - 80-gene Final Profiling Panel  

The 80 gene targets used in the final profiling panel are listed and are organized into groups based on biological 

pathways. 

 Gene Symbol Accession Number Target Region (base pairs) 

1 AHCY NM_000687.2 1805-1905 

2 AKAP1 NM_139275.1 2725-2825 

3 APEX1 NM_001641.2 727-827 

4 APITD1 NM_199294.2 950-1050 

5 BUB1B NM_001211.4 835-935 
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6 FAM216A / 

C12ORF24 

NM_013300.2 722-822 

7 CDC25A NM_001789.2 690-790 

8 CDK4 NM_000075.2 1055-1155 

9 CIRH1A NM_032830.2 84-184 

10 CTPS NM_001905.2 2570-2670 

11 DDX21 NM_004728.2 685-785 

12 DHX33 NM_001199699.1 2873-2973 

13 DLEU1 NR_002605.1 173-273 

14 ETFA NM_001127716.1 630-730 

15 FBL NM_001436.3 883-983 

16 GEMIN4 NM_015721.2 1925-2025 

17 GOT2 NM_002080.2 2145-2245 

18 KIAA0101 NM_014736.4 65-165 

19 LDHB NM_001174097.1 1190-1290 

20 LYAR NM_001145725.1 230-330 

21 MRPS2 NR_051968.1 1512-1612 

22 MRPS34 NM_023936.1 719-819 

23 MYC NM_002467.3 1610-1710 

24 NME1 NM_000269.2 500-600 

25 NOLC1 NM_004741.3 3405-3505 

26 NOP2 NM_001033714.1 1800-1900 

27 PAICS NM_001079524.1 2604-2704 

28 PHB NM_002634.2 1270-1370 

29 PHB2 NM_007273.3 1210-1310 

30 PPAT NM_002703.3 1210-1310 

31 PPRC1 NM_015062.3 4640-4740 

32 PRMT1 NM_001536.4 444-544 

33 RANBP1 NM_002882.2 380-480 

34 RFC3 NM_002915.3 740-840 

35 RRS1 NM_015169.3 1247-1347 

36 SRM NM_003132.2 254-354 

37 SSBP1 NM_003143.1 235-335 

38 STRBP NM_001171137.1 1150-1250 

39 TMEM97 NM_014573.2 2055-2155 

40 TRAP1 NM_016292.2 1293-1393 

41 UCHL3 NM_006002.3 375-475 

42 WDR3 NM_006784.2 90-190 

 

Selected as MYC Targets 

 Gene Symbol Accession Number Target Region (base pairs) 

1 CAD NM_004341.3 2380-2480 

2 EBNA1BP2 NM_006824.2 318-418 

3 FASN NM_004104.4 5387-5487 

4 LRP8 NM_033300.2 1590-1690 

5 NCL NM_005381.2 1492-1592 

6 POLD2 NM_006230.1 505-605 

7 PYCR1 NM_006907.2 513-613 

8 SLC16A1 NM_003051.3 635-735 

9 UCK2 NM_012474.3 730-830 
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Data Driven MYC High 

 Gene Symbol Accession Number Target Region (base pairs) 

1 FAM211A-AS1 / C17orf76-AS1 NR_027164.1 214-314 

2 KIAA0226L NM_025113.2 1071-1171 

3 PCDH9 NM_020403.3 3580-3680 

4 SAMD13 NM_001010971.2 672-772 

5 TCL1A NM_001098725.1 867-967 

 

Data Driven MYC Low 

 Gene Symbol Accession Number Target Region (base pairs) 

1 SHISA8 NM_001207020.1 1111-1211 

2 IGFBP2 NM_000597.2 675-775 

3 P2RY12 NM_022788.3 230-330 

4 SLAMF1 NM_003037.2 580-680 

5 SLC12A8 NM_024628.5 770-870 

6 TDO2 NM_005651.1 0-100 

7 TMEM119 NM_181724.2 1490-1590 

 

Housekeeping Genes 

 Gene Symbol Accession Number Target Region (base pairs) 

1 AAMP NM_001087.3 1646-1746 

2 H3F3A NM_002107.3 190-290 

3 HMBS NM_000190.3 315-415 

4 KARS NM_005548.2 1885-1985 

5 PSMB3 NM_002795.2 340-440 

6 TUBB NM_178014.2 320-420 

 

Table II.4 - The final gene targets  

comprising the Diagnostic Classifier (21 genes) and the MYC Activity Classifier (61 genes) are listed, together 

with the ‘relative weight’ (variable importance) of each gene in the classifier, as shown in Figures 3A, B and 

Figures 5A, B (see Supplementary methods).  Eight genes (indicated in bold) are used in both classifiers.  

Housekeeping genes (6) used to normalize the datasets.  

Diagnostic Classifier 

 Gene Symbol Accession Number Target Region (bps) Variable Importance (0-100) 

1 STRBP NM_001171137.1 1150-1250 98.2 

2 PRKAR2B NM_002736.2 1350-1450 92.9 

3 E2F2 NM_004091.2 3605-3705 80.5 

4 LZTS1 NM_021020.2 3970-4070 72.6 

5 *CDC25A NM_001789.2 690-790 72.6 

6 TCF3 NM_003200.2 4325-4425 69 

7 *RANBP1 NM_002882.2 380-480 58.4 

8 *DLEU1 NR_002605.1 173-273 54.9 
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9 *PAICS NM_001079524.1 2604-2704 46.9 

10 DNMT3B NM_175850.1 1950-2050 45.1 

11 *PPAT NM_002703.3 1210-1310 44.2 

12 *KIAA0101 NM_014736.4 65-165 43.4 

13 PYCR1 NM_006907.2 513-613 38.1 

14 CD10 NM_000902.2 5059-5159 34.5 

15 *NME1 NM_000269.2 500-600 17.7 

16 *FAM216A / 

C12ORF24 
NM_013300.2 722-822 7.1 

17 BMP7 NM_001719.1 525-625 0 

18 BCL2 NM_000657.2 5-105 46 

19 CD44 NM_001001392.1 429-529 57.5 

20 p50 (NFKB1) NM_003998.2 1675-1775 72.6 

21 BCL2A1 NM_004049.2 80-180 100 

 

MYC Activity Classifier 

 Gene Symbol Accession Number Target  

Region (bps) 

Variable 

Importance  

(0-100) 

1 MYC NM_002467.3 1610-1710 100 

2 SRM NM_003132.2 254-354 77.8 

3 AKAP1 NM_139275.1 2725-2825 73 

4 *NME1 NM_000269.2 500-600 72.2 

5 FBL NM_001436.3 883-983 71.4 

6 RFC3 NM_002915.3 740-840 69.8 

7 TCL1A NM_001098725.1 867-967 66.7 

8 POLD2 NM_006230.1 505-605 61.9 

9 *RANBP1 NM_002882.2 380-480 61.9 

10 GEMIN4 NM_015721.2 1925-2025 60.3 

11 MRPS34 NM_023936.1 719-819 60.3 

12 DHX33 NM_001199699.1 2873-2973 59.5 

13 PPRC1 NM_015062.3 4640-4740 59.5 

14 *PPAT NM_002703.3 1210-1310 57.9 

15 *FAM216A / 

C12ORF24 
NM_013300.2 722-822 57.1 

16 *PAICS NM_001079524.1 2604-2704 54.8 

17 UCHL3 NM_006002.3 375-475 53.2 

18 NOLC1 NM_004741.3 3405-3505 52.4 

19 KIAA0226L NM_025113.2 1071-1171 50.8 

20 PRMT1 NM_001536.4 444-544 50.8 

21 LDHB NM_001174097.1 1190-1290 49.2 

22 TRAP1 NM_016292.2 1293-1393 47.6 

23 AHCY NM_000687.2 1805-1905 47.6 

24 LRP8 NM_033300.2 1590-1690 45.2 

25 EBNA1BP2 NM_006824.2 318-418 43.7 

26 CDK4 NM_000075.2 1055-1155 42.1 

27 ETFA NM_001127716.1 630-730 41.3 

28 UCK2 NM_012474.3 730-830 39.7 

29 CTPS NM_001905.2 2570-2670 39.7 

30 GOT2 NM_002080.2 2145-2245 38.9 

31 
FAM211A / 

C17ORF76 
NR_027164.1 214-314 36.5 
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 Gene Symbol Accession Number Target  

Region (bps) 

Variable 

Importance  

(0-100) 

32 TMEM97 NM_014573.2 2055-2155 36.5 

33 RRS1 NM_015169.3 1247-1347 36.5 

34 DDX21 NM_004728.2 685-785 34.9 

35 PHB2 NM_007273.3 1210-1310 34.1 

36 WDR3 NM_006784.2 90-190 33.3 

37 *KIAA0101 NM_014736.4 65-165 31.7 

38 FASN NM_004104.4 5387-5487 31.7 

39 SAMD13 NM_001010971.2 672-772 31 

40 *CDC25A NM_001789.2 690-790 30.2 

41 LYAR NM_001145725.1 230-330 30.2 

42 CAD NM_004341.3 2380-2480 26.2 

43 APEX1 NM_001641.2 727-827 25.4 

44 NOP2 NM_001033714.1 1800-1900 22.2 

45 PHB NM_002634.2 1270-1370 20.6 

46 SSBP1 NM_003143.1 235-335 19.8 

47 MRPS2 NR_051968.1 1512-1612 19 

48 CIRH1A NM_032830.2 84-184 17.5 

49 SLC16A1 NM_003051.3 635-735 16.7 

50 BUB1B NM_001211.4 835-935 15.1 

51 APITD1 NM_199294.2 950-1050 15.1 

52 NCL NM_005381.2 1492-1592 9.5 

53 *DLEU1 NR_002605.1 173-273 7.9 

54 PCDH9 NM_020403.3 3580-3680 0 

55 IGFBP2 NM_000597.2 675-775 8.7 

56 TDO2 NM_005651.1 0-100 18.3 

57 SLC12A8 NM_024628.5 770-870 30.2 

58 P2RY12 NM_022788.3 230-330 40.5 

59 TMEM119 NM_181724.2 1490-1590 53.2 

60 SHISA8 NM_001207020.1 1111-1211 67.5 

61 SLAMF1 NM_003037.2 580-680 69.8 

**Genes indicated in bold type (n=8) are included in both the Diagnostic and MYC Transcriptional Activity 

Classifiers 

 

 

Housekeeping Genes 

 Gene Symbol Accession Number Target Region (bps) 

1 AAMP NM_001087.3 1646-1746 

2 H3F3A NM_002107.3 190-290 

3 HMBS NM_000190.3 315-415 

4 KARS NM_005548.2 1885-1985 

5 PSMB3 NM_002795.2 340-440 

6 TUBB NM_178014.2 320-420 
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APPENDIX III  

 

 

Table III.1: Final CCC  signature derived from both Affymetrix discovery sets.  

This list contains the final 83 genes that were used for Nanostring profiling both as Ensembl gene 

identifiers and gene symbols. T-statistic log2 fold change and p values were derived using Limma and corrected 

for multiple testing using false discovery rate (FDR). 

ensembl_gene_id hgnc_symbol ensembl_gene_id hgnc_symbol 
ENSG00000000971 CFH ENSG00000140740 UQCRC2 

ENSG00000004779 NDUFAB1 ENSG00000143933 CALM2 

ENSG00000005075 POLR2J ENSG00000147669 POLR2K 

ENSG00000005844 ITGAL ENSG00000149131 SERPING1 

ENSG00000010810 FYN ENSG00000149532 CPSF7 

ENSG00000011376 LARS2 ENSG00000153563 CD8A 

ENSG00000038427 VCAN ENSG00000154518 ATP5G3 

ENSG00000054983 GALC ENSG00000155465 SLC7A7 

ENSG00000065526 SPEN ENSG00000156467 UQCRB 

ENSG00000065911 MTHFD2 ENSG00000156482 RPL30 

ENSG00000072110 ACTN1 ENSG00000157456 CCNB2 

ENSG00000072506 HSD17B10 ENSG00000159403 C1R 

ENSG00000072864 NDE1 ENSG00000160255 ITGB2 

ENSG00000077312 SNRPA ENSG00000160299 PCNT 

ENSG00000078668 VDAC3 ENSG00000163541 SUCLG1 

ENSG00000086102 NFX1 ENSG00000163599 CTLA4 

ENSG00000088827 SIGLEC1 ENSG00000164258 NDUFS4 

ENSG00000089280 FUS ENSG00000164305 CASP3 

ENSG00000095585 BLNK ENSG00000164405 UQCRQ 

ENSG00000096433 ITPR3 ENSG00000164733 CTSB 

ENSG00000099783 HNRNPM ENSG00000165025 SYK 

ENSG00000099795 NDUFB7 ENSG00000165264 NDUFB6 

ENSG00000099995 SF3A1 ENSG00000165629 ATP5C1 

ENSG00000100316 RPL3 ENSG00000166260 COX11 

ENSG00000100385 IL2RB ENSG00000166340 TPP1 

ENSG00000100416 TRMU ENSG00000166483 WEE1 

ENSG00000100554 ATP6V1D ENSG00000167283 ATP5L 

ENSG00000100600 LGMN ENSG00000168040 FADD 

ENSG00000102265 TIMP1 ENSG00000168827 GFM1 

ENSG00000103653 CSK ENSG00000171860 C3AR1 

ENSG00000104852 SNRNP70 ENSG00000173369 C1QB 

ENSG00000104897 SF3A2 ENSG00000173372 C1QA 

ENSG00000105323 HNRNPUL1 ENSG00000173482 PTPRM 

ENSG00000105568 PPP2R1A ENSG00000173638 SLC19A1 

ENSG00000105974 CAV1 ENSG00000174231 PRPF8 

ENSG00000106366 SERPINE1 ENSG00000174748 RPL15 

ENSG00000108821 COL1A1 ENSG00000175110 MRPS22 
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ENSG00000109390 NDUFC1 ENSG00000175216 CKAP5 

ENSG00000109861 CTSC ENSG00000175899 A2M 

ENSG00000111537 IFNG ENSG00000177733 HNRNPA0 

ENSG00000112695 COX7A2 ENSG00000182180 MRPS16 

ENSG00000115415 STAT1 ENSG00000182199 SHMT2 

ENSG00000116288 PARK7 ENSG00000182326 C1S 

ENSG00000116459 ATP5F1 ENSG00000182899 RPL35A 

ENSG00000116478 HDAC1 ENSG00000183648 NDUFB1 

ENSG00000116824 CD2 ENSG00000184076 UQCR10 

ENSG00000119013 NDUFB3 ENSG00000184983 NDUFA6 

ENSG00000120742 SERP1 ENSG00000186340 THBS2 

ENSG00000122406 RPL5 ENSG00000189043 NDUFA4 

ENSG00000125356 NDUFA1 ENSG00000189091 SF3B3 

ENSG00000125730 C3 ENSG00000196230 TUBB 

ENSG00000126267 COX6B1 ENSG00000196235 SUPT5H 

ENSG00000127184 COX7C ENSG00000197081 IGF2R 

ENSG00000127540 UQCR11 ENSG00000197249 SERPINA1 

ENSG00000127564 PKMYT1 ENSG00000197746 PSAP 

ENSG00000129128 SPCS3 ENSG00000197766 CFD 

ENSG00000131462 TUBG1 ENSG00000197943 PLCG2 

ENSG00000133226 SRRM1 ENSG00000198833 UBE2J1 

ENSG00000134470 IL15RA ENSG00000204843 DCTN1 

ENSG00000134575 ACP2 ENSG00000205937 RNPS1 

ENSG00000135677 GNS ENSG00000213619 NDUFS3 

ENSG00000135940 COX5B ENSG00000256043 CTSO 

ENSG00000136143 SUCLA2 ENSG00000259494 MRPL46 

ENSG00000136875 PRPF4 ENSG00000108883 EFTUD2 

ENSG00000137462 TLR2 ENSG00000120217 CD274 

ENSG00000137822 TUBGCP4 ENSG00000131368 MRPS25 

ENSG00000138777 PPA2 ENSG00000135972 MRPS9 

ENSG00000139131 YARS2 ENSG00000146282 RARS2 

ENSG00000140374 ETFA ENSG00000159189 C1QC 

ENSG00000140612 SEC11A ENSG00000160593 AMICA1 

  ENSG00000184752 NDUFA12 

 

Table III.2: Differential expression of gene signature in Nanostring dataset. 

This spreadsheet shows the differential expression of the 83 HR genes in both Nanostring datasets.  

Nanostring Frozen   Nanostring FFPE 
  logFC FDR     logFC FDR 

A2M 0.908357 0.005403   A2M 0.591607 0.022232 

ACP2 0.755339 0.002481   ACP2 0.400946 0.104 

ACTN1 1.145464 0.000314   ACTN1 0.797946 0.018809 

AMICA1 1.187875 0.003407   AMICA1 0.540411 0.182022 

ATP5F1 -0.30696 0.07919   ATP5F1 -0.20964 0.334589 

ATP5G3 -0.3892 0.037463   ATP5G3 -0.26839 0.180524 

ATP5L -0.44107 0.031704   ATP5L -0.27223 0.231515 

BID 0.271902 0.250435   BID 0.294223 0.334589 

BLNK -0.16061 0.598784   BLNK -0.76929 0.04292 

C1QA 1.355955 0.016833   C1QA 0.993107 0.034991 
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C1QB 1.439402 0.044264   C1QB 1.25775 0.032882 

C1QC 1.268696 0.053057   C1QC 1.0455 0.040313 

C1R 1.201143 0.000162   C1R 0.58975 0.055828 

C3 0.607152 0.190195   C3 0.408018 0.404672 

C3AR1 1.267321 0.00172   C3AR1 0.693393 0.047457 

CASP3 -0.00957 0.963439   CASP3 0.198911 0.473 

CAV1 0.476268 0.185395   CAV1 0.248062 0.488445 

CCNB2 -0.93114 0.001473   CCNB2 -1.47576 0.018809 

CD19 -0.51646 0.190195   CD19 -0.74324 0.164546 

CD2 1.816045 0.001473   CD2 1.396259 0.018809 

CD274 1.100348 0.010224   CD274 0.522875 0.190777 

CD8A 1.213598 0.010224   CD8A 0.820339 0.057118 

CFD 0.990687 0.002887   CFD 1.129232 0.01222 

CFH 1.005821 0.002312   CFH 0.645179 0.049496 

COL1A2 1.083196 0.040141   COL1A2 0.172161 0.747032 

COX11 -0.44562 0.018821   COX11 -0.58204 0.033507 

COX6B1 -0.13705 0.387406   COX6B1 -0.08 0.645026 

COX6C -0.49304 0.011623   COX6C -0.46795 0.018809 

COX7C -0.20839 0.190195   COX7C -0.14652 0.441167 

CPSF7 0.013089 0.951176   CPSF7 -0.19429 0.257635 

CTLA4 1.311839 0.005403   CTLA4 0.767848 0.168356 

CTSB 0.97 0.007995   CTSB 0.532411 0.127067 

DLD -0.135 0.387406   DLD -0.06571 0.746532 

ETFA -0.4492 0.010224   ETFA -0.53938 0.01222 

FYN 1.133679 0.003407   FYN 0.834786 0.025334 

GNS 0.976857 0.000314   GNS 0.719554 0.009491 

HDAC1 -0.55268 0.025474   HDAC1 -0.59607 0.019567 

HSD17B10 -0.4558 0.022463   HSD17B10 -0.57426 0.019567 

IGF2R 0.739652 0.009209   IGF2R 0.387598 0.164546 

IL15RA 0.88592 0.002312   IL15RA 0.557286 0.061349 

IL2RB 1.588688 0.001473   IL2RB 0.993241 0.043884 

ITGAL 1.179679 0.004718   ITGAL 0.819411 0.040313 

ITGB2 1.076339 0.001473   ITGB2 0.450036 0.243538 

LGMN 0.564929 0.169571   LGMN 0.254107 0.441167 

MRPL46 -0.40517 0.036398   MRPL46 -0.4054 0.128521 

MRPS16 -0.33533 0.023619   MRPS16 -0.29691 0.126689 

MRPS25 -0.32737 0.087576   MRPS25 -0.52985 0.033507 

MRPS7 -0.32205 0.036398   MRPS7 -0.32595 0.077412 

MRPS9 -0.19809 0.250435   MRPS9 0.115616 0.807739 

MTHFD2 -0.28107 0.190195   MTHFD2 -0.32691 0.286389 

NDUFA12 -0.24393 0.169983   NDUFA12 -0.36149 0.132461 

NDUFA2 -0.1223 0.542329   NDUFA2 -0.22754 0.231515 

NDUFA4 -0.40402 0.036499   NDUFA4 -0.19464 0.334589 

NDUFAB1 -0.40366 0.010121   NDUFAB1 -0.22902 0.292903 

NDUFB3 -0.01393 0.951176   NDUFB3 -0.16218 0.643855 

NDUFB6 0.022786 0.930471   NDUFB6 -0.06992 0.747032 

NDUFS3 -0.21143 0.133207   NDUFS3 -0.17982 0.231515 

PKMYT1 -0.70107 0.044264   PKMYT1 -1.12479 0.018809 

PLCG2 -0.40446 0.144206   PLCG2 -0.6411 0.040313 

POLR2J -0.11136 0.602131   POLR2J -0.24378 0.257635 

POLR2K -0.5008 0.010121   POLR2K -0.43179 0.099726 

PSAP 0.825982 0.002312   PSAP 0.719107 0.018809 

PTPRM 1.16992 0.002336   PTPRM 0.782018 0.034043 
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RARS2 0.121598 0.486074   RARS2 0.082054 0.746532 

RPL15 -0.32161 0.149345   RPL15 -0.185 0.504445 

RPL3 -0.20795 0.382915   RPL3 -0.06768 0.816047 

RPL35A -0.46143 0.069957   RPL35A -0.32518 0.286389 

SERPINA1 1.553018 0.001473   SERPINA1 1.071214 0.040313 

SERPINE1 0.967152 0.058529   SERPINE1 0.273509 0.58983 

SERPING1 1.730714 0.000199   SERPING1 1.111804 0.009491 

SF3A2 -0.17249 0.382915   SF3A2 -0.45021 0.038208 

SHMT2 -0.71557 0.003637   SHMT2 -0.71779 0.019712 

SIGLEC1 1.4725 0.037463   SIGLEC1 1.285429 0.028621 

SLC19A1 -0.13056 0.657251   SLC19A1 -0.20425 0.441167 

SLC7A7 0.933375 0.000353   SLC7A7 0.38567 0.190777 

SPCS3 -0.13473 0.331157   SPCS3 -0.06017 0.747032 

STAT1 0.958964 0.01514   STAT1 0.836946 0.034043 

SYK -0.29616 0.190195   SYK -0.6144 0.040313 

THBS2 0.816071 0.190195   THBS2 0.126393 0.827762 

TIMP1 0.539429 0.160298   TIMP1 -0.2808 0.504445 

TLR2 1.258804 0.001473   TLR2 0.683196 0.052328 

TPP1 0.576768 0.010224   TPP1 0.249554 0.164546 

TRMU -0.14744 0.406838   TRMU -0.28088 0.168356 

TUBB -0.35402 0.063963   TUBB -0.4667 0.04292 

TUBG1 -0.33619 0.086854   TUBG1 -0.42884 0.043884 

UBE2J1 -0.32491 0.190195   UBE2J1 -0.10429 0.746532 

UQCR10 -0.25105 0.113678   UQCR10 -0.20196 0.286389 

UQCRB -0.09622 0.662509   UQCRB -0.56874 0.180538 

UQCRQ -0.35741 0.052394   UQCRQ -0.27946 0.184003 

WEE1 -0.60859 0.087576   WEE1 -0.93242 0.023991 

YARS2 -0.20509 0.199798   YARS2 -0.30134 0.128521 

 

 

Table III.3: Housekeeping genes.  

This spreadsheet contains the differential expression statistics between all CCC and COO subtypes in 

the Discovery set I.  

      Consensus Clustering 

Classification (CCC) 

  Cell-of-origin 

(COO) 
gene_symbol    class asymp.fdr fold.chg   COO 

class 

Asymp 

fdr 

Fold 

chg 

GNAL housekeeping 3-4   HR 0.9129 1.0019   ABC 0.741195 1.045 

BHLHE22 housekeeping 3-4   BCR 0.9421 1.0031   ABC 0.832857 1.0051 

BHMT2 housekeeping 4-5   OxPhos 0.9208 1.0099   ABC 0.829773 1.0548 

EPHA4 housekeeping 4-5   BCR 0.9285 1.0632   GCB 0.982289 1.0725 

EPHB2 housekeeping 5-6   HR 0.8624 1.0115   GCB 0.77195 1.0327 

SERPINA3 housekeeping 5-6   OxPhos 0.9318 1.0371   ABC 0.875975 1.0101 

TRPC4AP housekeeping 6-7   BCR 0.946 1.0517   ABC 0.91335 1.0329 

HAMP housekeeping 6-7   OxPhos 0.8779 1.0582   GCB 0.945096 1.1809 
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SECISBP2 housekeeping 7-8   BCR 0.9495 1.0472   GCB 0.874192 1.0443 

MEIS2 housekeeping 7-8   OxPhos 0.8723 1.0533   GCB 0.963452 1.0012 

KXD1 housekeeping 8-9   BCR 0.8521 1.0593   GCB 0.577205 1.0269 

PSMC5 housekeeping 9-

10 

  BCR 0.7155 1.1459   ABC 0.359016 1.1071 

SARS housekeeping 9-

10 

  BCR 0.7531 1.0979   GCB 0.641504 1.0359 

EMC4 housekeeping 10-

11 

  OxPhos 0.8897 1.069   GCB 0.905022 1.0053 

KPNB1 housekeeping 10-

11 

  BCR 0.6878 1.1089   GCB 0.910981 1.0102 

CYBA housekeeping 11-

12 

  OxPhos 0.4594 1.0392   GCB 0.7798 1.0311 

 

 

Table III.4: Final CCC signature derived from both Affymetrix discovery sets.  

This list contains the final 141 genes that were used for Nanostring profiling both as Ensembl gene identifiers 

and gene symbols. In addition, we show the elastic net weights for every gene in all three CCC classes 

ensembl_gene_id hgnc 

symbol 

BCR 

weights 

HR 

weights 

OxPhos 

weights 

description 

ENSG00000000971 CFH -0.112 0.121 0.000 complement factor H 

ENSG00000004779 NDUFAB1 0.000 0.000 0.114 NADH dehydrogenase (ubiquinone) 1, 
alpha/beta subcomplex, 1, 8kDa 

ENSG00000005075 POLR2J 0.000 -0.003 0.000 polymerase (RNA) II (DNA directed) 

polypeptide J, 13.3kDa 

ENSG00000005844 ITGAL 0.000 0.078 -0.071 integrin, alpha L (antigen CD11A (p180), 
lymphocyte function-associated antigen 1; 

alpha polypeptide) 

ENSG00000010810 FYN -0.012 0.111 0.000 FYN proto-oncogene, Src family tyrosine 

kinase 

ENSG00000011376 LARS2 0.000 0.000 -0.173 leucyl-tRNA synthetase 2, mitochondrial 

ENSG00000038427 VCAN -0.025 0.000 0.000 versican 

ENSG00000054983 GALC -0.043 0.000 0.000 galactosylceramidase 

ENSG00000065526 SPEN 0.000 0.000 -0.106 spen family transcriptional repressor 

ENSG00000065911 MTHFD2 0.000 -0.053 0.070 methylenetetrahydrofolate dehydrogenase 

(NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase 

ENSG00000072110 ACTN1 0.000 0.126 -0.056 actinin, alpha 1 

ENSG00000072506 HSD17B10 0.000 -0.032 0.000 hydroxysteroid (17-beta) dehydrogenase 

10 

ENSG00000072864 NDE1 0.000 0.000 -0.102 nudE neurodevelopment protein 1 

ENSG00000077312 SNRPA 0.152 0.000 -0.121 small nuclear ribonucleoprotein 

polypeptide A 

ENSG00000078668 VDAC3 -0.015 0.000 0.000 voltage-dependent anion channel 3 

ENSG00000086102 NFX1 0.000 0.000 -0.062 nuclear transcription factor, X-box binding 
1 

ENSG00000088827 SIGLEC1 0.000 0.038 -0.111 sialic acid binding Ig-like lectin 1, 

sialoadhesin 
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ENSG00000089280 FUS 0.172 0.000 -0.135 FUS RNA binding protein 

ENSG00000095585 BLNK 0.000 -0.007 0.000 B-cell linker 

ENSG00000096433 ITPR3 0.154 0.000 -0.050 inositol 1,4,5-trisphosphate receptor, type 

3 

ENSG00000099783 HNRNPM 0.075 0.000 0.000 heterogeneous nuclear ribonucleoprotein 

M 

ENSG00000099795 NDUFB7 -0.041 0.000 0.074 NADH dehydrogenase (ubiquinone) 1 

beta subcomplex, 7, 18kDa 

ENSG00000099995 SF3A1 0.079 0.000 -0.158 splicing factor 3a, subunit 1, 120kDa 

ENSG00000100316 RPL3 0.000 -0.001 0.000 ribosomal protein L3 

ENSG00000100385 IL2RB 0.000 0.069 0.000 interleukin 2 receptor, beta 

ENSG00000100416 TRMU 0.455 0.000 0.000 tRNA 5-methylaminomethyl-2-

thiouridylate methyltransferase 

ENSG00000100554 ATP6V1D -0.060 0.000 0.103 ATPase, H+ transporting, lysosomal 

34kDa, V1 subunit D 

ENSG00000100600 LGMN 0.000 0.015 0.000 legumain 

ENSG00000102265 TIMP1 0.000 0.000 0.000 TIMP metallopeptidase inhibitor 1 

ENSG00000103653 CSK 0.090 0.000 -0.045 c-src tyrosine kinase 

ENSG00000104852 SNRNP70 0.000 0.000 -0.115 small nuclear ribonucleoprotein 70kDa 

(U1) 

ENSG00000104897 SF3A2 0.007 0.000 -0.269 splicing factor 3a, subunit 2, 66kDa 

ENSG00000105323 HNRNPUL1 0.135 0.000 -0.102 heterogeneous nuclear ribonucleoprotein 
U-like 1 

ENSG00000105568 PPP2R1A 0.112 0.000 -0.080 protein phosphatase 2, regulatory subunit 

A, alpha 

ENSG00000105974 CAV1 -0.141 0.047 0.000 caveolin 1, caveolae protein, 22kDa 

ENSG00000106366 SERPINE1 0.000 0.000 0.000 serpin peptidase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), 

member 1 

ENSG00000108821 COL1A1 0.000 0.000 0.000 collagen, type I, alpha 1 

ENSG00000109390 NDUFC1 0.000 0.000 0.051 NADH dehydrogenase (ubiquinone) 1, 

subcomplex unknown, 1, 6kDa 

ENSG00000109861 CTSC -0.037 0.000 0.000 cathepsin C 

ENSG00000111537 IFNG -0.027 0.000 0.000 interferon, gamma 

ENSG00000112695 COX7A2 0.000 0.000 0.031 cytochrome c oxidase subunit VIIa 
polypeptide 2 (liver) 

ENSG00000115415 STAT1 -0.042 0.022 0.000 signal transducer and activator of 

transcription 1, 91kDa 

ENSG00000116288 PARK7 0.000 0.000 0.063 parkinson protein 7 

ENSG00000116459 ATP5F1 0.000 0.000 0.054 ATP synthase, H+ transporting, 

mitochondrial Fo complex, subunit B1 

ENSG00000116478 HDAC1 0.047 -0.035 0.000 histone deacetylase 1 

ENSG00000116824 CD2 -0.072 0.118 0.000 CD2 molecule 

ENSG00000119013 NDUFB3 0.000 0.000 0.076 NADH dehydrogenase (ubiquinone) 1 
beta subcomplex, 3, 12kDa 

ENSG00000120742 SERP1 0.000 0.000 0.073 stress-associated endoplasmic reticulum 

protein 1 

ENSG00000122406 RPL5 0.000 0.000 0.053 ribosomal protein L5 

ENSG00000125356 NDUFA1 0.000 0.000 0.048 NADH dehydrogenase (ubiquinone) 1 

alpha subcomplex, 1, 7.5kDa 
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ENSG00000125730 C3 0.000 0.047 0.000 complement component 3 

ENSG00000126267 COX6B1 0.000 -0.068 0.011 cytochrome c oxidase subunit VIb 

polypeptide 1 (ubiquitous) 

ENSG00000127184 COX7C 0.000 0.000 0.013 cytochrome c oxidase subunit VIIc 

ENSG00000127540 UQCR11 0.000 0.000 0.057 ubiquinol-cytochrome c reductase, 

complex III subunit XI 

ENSG00000127564 PKMYT1 0.147 -0.066 0.000 protein kinase, membrane associated 

tyrosine/threonine 1 

ENSG00000129128 SPCS3 0.000 -0.002 0.150 signal peptidase complex subunit 3 

homolog (S. cerevisiae) 

ENSG00000131462 TUBG1 0.040 0.000 0.000 tubulin, gamma 1 

ENSG00000133226 SRRM1 0.000 0.000 -0.020 serine/arginine repetitive matrix 1 

ENSG00000134470 IL15RA 0.000 0.191 0.000 interleukin 15 receptor, alpha 

ENSG00000134575 ACP2 0.000 0.061 0.000 acid phosphatase 2, lysosomal 

ENSG00000135677 GNS 0.000 0.161 0.000 glucosamine (N-acetyl)-6-sulfatase 

ENSG00000135940 COX5B 0.000 0.000 0.021 cytochrome c oxidase subunit Vb 

ENSG00000136143 SUCLA2 0.000 0.000 0.062 succinate-CoA ligase, ADP-forming, beta 

subunit 

ENSG00000136875 PRPF4 0.120 0.000 0.000 pre-mRNA processing factor 4 

ENSG00000137462 TLR2 -0.026 0.017 0.000 toll-like receptor 2 

ENSG00000137822 TUBGCP4 0.017 0.000 0.000 tubulin, gamma complex associated 

protein 4 

ENSG00000138777 PPA2 0.000 0.000 0.053 pyrophosphatase (inorganic) 2 

ENSG00000139131 YARS2 0.000 -0.001 0.052 tyrosyl-tRNA synthetase 2, mitochondrial 

ENSG00000140374 ETFA 0.000 -0.023 0.051 electron-transfer-flavoprotein, alpha 

polypeptide 

ENSG00000140612 SEC11A -0.049 0.000 0.067 SEC11 homolog A (S. cerevisiae) 

ENSG00000140740 UQCRC2 -0.010 0.000 0.046 ubiquinol-cytochrome c reductase core 
protein II 

ENSG00000143933 CALM2 0.000 0.000 0.026 calmodulin 2 (phosphorylase kinase, delta) 

ENSG00000147669 POLR2K 0.000 -0.033 0.055 polymerase (RNA) II (DNA directed) 

polypeptide K, 7.0kDa 

ENSG00000149131 SERPING1 0.000 0.078 -0.022 serpin peptidase inhibitor, clade G (C1 

inhibitor), member 1 

ENSG00000149532 CPSF7 0.000 0.000 -0.067 cleavage and polyadenylation specific 

factor 7, 59kDa 

ENSG00000153563 CD8A 0.000 0.042 0.000 CD8a molecule 

ENSG00000154518 ATP5G3 0.000 0.000 0.000 ATP synthase, H+ transporting, 

mitochondrial Fo complex, subunit C3 

(subunit 9) 

ENSG00000155465 SLC7A7 0.000 0.029 0.000 solute carrier family 7 (amino acid 

transporter light chain, y+L system), 
member 7 

ENSG00000156467 UQCRB 0.000 0.000 0.017 ubiquinol-cytochrome c reductase binding 

protein 

ENSG00000156482 RPL30 0.000 0.000 0.012 ribosomal protein L30 

ENSG00000157456 CCNB2 0.051 -0.100 0.000 cyclin B2 

ENSG00000159403 C1R -0.066 0.087 0.000 complement component 1, r 

subcomponent 

ENSG00000160255 ITGB2 0.000 0.064 -0.021 integrin, beta 2 (complement component 3 
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receptor 3 and 4 subunit) 

ENSG00000160299 PCNT 0.105 0.000 -0.016 pericentrin 

ENSG00000163541 SUCLG1 -0.043 0.000 0.144 succinate-CoA ligase, alpha subunit 

ENSG00000163599 CTLA4 0.000 0.018 0.000 cytotoxic T-lymphocyte-associated protein 
4 

ENSG00000164258 NDUFS4 0.000 0.000 0.041 NADH dehydrogenase (ubiquinone) Fe-S 

protein 4, 18kDa (NADH-coenzyme Q 
reductase) 

ENSG00000164305 CASP3 0.000 -0.052 0.047 caspase 3, apoptosis-related cysteine 

peptidase 

ENSG00000164405 UQCRQ 0.000 0.000 0.031 ubiquinol-cytochrome c reductase, 

complex III subunit VII, 9.5kDa 

ENSG00000164733 CTSB -0.004 0.028 0.000 cathepsin B 

ENSG00000165025 SYK 0.087 0.000 0.000 spleen tyrosine kinase 

ENSG00000165264 NDUFB6 0.000 0.000 0.010 NADH dehydrogenase (ubiquinone) 1 
beta subcomplex, 6, 17kDa 

ENSG00000165629 ATP5C1 0.000 0.000 0.043 ATP synthase, H+ transporting, 

mitochondrial F1 complex, gamma 
polypeptide 1 

ENSG00000166260 COX11 0.000 -0.005 0.044 COX11 cytochrome c oxidase copper 

chaperone 

ENSG00000166340 TPP1 0.000 0.033 -0.158 tripeptidyl peptidase I 

ENSG00000166483 WEE1 0.158 -0.139 0.000 WEE1 G2 checkpoint kinase 

ENSG00000167283 ATP5L 0.000 0.000 0.021 ATP synthase, H+ transporting, 

mitochondrial Fo complex, subunit G 

ENSG00000168040 FADD -0.033 0.000 0.111 Fas (TNFRSF6)-associated via death 

domain 

ENSG00000168827 GFM1 0.000 0.000 0.000 G elongation factor, mitochondrial 1 

ENSG00000171860 C3AR1 -0.032 0.062 0.000 complement component 3a receptor 1 

ENSG00000173369 C1QB 0.000 0.000 0.000 complement component 1, q 

subcomponent, B chain 

ENSG00000173372 C1QA -0.004 0.000 0.000 complement component 1, q 
subcomponent, A chain 

ENSG00000173482 PTPRM 0.000 0.143 0.000 protein tyrosine phosphatase, receptor 

type, M 

ENSG00000173638 SLC19A1 0.116 -0.042 0.000 solute carrier family 19 (folate 
transporter), member 1 

ENSG00000174231 PRPF8 0.002 0.000 -0.081 pre-mRNA processing factor 8 

ENSG00000174748 RPL15 0.000 -0.046 0.027 ribosomal protein L15 

ENSG00000175110 MRPS22 0.000 0.000 0.070 mitochondrial ribosomal protein S22 

ENSG00000175216 CKAP5 0.211 0.000 -0.014 cytoskeleton associated protein 5 

ENSG00000175899 A2M 0.000 0.105 -0.055 alpha-2-macroglobulin 

ENSG00000177733 HNRNPA0 0.040 0.000 -0.049 heterogeneous nuclear ribonucleoprotein 

A0 

ENSG00000182180 MRPS16 0.000 -0.149 0.109 mitochondrial ribosomal protein S16 

ENSG00000182199 SHMT2 0.038 -0.120 0.000 serine hydroxymethyltransferase 2 
(mitochondrial) 

ENSG00000182326 C1S -0.014 0.000 0.000 complement component 1, s 

subcomponent 

ENSG00000182899 RPL35A 0.000 -0.083 0.038 ribosomal protein L35a 
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ENSG00000183648 NDUFB1 0.000 0.000 0.087 NADH dehydrogenase (ubiquinone) 1 

beta subcomplex, 1, 7kDa 

ENSG00000184076 UQCR10 0.000 -0.058 0.015 ubiquinol-cytochrome c reductase, 
complex III subunit X 

ENSG00000184983 NDUFA6 -0.019 0.000 0.069 NADH dehydrogenase (ubiquinone) 1 

alpha subcomplex, 6, 14kDa 

ENSG00000186340 THBS2 0.000 0.023 0.000 thrombospondin 2 

ENSG00000189043 NDUFA4 0.000 -0.006 0.000 NDUFA4, mitochondrial complex 
associated 

ENSG00000189091 SF3B3 0.060 0.000 -0.127 splicing factor 3b, subunit 3, 130kDa 

ENSG00000196230 TUBB 0.097 -0.032 0.000 tubulin, beta class I 

ENSG00000196235 SUPT5H 0.141 0.000 -0.034 suppressor of Ty 5 homolog (S. 
cerevisiae) 

ENSG00000197081 IGF2R 0.000 0.043 -0.041 insulin-like growth factor 2 receptor 

ENSG00000197249 SERPINA1 0.000 0.028 0.000 serpin peptidase inhibitor, clade A (alpha-

1 antiproteinase, antitrypsin), member 1 

ENSG00000197746 PSAP 0.000 0.102 -0.003 prosaposin 

ENSG00000197766 CFD -0.008 0.044 0.000 complement factor D (adipsin) 

ENSG00000197943 PLCG2 0.201 -0.034 0.000 phospholipase C, gamma 2 

(phosphatidylinositol-specific) 

ENSG00000198833 UBE2J1 0.000 -0.044 0.014 ubiquitin-conjugating enzyme E2, J1 

ENSG00000204843 DCTN1 0.000 0.000 -0.035 dynactin 1 

ENSG00000205937 RNPS1 0.000 0.000 -0.020 RNA binding protein S1, serine-rich 

domain 

ENSG00000213619 NDUFS3 0.000 0.000 0.060 NADH dehydrogenase (ubiquinone) Fe-S 

protein 3, 30kDa (NADH-coenzyme Q 

reductase) 

ENSG00000256043 CTSO -0.083 0.000 0.000 cathepsin O 

ENSG00000259494 MRPL46 0.000 0.000 0.071 mitochondrial ribosomal protein L46 

ENSG00000108883 EFTUD2 0.101 0.000 0.000 elongation factor Tu GTP binding domain 
containing 2 

ENSG00000120217 CD274 -0.268 0.252 0.016 CD274 molecule 

ENSG00000131368 MRPS25 0.138 0.000 0.000 mitochondrial ribosomal protein S25 

ENSG00000135972 MRPS9 0.000 -0.049 0.000 mitochondrial ribosomal protein S9 

ENSG00000146282 RARS2 0.000 0.000 0.000 arginyl-tRNA synthetase 2, mitochondrial 

ENSG00000159189 C1QC 0.000 0.011 0.000 complement component 1, q 

subcomponent, C chain 

ENSG00000160593 AMICA1 -0.103 0.146 0.000 adhesion molecule, interacts with CXADR 

antigen 1 

ENSG00000184752 NDUFA12 0.000 -0.016 0.000 NADH dehydrogenase (ubiquinone) 1 

alpha subcomplex, 12 

 

Table III.5: Comparison between different classification methods.  

In this table we compared our elastic net classification model to two other state-of-the-art prediction model: 

Random Forest and Shrunken Centroids (PAM). We compared the three in both the discovery sets. The elastic 

net outperforms the other two in each dataset. (ACC: accuracy, SENS: sensitivity, SPEC: specificity) 
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  Elastic Net Random Forest Shrunken Centroid 

  Discovery I - 10 fold CV 

ACC 0.965 0.922 0.971 

SENS - BCR 0.980 0.940 0.98 

SPEC - BCR 0.956 0.945 0.978 

SENS - HR 0.905 0.810 0.929 

SPEC - HR 1.000 0.980 1.000 

SENS – OxP 1.000 1.000 1.000 

SPEC - OxP 0.989 0.957 0.978 

    

 Discovery II - 10 fold CV 

ACC 0.918 0.918 0.904 

SENS - BCR 0.840 0.960 0.840 

SPEC - BCR 0.979 0.958 1.000 

SENS - HR 1.000 0.864 1.000 

SPEC - HR 0.907 0.941 0.882 

SENS – OxP 0.889 0.923 0.885 

SPEC - OxP 0.982 0.979 0.979 

    

Table III.6: Cross-validation within the discovery and validation sets.  

For the discovery we used 10-fold cross-validation, while for the validation sets we used leave-out-one cross-

validation (LOOCV). The first three columns show all the Affymetrix data, while the last two show the 

prediction performance of the Nanostring data. (ACC: accuracy, SENS: sensitivity, SPEC: specificity) 

Measurement Discovery I Discovery II 

Validation 

Affymetrix 

(44 replicates) 

Validation 

Nanostring 

frozen 

Validation 

Nanostring 

FFPE 

Technology Affymetrix Nanostring 

Samples 141 72 44 44 44 

ACC 0.965 0.918 0.818 0.818 0.591 

SENS - BCR 0.980 0.840 0.545 0.786 0.929 

SPEC - BCR 0.956 0.979 0.939 1.000 0.600 

SENS - HR 0.905 1.000 0.947 0.875 0.688 

SPEC - HR 1.000 0.907 0.840 0.821 0.893 

SENS – OxP 1.000 0.889 0.857 0.786 0.143 

SPEC - OxP 0.989 0.982 0.933 0.900 0.900 
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Table III.7: Comparison between different classification methods on HR.  

In this table we compared our elastic net classification model to two other state-of-the-art prediction model: 

Random Forest and Shrunken Centroids (PAM). We compared the three in both the discovery sets. The elastic 

net outperforms the other two in each dataset. (ACC: accuracy, SENS: sensitivity, SPEC: specificity, PPV: 

positive predictive value, NPV: negative predictive value, FDR: false discovery rate, AUC: area under the 

receiver operating characteristic (ROC) curve) 

  Elastic Net Random Forest Shrunken Centroid 

  Discovery I - 10 fold CV 

ACC 97.87 95.75 94.33 

SENS 100.00 97.62 88.10 

SPEC 96.97 94.95 96.97 

PPV 93.33 89.13 92.50 

NPV 100.00 98.95 95.05 

FDR 6.67 10.87 7.50 

AUC 0.998 0.993 0.992 

  
     Discovery II - 10 fold CV 

ACC 94.52 90.41 89.04 

SENS 100.00 77.27 95.46 

SPEC 92.16 96.08 86.28 

PPV 84.62 89.47 75.00 

NPV 100.00 90.74 97.78 

FDR 15.39 10.53 25.00 

AUC 0.986 0.975 0.985 

 

Table III.8: Elastic net weights for every gene in the host response signature.  

The first two columns indicate the ensemble gene identifier and the official human gene symbols. 

ensembl_gene_id hgnc 

symbol 

Elastic net 

weights 

ensembl_gene_id hgnc 

symbol 

Elastic net 

weights 

ENSG00000134470 IL15RA -0.436711628 ENSG00000165025 SYK 0.004823 

ENSG00000135677 GNS -0.329371765 ENSG00000091140 DLD 0.012767 

ENSG00000173482 PTPRM -0.308114947 ENSG00000095585 BLNK 0.018337 

ENSG00000160593 AMICA1 -0.284119766 ENSG00000100316 RPL3 0.024199 

ENSG00000000971 CFH -0.266068087 ENSG00000154518 ATP5G3 0.027412 

ENSG00000120217 CD274 -0.25226594 ENSG00000177455 CD19 0.030803 

ENSG00000116824 CD2 -0.241012315 ENSG00000156467 UQCRB 0.032106 

ENSG00000005844 ITGAL -0.233924103 ENSG00000167283 ATP5L 0.03315 

ENSG00000072110 ACTN1 -0.231583408 ENSG00000127184 COX7C 0.034568 

ENSG00000175899 A2M -0.230519533 ENSG00000131495 NDUFA2 0.040894 

ENSG00000163599 CTLA4 -0.210241287 ENSG00000004779 NDUFAB1 0.041131 
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ENSG00000010810 FYN -0.207799834 ENSG00000139131 YARS2 0.049355 

ENSG00000100385 IL2RB -0.199650683 ENSG00000119013 NDUFB3 0.049651 

ENSG00000149532 CPSF7 -0.199345075 ENSG00000140374 ETFA 0.052395 

ENSG00000197746 PSAP -0.194025894 ENSG00000259494 MRPL46 0.053649 

ENSG00000088827 SIGLEC1 -0.154998696 ENSG00000131462 TUBG1 0.055314 

ENSG00000160255 ITGB2 -0.150766398 ENSG00000005075 POLR2J 0.063903 

ENSG00000104897 SF3A2 -0.137783777 ENSG00000147669 POLR2K 0.084458 

ENSG00000159403 C1R -0.134652887 ENSG00000166260 COX11 0.08735 

ENSG00000125730 C3 -0.129015599 ENSG00000116478 HDAC1 0.092286 

ENSG00000171860 C3AR1 -0.128827905 ENSG00000189043 NDUFA4 0.107185 

ENSG00000155465 SLC7A7 -0.123000336 ENSG00000146282 RARS2 0.126587 

ENSG00000115415 STAT1 -0.12124145 ENSG00000125445 MRPS7 0.126703 

ENSG00000166340 TPP1 -0.121183942 ENSG00000197943 PLCG2 0.129381 

ENSG00000197081 IGF2R -0.117023452 ENSG00000196230 TUBB 0.130272 

ENSG00000149131 SERPING1 -0.11179474 ENSG00000015475 BID 0.130955 

ENSG00000197766 CFD -0.103825318 ENSG00000174748 RPL15 0.138678 

ENSG00000105974 CAV1 -0.094964526 ENSG00000072506 HSD17B10 0.139958 

ENSG00000164733 CTSB -0.090364804 ENSG00000184752 NDUFA12 0.146401 

ENSG00000153563 CD8A -0.08277361 ENSG00000126267 COX6B1 0.163013 

ENSG00000106366 SERPINE1 -0.081081423 ENSG00000198833 UBE2J1 0.169715 

ENSG00000186340 THBS2 -0.071539643 ENSG00000065911 MTHFD2 0.170888 

ENSG00000197249 SERPINA1 -0.07114056 ENSG00000182899 RPL35A 0.17527 

ENSG00000159189 C1QC -0.057051528 ENSG00000135972 MRPS9 0.175637 

ENSG00000137462 TLR2 -0.053809724 ENSG00000184076 UQCR10 0.186319 

ENSG00000102265 TIMP1 -0.052931467 ENSG00000164305 CASP3 0.188894 

ENSG00000100600 LGMN -0.0389156 ENSG00000129128 SPCS3 0.216158 

ENSG00000134575 ACP2 -0.038184667 ENSG00000157456 CCNB2 0.22199 

ENSG00000173369 C1QB -0.022017497 ENSG00000100416 TRMU 0.254038 

ENSG00000173372 C1QA -0.016568392 ENSG00000182180 MRPS16 0.312914 

ENSG00000116459 ATP5F1 0 ENSG00000131368 MRPS25 0.32306 

ENSG00000164405 UQCRQ 0 ENSG00000182199 SHMT2 0.33646 

ENSG00000164692 COL1A2 0 ENSG00000166483 WEE1 0.362628 

ENSG00000164919 COX6C 0 ENSG00000127564 PKMYT1 0.517848 

ENSG00000165264 NDUFB6 0 ENSG00000173638 SLC19A1 0.850869 

ENSG00000213619 NDUFS3 0       

 

 

Table III.9: HR Cross-validation within the discovery and validation sets.  

For the discovery we used 10-fold cross-validation, while for the validation sets we used leave-out-one 

cross-validation (LOOCV). The first three columns show all the Affymetrix data, while the last two show the 

prediction performance of the Nanostring data. (ACC: accuracy, SENS: sensitivity, SPEC: specificity, PPV: 

positive predictive value, NPV: negative predictive value, FDR: false discovery rate, AUC: area under the 

receiver operating characteristic (ROC) curve) 
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Measurement Discovery I Discovery II 
Validation Affymetrix 

(44 replicates) 

Validation 

Nanostring 

frozen 

Validation 

Nanostring 

FFPE 

Technology Affymetrix Nanostring 

Samples 141 72 44 44 44 

ACC 97.87 94.52 90.91 84.09 84.09 

SENS 100.00 100.00 93.75 93.75 81.25 

SPEC 96.97 92.16 89.29 78.57 85.71 

PPV 93.33 84.62 83.33 71.43 76.47 

NPV 100.00 100.00 96.15 95.65 88.89 

FDR 6.67 15.39 16.67 28.57 23.53 

AUC 0.998 0.986 0.960 0.906 0.804 

 

 

 

Figure III.1:  Heatmap of the 44 replicates of the validation cohort in Affymetrix.  
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The samples are ordered by class probabilities, based on the predictions of an elastic net model trained on the 

discovery set I. The top barplot shows the single class probabilities of the classifier, the color-bars below shows 

the gold standard and predicted CCC subgroups. Each row corresponds to a gene in our CCC signature, which 

are grouped by class and weights within the elastic net model. 

 

 

Figure III.2: Heatmap of the 44 replicates of the validation cohort in Nanostring FFPE.  

The samples are ordered by class probabilities, based on the predictions of an elastic net model trained on the 

discovery set I. The top barplot shows the single class probabilities of the classifier, the color-bars below shows 

the gold standard and predicted CCC subgroups. Each row corresponds to a gene in our CCC signature, which 

are grouped by class and weights within the elastic net model. 
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Figure III.3: Nanostring Frozen LOOCV.  

The samples are ordered by class probabilities, based on the predictions of an elastic net model trained on the 

discovery set I. The top barplot shows the single class probabilities of the classifier, the color-bars below shows 

the gold standard and predicted CCC subgroups. Each row corresponds to a gene in our CCC signature, which 

are grouped by class and weights within the elastic net model. 
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Figure III.4: Nanostring FFPE LOOCV.  

The samples are ordered by class probabilities, based on the predictions of an elastic net model trained on the 

discovery set I. The top barplot shows the single class probabilities of the classifier, the color-bars below shows 

the gold standard and predicted CCC subgroups. Each row corresponds to a gene in our CCC signature, which 

are grouped by class and weights within the elastic net model. 
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Figure III.5: Learning curves for the 44 sample Nanostring FFPE dataset.  

Here we show how well classification works depending on differing sample sizes. For each increment we reran 

classification 50 times based on random sampled subsets. The red line shows the trend of classification 

performance, while the blue lines show the 95% confidence intervals based on the 50 reruns. There is a slight 

upward trend indicating that a larger sample size would result in a better classification performance.  
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Figure III.6: HR ROC curves of HR classifier in the 44 validation cohort replicates in Nanostring.  

The left shows the ROC curve within the Nanostring frozen cohort, while the right shows the results in the 

Nanostring FFPE. In red we show the expected performance of a random classifier. 

 

 

Figure III.7: HR Heatmap and ROC curve of the 44 Affymetrix replicates 

Of the validation cohort in Affymetrix. On the left we show a heatmap of the Affymetrix fresh frozen samples, 

which are ordered by the HR class probabilities resulting from an elastic net model trained on the discovery set 

I. The rows show the 179  gene signature and the weights as assigned by the model. 
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Figure III.8: HR Nanostring Frozen LOOCV.  

On the left we show a heatmap of the Nanostring fresh frozen data. The samples are in the columns and are 

ordered by class probability derived from a leave-one-out cross-validation (LOOCV) using elastic net, while the 

genes in the signature are in the rows. On the right we show the receiver operating characteristic (ROC) curve 

of the same LOOCV results. 
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Figure III.9: HR Nanostring FFPE LOOCV.  

On the left we show a heatmap of the Nanostring FFPE data. The samples are in the columns and are ordered 

by class probability derived from (LOOCV) using elastic net, while the genes in the signature are in the rows. 

On the right we show the (ROC) curve of the same LOOCV results.  

 

  

Figure III.10: HR Learning curves for Nanostring datasets.  
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Here we show how well classification works depending on differing sample sizes. For each increment we reran 

classification 50 times based on random sampled subsets. The red line shows the trend of classification 

performance, while the blue lines show the 95% confidence intervals based on the 50 reruns. The left shows the 

learning curve for the 44 Nanostring samples based on fresh frozen tissue, while the right shows the 44 replicates 

from FFPE tissue. In both cases, there is an upward trend indicating that a larger sample size would result in a 

better classification performance. 
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APPENDIX IV  

  

  

Figure IV.1: ASSIGN with generalized OxPhos signature across datasets 

Red indicates up-regulated genes, whereas blue indicates down-regulated ones. The samples are ordered by 

OxPhos activity scores derived from an ASSIGN model, which is also shown on top in purple. On the left we 

show the gene weights from the ASSIGN model, in green the genes from the original DLBCL OxPhos signature, 

in orange the genes that were added from the generalized OxPhos gene signature and in grey the genes that have 



  225 

 

 

either a negative weight or are insignificant. The top color bar on the HNSC set indicates the tumors were 

found.  

 

 

Figure IV.2: OxPhos dependency in breast cancer cell-lines 

In this barplot we show the survival rate of lung and DLBCL cell-lines in dependence on oxygen availability. On 

the right we show the gold standard DLBCL cell-lines. Ly4 a OxPhos dependent cell-line shows a strong 

decrease in survival rate when comparing normal oxygen levels (purple) and hypoxia conditions (yellow), while 

U2932, which is not OxPhos dependent does not show a similar drop in survival rates (dark vs. light green) On 

the left we show the comparison between normoxia and hypoxia conditions for 6 breast cancer cell-lines that 

were predicted as OxPhos dependent (red) and cell-lines that were predicted as nonOxPhos (blue).   
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Figure IV.3: Expression of RICTOR vs. OxPhos activity across primary tumor datasets 

We show the gene expression of RICTOR in comparison to OxPhos activity (Raw ASSIGN score) in TCGA 

BRCA (breast cancer), the oral cavity samples in TCGA HNSC (head and neck squamous carcinoma), TGCA 

LUAD (lung adenocarcinoma) and TCGA LUSC (lung squamous carcinoma). Red shows the trend-line based 

on a linear model.   
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Table IV.1: B-Cell receptor signaling (BCR) subtype gene signature 

ensemble gene ID gene symbol ensemble gene ID gene symbol 

ENSG00000095585 BLNK ENSG00000160299 PCNT 

ENSG00000012048 BRCA1 ENSG00000171608 PIK3CD 

ENSG00000134057 CCNB1 ENSG00000127564 PKMYT1 

ENSG00000157456 CCNB2 ENSG00000197943 PLCG2 

ENSG00000177455 CD19 ENSG00000099817 POLR2E 

ENSG00000175216 CKAP5 ENSG00000105568 PPP2R1A 

ENSG00000149532 CPSF7 ENSG00000136875 PRPF4 

ENSG00000103653 CSK ENSG00000174231 PRPF8 

ENSG00000141551 CSNK1D ENSG00000011304 PTBP1 

ENSG00000204843 DCTN1 ENSG00000205937 RNPS1 

ENSG00000197102 DYNC1H1 ENSG00000099995 SF3A1 

ENSG00000108883 EFTUD2 ENSG00000104897 SF3A2 

ENSG00000089280 FUS ENSG00000087365 SF3B2 

ENSG00000116478 HDAC1 ENSG00000189091 SF3B3 

ENSG00000177733 HNRNPA0 ENSG00000104852 SNRNP70 

ENSG00000122566 HNRNPA2B1 ENSG00000077312 SNRPA 

ENSG00000138668 HNRNPD ENSG00000125835 SNRPB 

ENSG00000104824 HNRNPL ENSG00000065526 SPEN 

ENSG00000099783 HNRNPM ENSG00000133226 SRRM1 

ENSG00000105323 HNRNPUL1 ENSG00000149136 SSRP1 

ENSG00000143772 ITPKB ENSG00000092201 SUPT16H 

ENSG00000096433 ITPR3 ENSG00000196235 SUPT5H 

ENSG00000125686 MED1 ENSG00000165025 SYK 

ENSG00000081189 MEF2C ENSG00000127824 TUBA4A 

ENSG00000072864 NDE1 ENSG00000196230 TUBB 

ENSG00000086102 NFX1 ENSG00000131462 TUBG1 

ENSG00000073969 NSF ENSG00000137822 TUBGCP4 

ENSG00000100836 PABPN1 ENSG00000166483 WEE1 

ENSG00000169564 PCBP1     

 

Table IV.2: Oxidative Phosphorylation (OxPhos) subtype gene signature 

ensemble gene ID gene symbol ensemble gene ID gene symbol 

ENSG00000145020 AMT ENSG00000090266 NDUFB2 

ENSG00000165629 ATP5C1 ENSG00000119013 NDUFB3 

ENSG00000116459 ATP5F1 ENSG00000065518 NDUFB4 

ENSG00000159199 ATP5G1 ENSG00000136521 NDUFB5 

ENSG00000154518 ATP5G3 ENSG00000165264 NDUFB6 

ENSG00000169020 ATP5I ENSG00000099795 NDUFB7 

ENSG00000154723 ATP5J ENSG00000109390 NDUFC1 

ENSG00000167283 ATP5L ENSG00000023228 NDUFS1 

ENSG00000100554 ATP6V1D ENSG00000213619 NDUFS3 

ENSG00000131100 ATP6V1E1 ENSG00000164258 NDUFS4 

ENSG00000136888 ATP6V1G1 ENSG00000168653 NDUFS5 

ENSG00000002330 BAD ENSG00000116288 PARK7 

ENSG00000015475 BID ENSG00000168291 PDHB 

ENSG00000143933 CALM2 ENSG00000168002 POLR2G 

ENSG00000164305 CASP3 ENSG00000005075 POLR2J 

ENSG00000166260 COX11 ENSG00000147669 POLR2K 

ENSG00000131143 COX4I1 ENSG00000180817 PPA1 

ENSG00000135940 COX5B ENSG00000138777 PPA2 

ENSG00000126267 COX6B1 ENSG00000177192 PUS1 
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ENSG00000164919 COX6C ENSG00000146282 RARS2 

ENSG00000112695 COX7A2 ENSG00000142676 RPL11 

ENSG00000115944 COX7A2L ENSG00000188846 RPL14 

ENSG00000127184 COX7C ENSG00000174748 RPL15 

ENSG00000172115 CYCS ENSG00000125691 RPL23 

ENSG00000117593 DARS2 ENSG00000100316 RPL3 

ENSG00000091140 DLD ENSG00000156482 RPL30 

ENSG00000140374 ETFA ENSG00000182899 RPL35A 

ENSG00000168040 FADD ENSG00000130255 RPL36 

ENSG00000168827 GFM1 ENSG00000122406 RPL5 

ENSG00000178445 GLDC ENSG00000171858 RPS21 

ENSG00000196591 HDAC2 ENSG00000138326 RPS24 

ENSG00000072506 HSD17B10 ENSG00000137154 RPS6 

ENSG00000115317 HTRA2 ENSG00000170889 RPS9 

ENSG00000114446 IFT57 ENSG00000117118 SDHB 

ENSG00000011376 LARS2 ENSG00000140612 SEC11A 

ENSG00000259494 MRPL46 ENSG00000120742 SERP1 

ENSG00000182180 MRPS16 ENSG00000182199 SHMT2 

ENSG00000175110 MRPS22 ENSG00000173638 SLC19A1 

ENSG00000131368 MRPS25 ENSG00000142168 SOD1 

ENSG00000144029 MRPS5 ENSG00000129128 SPCS3 

ENSG00000125445 MRPS7 ENSG00000136143 SUCLA2 

ENSG00000135972 MRPS9 ENSG00000163541 SUCLG1 

ENSG00000103707 MTFMT ENSG00000028839 TBPL1 

ENSG00000120254 MTHFD1L ENSG00000100416 TRMU 

ENSG00000065911 MTHFD2 ENSG00000178952 TUFM 

ENSG00000125356 NDUFA1 ENSG00000176890 TYMS 

ENSG00000184752 NDUFA12 ENSG00000198833 UBE2J1 

ENSG00000131495 NDUFA2 ENSG00000184076 UQCR10 

ENSG00000189043 NDUFA4 ENSG00000127540 UQCR11 

ENSG00000184983 NDUFA6 ENSG00000156467 UQCRB 

ENSG00000119421 NDUFA8 ENSG00000140740 UQCRC2 

ENSG00000004779 NDUFAB1 ENSG00000164405 UQCRQ 

ENSG00000183648 NDUFB1 ENSG00000078668 VDAC3 

ENSG00000147123 NDUFB11 ENSG00000139131 YARS2 

 

Table IV.3: GSEA results of OxPhos vs. Non-OxPhos in Melanoma 

NAME SIZE ES NOM p-val FDR q-val 

KEGG GLYOXYLATE AND DICARBOXYLATE 

METABOLISM 15 0.695993 0.003846154 0.083679 

KEGG OXIDATIVE PHOSPHORYLATION 95 0.617474 0.012345679 0.07788 

REACTOME RNA POL III TRANSCRIPTION INITIATION 

FROM TYPE 2 PROMOTER 22 0.671559 0.001908397 0.071205 

REACTOME MITOCHONDRIAL PROTEIN IMPORT 41 0.731001 0 0.066201 

REACTOME TCA CYCLE AND RESPIRATORY 

ELECTRON TRANSPORT 95 0.663799 0.00409836 0.054375 

KEGG HUNTINGTONS DISEASE 145 0.500905 0.003960396 0.052611 

REACTOME GLUCOSE TRANSPORT 36 0.646394 0 0.052581 

REACTOME RESPIRATORY ELECTRON TRANSPORT 

ATP SYNTHESIS BY CHEMIOSMOTIC COUPLING AND 62 0.666465 0.012371134 0.062736 
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HEAT PRODUCTION BY UNCOUPLING PROTEINS  

KEGG GALACTOSE METABOLISM 25 0.629911 0 0.058976 

REACTOME RESPIRATORY ELECTRON TRANSPORT 48 0.704209 0.008163265 0.058041 

KEGG PARKINSONS DISEASE 95 0.564994 0.016161617 0.053919 

REACTOME TRNA AMINOACYLATION 40 0.643869 0.009433962 0.049648 

REACTOME RNA POL III TRANSCRIPTION INITIATION 

FROM TYPE 3 PROMOTER 25 0.682143 0 0.046277 

REACTOME RESOLUTION OF AP SITES VIA THE 

MULTIPLE NUCLEOTIDE PATCH REPLACEMENT 

PATHWAY 13 0.77249 0.001901141 0.046493 

KEGG AMINOACYL TRNA BIOSYNTHESIS 40 0.62603 0.005628518 0.043575 

KEGG PENTOSE PHOSPHATE PATHWAY 24 0.7426 0.00591716 0.061775 

KEGG BASE EXCISION REPAIR 28 0.693078 0.00203252 0.069125 

REACTOME RNA POL III CHAIN ELONGATION 16 0.704906 0.005725191 0.110117 

REACTOME BASE EXCISION REPAIR 15 0.710969 0 0.129671 

REACTOME MITOCHONDRIAL TRNA 

AMINOACYLATION 20 0.662973 0.013888889 0.125737 

REACTOME MRNA SPLICING MINOR PATHWAY 38 0.673598 0.005802708 0.13239 

REACTOME MICRORNA MIRNA BIOGENESIS 17 0.717141 0.003960396 0.129099 

REACTOME INHIBITION OF REPLICATION INITIATION 

OF DAMAGED DNA BY RB1 E2F1 11 0.729477 0.003968254 0.123684 

REACTOME RNA POL III TRANSCRIPTION 32 0.588913 0.015503876 0.121608 

KEGG PURINE METABOLISM 144 0.45778 0.001937985 0.118796 

 

 

Table IV.4: 85 PanOxPhos gene signature. 

This table contains the ensemble gene identifiers, gene symbols and descriptions the intersect list of all 

tissue specific OxPhos gene signatures as derived from ASSIGN. 

Ensembl Gene ID HGNC Description 

ENSG00000152234 ATP5A1 

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, 

cardiac muscle 

ENSG00000110955 ATP5B ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide 

ENSG00000165629 ATP5C1 

ATP synthase, H+ transporting, mitochondrial F1 complex, gamma 

polypeptide 1 

ENSG00000116459 ATP5F1 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 

ENSG00000159199 ATP5G1 

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 

(subunit 9) 

ENSG00000135390 ATP5G2 

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 

(subunit 9) 

ENSG00000154518 ATP5G3 

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C3 

(subunit 9) 

ENSG00000169020 ATP5I ATP synthase, H+ transporting, mitochondrial Fo complex, subunit E 



  230 

 

 

ENSG00000154723 ATP5J ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6 

ENSG00000167283 ATP5L ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G 

ENSG00000117410 ATP6V0B ATPase, H+ transporting, lysosomal 21kDa, V0 subunit b 

ENSG00000100554 ATP6V1D ATPase, H+ transporting, lysosomal 34kDa, V1 subunit D 

ENSG00000131100 ATP6V1E1 ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1 

ENSG00000128524 ATP6V1F ATPase, H+ transporting, lysosomal 14kDa, V1 subunit F 

ENSG00000136888 ATP6V1G1 ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G1 

ENSG00000002330 BAD BCL2-associated agonist of cell death 

ENSG00000135940 COX5B cytochrome c oxidase subunit Vb 

ENSG00000126267 COX6B1 cytochrome c oxidase subunit VIb polypeptide 1 (ubiquitous) 

ENSG00000164919 COX6C cytochrome c oxidase subunit VIc 

ENSG00000112695 COX7A2 cytochrome c oxidase subunit VIIa polypeptide 2 (liver) 

ENSG00000115944 COX7A2L cytochrome c oxidase subunit VIIa polypeptide 2 like 

ENSG00000127184 COX7C cytochrome c oxidase subunit VIIc 

ENSG00000179091 CYC1 cytochrome c-1 

ENSG00000172115 CYCS cytochrome c, somatic 

ENSG00000130159 ECSIT ECSIT signalling integrator 

ENSG00000167136 ENDOG endonuclease G 

ENSG00000140374 ETFA electron-transfer-flavoprotein, alpha polypeptide 

ENSG00000168040 FADD Fas (TNFRSF6)-associated via death domain 

ENSG00000091483 FH fumarate hydratase 

ENSG00000072506 HSD17B10 hydroxysteroid (17-beta) dehydrogenase 10 

ENSG00000115317 HTRA2 HtrA serine peptidase 2 

ENSG00000101365 IDH3B isocitrate dehydrogenase 3 (NAD+) beta 

ENSG00000259494 MRPL46 mitochondrial ribosomal protein L46 

ENSG00000182180 MRPS16 mitochondrial ribosomal protein S16 

ENSG00000175110 MRPS22 mitochondrial ribosomal protein S22 

ENSG00000144029 MRPS5 mitochondrial ribosomal protein S5 

ENSG00000125445 MRPS7 mitochondrial ribosomal protein S7 

ENSG00000103707 MTFMT mitochondrial methionyl-tRNA formyltransferase 

ENSG00000065911 MTHFD2 

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, 

methenyltetrahydrofolate cyclohydrolase 

ENSG00000125356 NDUFA1 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa 

ENSG00000184752 NDUFA12 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12 

ENSG00000131495 NDUFA2 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa 

ENSG00000170906 NDUFA3 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3, 9kDa 

ENSG00000189043 NDUFA4 NDUFA4, mitochondrial complex associated 

ENSG00000184983 NDUFA6 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 6, 14kDa 

ENSG00000119421 NDUFA8 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19kDa 

ENSG00000004779 NDUFAB1 NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa 

ENSG00000183648 NDUFB1 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1, 7kDa 

ENSG00000147123 NDUFB11 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 11, 17.3kDa 

ENSG00000090266 NDUFB2 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8kDa 

ENSG00000119013 NDUFB3 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa 

ENSG00000065518 NDUFB4 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa 

ENSG00000136521 NDUFB5 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16kDa 

ENSG00000165264 NDUFB6 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6, 17kDa 

ENSG00000099795 NDUFB7 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7, 18kDa 

ENSG00000147684 NDUFB9 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa 

ENSG00000109390 NDUFC1 NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1, 6kDa 

ENSG00000213619 NDUFS3 

NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-

coenzyme Q reductase) 

ENSG00000164258 NDUFS4 NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-
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coenzyme Q reductase) 

ENSG00000168653 NDUFS5 

NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-

coenzyme Q reductase) 

ENSG00000115286 NDUFS7 

NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-

coenzyme Q reductase) 

ENSG00000116288 PARK7 parkinson protein 7 

ENSG00000168291 PDHB pyruvate dehydrogenase (lipoamide) beta 

ENSG00000168002 POLR2G polymerase (RNA) II (DNA directed) polypeptide G 

ENSG00000005075 POLR2J polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa 

ENSG00000147669 POLR2K polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa 

ENSG00000180817 PPA1 pyrophosphatase (inorganic) 1 

ENSG00000138777 PPA2 pyrophosphatase (inorganic) 2 

ENSG00000177192 PUS1 pseudouridylate synthase 1 

ENSG00000188846 RPL14 ribosomal protein L14 

ENSG00000130255 RPL36 ribosomal protein L36 

ENSG00000137154 RPS6 ribosomal protein S6 

ENSG00000170889 RPS9 ribosomal protein S9 

ENSG00000117118 SDHB succinate dehydrogenase complex, subunit B, iron sulfur (Ip) 

ENSG00000140612 SEC11A SEC11 homolog A (S. cerevisiae) 

ENSG00000182199 SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 

ENSG00000142168 SOD1 superoxide dismutase 1, soluble 

ENSG00000163541 SUCLG1 succinate-CoA ligase, alpha subunit 

ENSG00000100416 TRMU tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase 

ENSG00000178952 TUFM Tu translation elongation factor, mitochondrial 

ENSG00000184076 UQCR10 ubiquinol-cytochrome c reductase, complex III subunit X 

ENSG00000156467 UQCRB ubiquinol-cytochrome c reductase binding protein 

ENSG00000164405 UQCRQ ubiquinol-cytochrome c reductase, complex III subunit VII, 9.5kDa 

ENSG00000139131 YARS2 tyrosyl-tRNA synthetase 2, mitochondrial 
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