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Abstract of the Dissertation 

Understanding Huntington’s Disease using Machine Learning 

Approaches 

By 

Sonali Jayant Lokhande 

Keck Graduate Institute of Applied Life Sciences: 2017 

Huntington’s disease (HD) is a debilitating neurodegenerative disorder with a 

complex pathophysiology. Despite extensive studies to study the disease, the 

sequence of events through which mutant Huntingtin (mHtt) protein executes its 

action still remains elusive. The phenotype of HD is an outcome of numerous 

processes initiated by the mHtt protein along with other proteins that act as either 

suppressors or enhancers of the effects of mHtt protein and PolyQ aggregates. 

Utilizing an integrative systems biology approach, I construct and analyze a 

Huntington’s disease integrome using human orthologs of protein interactors of 

wild type and mHtt protein. Analysis of this integrome using unsupervised machine 

learning methods reveals a novel connection linking mHtt protein with 

chromosome condensation and DNA repair. I generate a list of candidate genes that 

upon validation in a yeast and drosophila model of HD are shown to affect the mHtt 



 

 

 

 

phenotype and provide an in-vivo evidence of our hypothesis. A separate supervised 

machine learning approach is applied to build a classifier model that predicts 

protein interactors of wild type and mHtt protein. Both the machine learning models 

that I employ, have important applications for Huntington’s disease in predicting 

both protein and genetic interactions of huntingtin protein and can be easily 

extended to other PolyQ and neurodegenerative disorders such as Alzheimer’s and 

Parkinson’s disease. 
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Chapter 1 

1 Huntington’s disease and its links to chromatin 

condensation mechanisms 

1.1 Introduction: 

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder 

caused by the expansion of CAG triplet repeats in the first exon of the Huntingtin 

(HTT) gene. Despite this apparently simple genetic basis, identified nearly three 

decades ago, the molecular pathophysiology of this inherited disorder that affects a 

significant number of people in the prime of their youth remains intractable, and 

with limited treatment options beyond managing the symptoms. This review 

summarizes the genetic basis of HD, lists the genetic models currently in use to 

study its molecular pathology, and critically examines the involvement of 

mitochondrial dysfunction, DNA damage repair pathways, and chromatin 

dynamics in HD progression. Specifically, this review summarizes recent studies 

that indicate a role for chromosome condensation defects, especially at the 

ribosomal DNA (rDNA), in molecular pathogenesis of HD. We hope to stimulate 

interest of HD researchers in further examining the novel associations among these 

apparently disparate cellular processes. 
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1.2 The Genetic Basis  

The HTT gene encodes an expanded polyglutamine stretch in the huntingtin (Htt) 

protein. Despite being inherited in an autosomal dominant manner, the prevalence 

of this disease varies from just 5 to 6 per 100,000 people in North America, Europe 

and Australia with an incidence of 0.38 per 100,000 year.(Pringsheim et al., 2012) 

HD has been classified as a ‘rare’ or ‘orphan disease’. The low level of occurrence 

of HD can be explained by reduced penetrance of mutant HTT alleles in individuals 

with 36-39 copies of CAG repeats.(Huntington Study Group COHORT 

Investigators and Dorsey, 2012; McNeil et al., 1997; Panegyres and Goh, 2011; 

Quarrell et al., 2007; Sequeiros et al., 2010) Moreover, inheriting a contracted CAG 

repeat (36-39 copies) from its parent could reduce the risk of the individual 

developing the disease.(Nahhas et al., 2009) On average, the age of disease onset 

is inversely correlated with the number of CAG repeats; however, the repeat 

number explains approximately 50-70 % of the age of onset data. The remaining 

variability in age of onset is attributed to various genetic and environmental factors 

that act in conjunction with the HTT gene.(Djoussé et al., 2003; Project* and 

Wexler, 2004) Individuals with shorter CAG repeats exhibit a gradual decline in 

clinical progression than individuals with larger CAG repeats. Hence CAG repeat 

length is an important determinant of clinical progression of HD. This suggests that 

aging itself might influence clinical outcomes in Huntington's disease.(Rosenblatt 

et al., 2012) A peculiar observation is that the expanded HTT allele when inherited 
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through the male germ line, often leads to a more severe clinical course than when 

inherited through the female germ line. Children of HD sufferers experience HD 

symptoms 8 years earlier than that of their respective fathers.(Ranen et al., 1995) 

These observations suggest that the CAG expansion rate might be higher in the 

male germline(Duyao et al., 1993), the possibility of imprinting, which might affect 

the expression of genes involved in molecular pathogenesis(Farrer et al., 1992; 

Reik, 1988; Ridley et al., 1991), or a combination of these two factors. 

The HD phenotype is a product of various aberrant genetic and epigenetic 

mechanisms triggered by the mutant HTT allele (which are reviewed in detail in the 

article by Valor Guiretti et al)(Valor and Guiretti, 2014) and also through various 

other proteins that are either suppressors or enhancers of the mutant Htt (mHtt) 

protein and the PolyQ aggregates. Quantitative interaction proteomic studies 

identify proteins interacting with both wild-type and mHtt protein.(Culver et al., 

2012; Hosp et al., 2015; Ratovitski et al., 2012; Shirasaki et al., 2012) Conclusions 

from quantitative proteomics have been validated by suppressor/enhancer studies 

on a model organism (fly). Potential evidences of candidate gene involvement have 

been verified by the presence of SNPs within candidate human genes in patients.20 

The study of transcriptional dysfunction in HD through GWAS has enabled the 

charting of various genomic loci of Htt interacting proteins such as REST, PGC-

1alpha, HSF1, and Foxp1(Lucas et al., 2012; Riva et al., 2012; Strand et al., 2007; 

Valor, 2014) and the Htt protein itself.(Benn et al., 2008) A combination of Genome 
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wide correlation of histone acetylation(McFarland et al., 2012) and gene expression 

defects in a HD mouse models identified aberrant deacetylation of H3K9/14ac and 

H4K12ac(McFarland et al., 2012) along with transcriptional dysregulation of other 

Htt interacting proteins.(Valor et al., 2013) 

1.3 Clinical Presentation 

Clinical presentation of HD has been observed to occur in individuals at any time 

between the ages of 1 and 80. The symptomatic phase of the disease (Table 1) is 

preceded by a prediagnostic phase in which patients show subtle changes in 

cognition and motor control, which mostly go unnoticed.(Walker, 2007) The 

prediagnostic phase leads to the diagnostic phase in which patients begin showing 

distinct chorea, motor incoordination and impersistence along with slow saccadic 

eye movements.(Watts and Koller, 1997; Weiner and Lang, 1989) Cognitive 

dysfunction affects executive functions and delays new motor skills(Craufurd and 

Snowden, 2002), which worsens with time (Figure 1.1).  Depression and suicidal 

behavior are common, along with symptoms of psychosis and mania.(Walker, 

2007) A question remains as to whether early cognitive dysfunction can be 

correlated with CAG repeat length in HD patients. A recent study using Functional 

Magnetic Resonance Imaging (fMRI) and structural-MRI, indicated that there is a 

significant correlation between executive function performance levels with disease 
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progression. No studies have been reported to our knowledge that explores 

cognitive dysfunction as a correlate of CAG repeat length.  

  

Diagnosis of HD is usually definite when typical clinical symptoms start to develop 

coupled with a positive family history. However, in other patients, and those with 

early onset of the disease, the symptoms might resemble other disorders like the 

dentatorubropallidoluysian atrophy (DRPLA), Huntington’s disease-like 2(HDL2) 

and Spinocerebellar ataxia (SCA).(Margolis et al., 2004; T et al., 1985; Toyoshima 

et al., 2004; Walker, 2007) 

Routine CET and MRI scans help assess the severity and progress of HD but both 

are usually not useful for early diagnosis of the disease. PET and functional MRI 

scans can show atrophy of the caudate nucleus and the putamen almost 9-11 years 

earlier than the disease onset.(Aylward et al., 2004; Künig et al., 2000; Lawrence 

et al., 1998; Paulsen et al., 2004; Rosas et al., 2003) The PREDICT-HD study in 

2008, also found striatal volume to be the strongest biomarker predicting the onset 

of disease when related to CAG repeat length.(Paulsen et al., 2008) 

Genetic testing of HD patients and their families is a definitive diagnostic method 

that confirms the presence of the disease. These genetic tests can be administered 

as a predictive, pre-natal or a diagnostic assay depending on how the patient 

presents clinically. However, the uptake of the test has been minimal considering 
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the paucity of effective treatment(Laccone et al., 1999) and comes with its own set 

of ethical and psychosocial challenges that need to be addressed before and after 

the test has been conducted.(Tassicker et al., 2006) 

Almost all treatment options currently available for the disease are symptomatic, 

and focus on addressing motor symptoms such as chorea and dystonia. Absence of 

reliable diagnostic biomarkers for early stages of the disease, and a lack of curative 

strategies call for further research in understanding this complex neurological 

disorder. Cell and various animal models have therefore been developed to better 

explain the molecular mechanisms underlying HD. While cell models help clarify 

the central apparatus of the disease, animal models help in recreating the HD 

genotype and phenotype to screen for therapeutic compounds and targets. The next 

section will discuss more about the currently available cell and animal models in 

HD.  

1.4 Cell/Animal Models for HD. 

Several in vitro and in vivo genetic models developed for HD (summarized in Table 

2), help in elucidating and dissecting various molecular pathways affected in this 

disease.  

Cell lines and primary cultures such as the human embryonic kidney (HEK293T) 

cell line, are effective instruments in understanding the basic molecular processes 

contributing to neural degeneration and death.(Cisbani and Cicchetti, 2012) 
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Inducible cell systems on the other hand help experimentally modulate and allow 

assessment of the spatial and temporal activation of genes and proteins. Such 

systems therefore are useful for studying effects of gene and protein expression in 

a diseased state. In vitro models have been useful to characterize the cleavage 

mechanism of mHtt protein(Johri and Beal, 2010; Kim et al., 2001; Miller et al., 

2010), and the factors influencing the process(Johri and Beal, 2010; Martindale et 

al., 1998), and how polyQ aggregates lead to cell death in HD.(Wyttenbach et al., 

2001; Zala et al., 2005)  

Yeast models of HD have helped identify genes that modify mHtt toxicity and 

helped provide targets for validation in higher organisms. For example, a high 

throughput screening assay in yeast HD model (Htt-103Q) identified a small 

molecule inhibitor (C2-8) of polyQ aggregation which was validated in a 

Drosophila HD model to show suppression of neurodegeneration.(Zhang et al., 

2005) A proof-of-concept study carried out in R6/2 mouse model of HD showed 

that mice treated with C2-8 improved motor performance and reduced neuronal 

atrophy with smaller huntingtin aggregates.(Chopra et al., 2007) A follow-up 

preclinical study of C2-8 in R6/2 also found evidence supporting its role in reducing 

the size of mHtt aggregates but did not find a significant role in improving 

behavioral deficits in this mouse model of HD.(Wang et al., 2013) 
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 In vivo models of HD include organisms such as Caenorhabditis elegans (C. 

elegans), Drosophila melanogaster, mice and rats. C. elegans models are mostly 

generated by expression of N-terminal fragments of mHtt, ranging from 57 to 171 

amino acids. Transgenic expression of mHtt in C. elegans can result in age-

dependent mechanosensory defects, neuronal dysfunction and 

neurodegeneration.(Faber et al., 1999; Parker et al., 2001)  

Drosophila models of HD mostly use an inducible gene expression system, UAS-

GAL4, to express full-length or N-terminal Htt fragments ranging from 65 to 548 

amino acids of the expanded repeat mutant genes. Such models recapitulate a 

progressive neurodegeneration phenotype of HD along with motor dysfunction and 

reduced survival.(Marsh et al., 2003; Robinow and White, 1988) 

Transgenic mouse models for HD express N-terminal fragments of human HTT of 

various sizes. R6/1 and R6/2 mice express exon 1 of human HTT with 116 and 144 

CAG repeats respectively and show somatic instability of the CAG repeat 

tract.(Mangiarini et al., 1996) Truncated N-terminal mouse models exhibit an 

accelerated degenerative phenotype including motor, cognitive and behavioral 

aberrations along with increased mortality.(Schilling et al., 1999) 

Knock-in mouse models are created by inserting an extended CAG tract with CAG 

repeat sizes ranging from 50 to 200 into an endogenous mouse HTT 

gene.(Dougherty et al., 2013; Heng et al., 2007; Lin et al., 2001; Menalled et al., 
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2002, 2003; Wheeler et al., 2002; White et al., 1997) Out of the many such knock-

in mouse models, CAG140 (119/140 CAG repeats), the HdhQ111 (111 CAG 

repeats), and HdhQ150 (150 CAG repeats)  mice are the most genetically 

appropriate to HD in terms of expression of mHtt(Pouladi et al., 2013) and their 

ability to generate neurological and neurodegenerative symptoms.(Hickey et al., 

2008; Lerner et al., 2012; Menalled et al., 2003; Wheeler et al., 2002)  

Some transgenic models such as the BACHD (97 CAG repeats) and YAC128 (128 

CAG repeats) mice express the entire mutant HTT gene and show a comparatively 

milder and more progressive phenotype with cognitive disturbances along with 

striatal and cortical atrophy.(Ehrnhoefer et al., 2009; Gray et al., 2008; Raamsdonk, 

2005)  

1.5 Classical Views of Molecular Pathogenesis in HD 

The mutant HTT gene confers a toxic gain of function and leads to protein 

misfolding and aggregation.(Duyao et al., 1995; Mangiarini et al., 1996; Nasir et 

al., 1995; Zeitlin et al., 1995) The toxic gain of function by the mutant HTT gene 

may be due to the short N-terminal fragments of mHtt protein produced through 

cleavage by various proteases.(Bizat et al., 2003; Cowan and Raymond, 2006; 

Gafni and Ellerby, 2002; Gafni et al., 2004; Goffredo et al., 2002; Graham et al., 

2006; Kim et al., 2001; Lee and Kim, 2006; Wellington et al., 1998) Reduction in 

caspase 6 –dependent cleavage of full length mHtt significantly slows the 
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progression of neurodegeneration in YAC mouse model for HD.(Graham et al., 

2006) Additional studies in neurons and mice models implicate that even a loss of 

potentially beneficial function of wild-type Htt contribute to HD disease 

phenotype.(Cattaneo et al., 2001; Faber et al., 1998; Hackam et al., 2000; Kalchman 

et al., 1997) Though, wild-type Htt is known to up-regulate of BDNF (Brain-

derived neurotrophic factor) transcription gene, its function is lost in the cortex of 

YAC72 HD mice underlining the concept of loss of Htt-mediated 

function(Cattaneo et al., 2001) (Figure 1.2). Despite extensive experimental studies 

carried out in both gene knock-out and gene knock-in HD models, the multifaceted 

functions of the normal Htt protein or that of the mHtt protein remain elusive. The 

mHtt protein is known to physically interact with numerous other proteins, some of 

which do or do not interact with the wild-type Htt protein. The complexity of the 

molecular patho-physiology arises largely because of the proclivity and 

promiscuity of these interactions.   Some of the interaction partners are involved in 

vesicle transport and gene transcription functions. These and many other functions 

are associated with the energy producing apparatus of the cell, such as the 

endoplasmic reticulum (ER) and mitochondria.  

Studies with knock-in HD mouse model (homozygous for mHtt-Q111) showed that 

mHtt is associated directly with the outer mitochondrial membrane, and increases 

its susceptibility to calcium-induced permeability transition leading to cytochrome 

C release and apoptosis.(Choo et al., 2004; Panov et al., 2002; Petrasch-Parwez et 
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al., 2007) Furthermore, it has been suggested that the accumulation of abnormal 

misfolded proteins in the cells expressing mHtt protein overwhelms the ER 

apparatus responsible for quality control of proteins, which causes ER stress and 

trigger cell death.(Rao and Bredesen, 2004) 

1.6 Mitochondrial dysfunction and oxidative stress in HD  

The association of mHtt with mitochondria occurs both directly and indirectly and 

has been studied extensively over the past years. A decrease in the mitochondrial 

membrane potential due to a rise in proton conductivity(Panov et al., 2005; Sawa 

et al., 1999) and the opening of the mitochondrial permeability transition (MPT) 

pore (Choo et al., 2004), are a few well known mechanisms through which the mHtt 

protein affects mitochondrial function directly. Biochemical analysis of R6/2 

mouse striatum demonstrate deficits in mitochondrial complex IV and aconitase 

activities, along with decrease in complex I/II and IV. (Hausladen and Fridovich, 

1994; Tabrizi et al., 1999, 2000) Mitochondria in cells expressing mHtt are thus 

particularly susceptible to oxidative stress and cell death. Inhibition of the 

mitochondrial respiratory chain leads to increased production of reactive oxygen 

species (ROS), such as the superoxide (O2
•-) radical, hydrogen peroxide (H2O2) and 

peroxynitrite (ONOO -), followed by fall in ATP levels.  

Mitochondrial trafficking is indirectly affected by mHtt due to sequestration of 

trafficking components that are required for efficient axonal transport.(Trushina et 
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al., 2004) Specific N-terminal mHtt fragments accumulate as aggregates and 

physically block the movement of mitochondria within neurons(Chang et al., 2006; 

Orr et al., 2008) and also affect the mobility of Mitochondria trapped in the vicinity 

of the mHtt aggregates.(Chang et al., 2006) Fragmented mitochondria are a 

significant feature of HD cells, and exhibit alterations in cristae structure reflecting 

a disruption of electronic transport mechanisms(Solans et al., 2006), release of 

cytochrome C and eventual destruction of mitochondria(Costa et al., 2010) (Figure 

1.2). Readers are referred to some excellent reviews on this subject(Chakraborty et 

al., 2014; Damiano et al., 2010; Johri et al., 2013) for detailed information. 

1.7 A possible mechanism behind the gradual onset of mHtt 

toxicity 

It appears reasonable to postulate that the gradual onset of the severity of HD 

phenotype is related to a cumulative process that is proportional to the polyQ repeat 

length as well as time during which the toxicity of polyQ is expressed. We here 

examine the evidences that point to several such cumulative processes in cellular 

physiology, which are thought to be affected by proteins containing polyQ tracts, 

especially by the pathogenic mHtt proteins.  

Pathogenic polyQ repeats similar to those produced by the expanded CAG repeats 

in mutant HTT genes have been found to affect several cellular processes through 

alteration of protein conformation causing aberrant protein-protein 
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interactions,(Schaffar et al., 2004) leading to depletion of tRNA and translational 

frameshifting.(Girstmair et al., 2013) Q-rich tandem repeats (TR) are often present 

in transcriptional regulators(Gemayel et al., 2010; Legendre et al., 2007), a property 

that appears to be evolutionarily conserved.(Schaper et al., 2014) A comparative 

genomic study by Gemayel et al carried out in repeat variants of the yeast 

transcriptional regulatory protein Ssn6p (Cyc8p) demonstrated that an alteration of 

the repeat length leads to altered gene expression and phenotypic 

variation.(Gemayel et al., 2015) This study found that targets of Q-rich regulators 

exhibit increased gene expression across various time scales. Htt protein appears to 

be a transcription factor itself, and variation in its PolyQ length might therefore 

cause changes in its transcriptional activity.(Benn et al., 2008) Does altered gene 

expression in the presence of mHtt protein gradually lead to neuronal death in 

striatal cells? Below we examine the effects of mHtt on specific transcriptional 

regulators, which could potentially accumulate over time. 

Indirect evidence links mHtt to mitochondrial dysfunction through its interaction 

with Tumor Protein 53 (p53). Studies with HD patient lymphoblasts stably 

expressing Htt N63-148Q, and in 293T (derivative of human embryonic kidney 293 

cells, containing the SV40 T-antigen) cells transfected with a gene encoding the 

171 amino acid long N-terminal-fragment of Htt containing either 23 or 148 

glutamine repeats (N171-23Q or N171-148Q), respectively, or the full-length (FL) 

version of Htt (FL-23Q or FL-82Q) show that the mHtt binds selectively to nuclear 
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p53 and stabilizes the latter to increase transcriptional activity of p53 in the 

nucleus(Bae et al., 2005) (Figure 1.2). It has also been speculated that the 

interaction of mHtt with p53 might interfere with p53’s interaction with its negative 

regulator, E3 Ubiquitin Protein Ligase (Mdm2) in the cytoplasm, thus stabilizing 

p53 further(Bae et al., 2005) (Figure 1.2). Over-expression of p53 was shown to 

increase the expression of various mitochondria-related pro-apoptotic proteins such 

as BCL2-Associated X Protein (Bax) and BCL2 Binding Component 3 

(BBC3/PUMA) responsible for regulating mitochondrial depolarization and ROS 

levels(Bae et al., 2005; Toshiyuki and Reed, 1995; Yu et al., 2001) (Figure 1.2). 

Grison et al.(Grison et al., 2011) demonstrated that mHtt expression, which in turn 

causes p53 stabilization, leads to increased phosphorylation of p53 on Ser46. This 

causes p53 to interact with phosphorylation-dependent prolyl isomerase Pin1, and 

induce the expression of pro-apoptotic genes – Bax and PUMA.(Grison et al., 2011) 

Other mitochondrial proteins known to be activated by p53 include Protein Noxa 

(NOXA) and Tumor Protein P53 Regulated Apoptosis Inducing Protein 1 

(P53AIP1), all of which induce apoptosis when overexpressed.(Oda et al., 2000a, 

2000b) Considering the above factors, it might be speculated that p53 is in a 

hyperactive state in neurons containing the mHtt protein in contrast to its activity 

in normal neuronal cells. p53 protein would then be expected to trigger apoptosis 

when a threshold level of oxidative damage has occurred in the mitochondria. Until 

then, the defective mitochondria may continue to divide and compromise the 



15 

 

 

 

cellular energetics that manifest itself phenotypically through various clinical signs 

and symptoms of HD. 

The mHtt protein could bring about mitochondrial dysfunction through additional 

transcriptional mechanisms not involving p53. mHtt interacts with PPARγ 

coactivator-1α (PGC-1α). In addition to playing important roles in glucose 

metabolism and adaptive thermogenesis, PGC-1α is also required for the expression 

of nuclear respiratory factors such as NRF1 and NRF2(Wu et al., 1999) along with 

other mitochondrial genes (e.g., cytochrome C,(Andersson and Scarpulla, 2001) 

mitochondrial transcription factor A (mtTFA)(Wu et al., 1999) and respiratory 

complexes I-IV.(Kelly and Scarpulla, 2004) PGC-1α is thus an important 

transcription factor controlling mitochondrial biogenesis(Wu et al., 1999) and for 

the production of mitochondrial –ROS detoxifying enzymes(Kukidome et al., 

2006; St-Pierre et al., 2003; Valle et al., 2005) (Figure 1.2). mHtt inhibits the 

transcription of PGC-1α by obstructing the promoter-binding activity of 

CREB/TAF4 (cAMP responsive element-binding/TATA-binding protein-

associated factor 4) in mouse striatal cells expressing mHtt 111Q.(Cui et al., 2006) 

Indeed, lentivirus mediated overexpression of PGC-1α in the brain striatum of 

transgenic (R6/1) mice reverses and rescues the mitochondrial dysfunction as well 

as neuronal degeneration.(Cui et al., 2006) 
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Taken together, the accumulation of molecular lesions related to defective 

transcription factor activity leading to increasing mitochondrial dysfunction can be 

reconciled with the observed gradual onset of the severity of neuronal dysfunction 

in HD affected brains. These, however, are unlikely to be exclusive mechanisms of 

the gradual onset of HD severity. Accumulation of unfolded or misfolded proteins 

due to defective chaperone activity in HD neurons may also be a major 

contributor.(Chai et al., 1999; Guzhova et al., 2011; Tagawa et al., 2007; Wacker 

et al., 2009) Nonetheless, misfolded proteins appear to accumulate in nearly all 

cells expressing mHtt while only the striatal neurons appear to be the most 

vulnerable and cause the early disease phenotype. This aspect of the disease 

mechanism has been reviewed elsewhere.(Cowan and Raymond, 2006) 

1.8 Transcriptional regulation, Chromatin dynamics and the role 

of SIRT1 in HD. 

Recent studies have increasingly highlighted the role of epigenetic mechanisms 

involved in chromosome dynamics and cell death in HD. This section will 

summarize the most recent findings and will attempt to define future questions and 

directions. 

Since only certain neuronal cells of the striatal cortex undergo preferential early 

death in HD patients whereas mHtt protein is ubiquitously expressed, a major 

interest lies in understanding what makes these neuronal cell types more vulnerable 
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than others, and how to explain the delayed and progressive effects of mHtt toxicity 

on these cells. One rationale for addressing these questions is epigenetics, because 

it is the epigenetic modification of the cell’s gene expression states that define cell-

type specificities. Furthermore, molecular mechanisms of epigenetic processes, 

such as DNA methylation levels across genomic landscape are often progressive 

and cumulative, thus providing a framework to explain the progressive 

accumulation of mHtt toxic effects on the brain. Note also that signals from other 

cells, such as input connections from other neurons and their activities(Borrelli et 

al., 2008; Meadows et al., 2015; Singh-Taylor et al., 2015), also might affect the 

epigenetic states of neurons, thus providing the second rationale framework for the 

observation that excitotoxicity is important for susceptibility to mHtt toxicity.(Fan 

and Raymond, 2007; Young et al., 1988) Here we approach these problems 

primarily through the viewpoint that mHtt’s interaction with mediators of 

epigenetic programming might explain both these aspects of HD. 

First, we consider possible epigenetic players known to directly interact with mHtt. 

Sirtuins (yeast Sir2 homologous proteins) represent a family of epigenetic 

regulatory proteins that are highly conserved in evolution from prokaryotes to 

higher eukaryotes, including humans(Imai et al., 2000), and at least one member of 

this family is known to directly interact with the mHtt protein. There are seven 

recognizable Sirtuin genes in human: SIRT1 to SIRT7.  The functions of human 

SIRT genes are unknown. Based on homology with genes in yeast and other 
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organisms, these are thought to be important in epigenetic gene regulation, 

chromatin silencing and suppression of recombination within ribosomal DNA 

(rDNA) repeats. The encoded proteins have ADP-mono-ribosyltransferase activity. 

The seven members of the mammalian Sirtuin family occupy different subcellular 

compartments: SIRT6 and SIRT7 are nuclear proteins, SIRT2, SIRT3, and SIRT4 are 

located in the mitochondria, while SIRT1 and SIRT5 are found both in the nucleus 

and in the mitochondria, and their relative expression levels vary somewhat based 

on the cell and tissue type.(Michishita et al., 2005) These proteins are collectively 

thought to transduce information on the energetic state of the cell (through sensing 

NAD/NADH ratio) to epigenetic processes (through their protein deacetylase 

activity).(Imai et al., 2000) Might these functions of Sirtuins be the key to imposing 

the specificity of early cell death, mainly the result of excitotoxicity, of striatal 

neurons in HD, by dint of a possibly unique metabolic state needed for the normal 

survival of these neurons? Sirt1 protein likely functions as a neuroprotective 

molecule through several mechanisms via its enzymatic function as a protein 

deacetylase on a number of distinct protein substrates. One such well-studied 

substrate is the forkhead box O3A (FOXO3a) transcription factor, which is highly 

expressed in adult brain.(Kops et al., 2002; Mojsilovic-Petrovic et al., 2009; Peng 

et al., 2010) mHtt is known to directly interact with Sirt1 and to inhibit the protein 

deacetylase activity of Sirt1, leading to hyperacetylation of Foxo3a (Figure 1.2). 

This is correlated with reduced neuronal survival in HD cell models.(Jiang et al., 
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2012) Additional indirect evidence for interaction between mHtt protein and Sirt1 

comes from experiments with HEK293 t/17 cells (having partial neuronal 

characteristics) containing mHtt (68Q), which showed increased acetylation of p53 

–Sirt1 substrate, compared to cells containing wild-type Htt (17Q). This indicates 

that mHtt protein might interfere with p53 activity through modulation of Sirt1 

deacetylase activity(Jiang et al., 2012) (Figure 1.2). Hyperacetylation of p53 is 

directly responsible for triggering DNA damage response of the cell (Figure 1.2). 

Similarly, PGC-1alpha is also subject to SIRT1 deacetylase activity.(Nemoto et al., 

2005) Studies on PC12 cells (derived from a transplantable rat pheochromocytoma, 

a neuro-endocrine tumor), demonstrated a direct molecular interaction between 

SIRT1 and PGC1-alpha causing deacetylation of the latter protein. The resultant 

inhibition of transcriptional activity of PGC1-alpha leads to a complex chain of 

abnormal downstream interactions which affect both the mitochondrial function 

and the respiratory chain complex.(Nemoto et al., 2005) PGC1-alpha is therefore 

subject to regulation by various proteins including mHtt and acts in a manner 

similar to a master switch that controls mitochondrial function and cellular 

respiration. Overexpressed SIRT1 has been shown to attenuate brain atrophy and 

improve motor functions in both N-terminal fragment (N171-82Q) and full-length 

Htt (BACHD) mice models(Jeong et al., 2012; Jiang et al., 2012) by maintaining 

optimal levels of DARPP32 needed for dopamine signaling.(Fienberg et al., 1998; 
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Greengard et al., 1999) These studies also demonstrated a neuroprotective effect of 

SIRT1 against mHtt induced striatal atrophy.  

It is interesting to note that SIRT1 gene overexpression in N171-82Q Huntington 

disease mice model also leads to improved glucose tolerance and insulin sensitivity 

in these mice along with restoration of normal BDNF levels that are vital for 

controlling both glucose metabolism and DARPP32 expression. These findings 

suggest a broader metabolic and neuroprotective role of SIRT1 in Huntington’s 

disease.(Jiang et al., 2012) In light of the above, mHtt could possibly be one of the 

key players connecting the glucose metabolism and neuronal survival pathways 

through its interaction with SIRT1—a possibility worthy of further investigations. 

1.9 DNA damage and chromatin condensation defects 

There is a second pathway in which SIRT1 might be important in HD: through 

SIRT1’s role in chromatin condensation. Mice embryos with homozygous null 

mutation in SIRT1 gene being to die at E9.5 and no homozygous live animals are 

produced. Some mice heterozygous for null SIRT1 mutation exhibit brain 

development defects including exencephaly. Complete loss of SIRT1 causes arrest 

of cell division in some cells in the early mitotic phase, and the arrested cells exhibit 

abnormal chromosome condensation, loss of DNA-damage induced G2/M 

checkpoint arrest, aneuploidy, apoptosis, higher frequency of spontaneous DNA 

double strand breaks, and the presence of hyper-acetylated lysine-16 (K16) of 
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histone H4 and lysine-9 (K9) of histone H3.(Wang et al., 2008) These findings 

suggest SIRT1 is important for DNA damage repair in mitotic cells. Given this 

function of SIRT1, it is anticipated that mHtt, which inhibits SIRT1 protein 

function, should adversely affect DNA-damage repair and cause abnormal 

chromatin condensation. Consistently, deficiency of SIRT1 protein (caused by 

siRNA) in HEK293T cells cause abnormal loading of histone 1 and the condensin 

I protein complex on to the mitotic chromosomes.(Fatoba and Okorokov, 2011) 

While it is possible that these findings might indicate higher levels of DNA damage 

accumulation in neural cells with depleted SIRT1 activity due to mHtt binding, 

these results should be interpreted with caution because condensin I is cytoplasmic, 

and its loading on to the chromatin occurs only during mitotic metaphase during 

which the nuclear membrane does not exist. Similar adverse effects of SIRT1 

depletion on prophase-specific condensin II was not observed in HEK293T cells.  

However, SIRT1 is also known to associate with the MRN (MRE11-RAD50-

NBS1, a protein complex that processes broken DNA) complex.(Tauchi et al., 

2002) A deacetylated NBS1 protein enables the MRN complex in detecting DNA 

damage; therefore, hyperacetylation of NBS1 by the inhibition of SIRT1 activity 

by mHtt is expected to interfere with DNA damage repair. In fact, hyperacetylated 

NBS1 was shown to negatively affect intra-S phase checkpoint of the cell 

cycle(Yuan et al., 2007), suggesting that in addition to affecting G2/M DNA-

damage checkpoint arrest, the loss of SIRT1 activity might cause increased 
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persistence of DNA damage lesions. If the adverse effects of mHtt on DNA damage 

repair is indeed relevant for excitotoxicity in striatal neurons, the question of cell-

type specificity remains unanswered unless one postulates an increased DNA 

damage load in cells with high oxidative metabolism due to electrical activities of 

this group of neurons. While DNA damage by free radicals are generated by 

oxidative metabolism and increased mitochondrial respiration, a clear cause-and-

effect relationship between the metabolic state and mHtt mediated cell death has 

not yet been established. Measurement of region-specific metabolomes in mouse 

brain indicated that no single metabolite but a complex of metabolites (metabolite 

signatures) correlated well with the sensitivity of brain regions to 

excitotoxicity.(Jaeger et al., 2015) Specifically, striatal neurons have a unique 

metabolite signature. Future studies of region-specific metabolomes of HD mouse 

brains, coupled with measurements of intracellular DNA lesions and epigenetic 

modification of these regional neurons, should be valuable for understanding how 

metabolites might affect neuronal specificity in HD pathogenesis. 

Second, we approach the problem from the idea that DNA damage might not be 

directly related to the metabolic activity of the striatal neurons, but is the result of 

specific neuronal functions.  Huntingtin co-localizes with microtubule organizing 

bodies, and is thought to facilitate the dynein/dynactin-mediated transport of 

organelles including mitochondria along microtubules in neuronal cells(Godin et 

al., 2010); siRNA against normal Htt causes mislocalization of p150Glued (subunit 
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of dynectin), dynein, and the large nuclear mitotic apparatus (NuMA) protein – 

which is essential for microtubule assembly and maintenance.(Radulescu and 

Cleveland, 2010) It is possible that mHtt might cause problems with organelle 

transport in striatal neurons, which could indirectly influence chromosome 

integrity. However, it is hard to see how microtubule malfunction could lead to 

DNA damage because neurons do not divide, and therefore microtubule motors are 

not expected to be involved in chromosome dynamics in G0-arrested neurons. 

Nevertheless, DNA damage might also be directly caused by mHtt interaction with 

proteins that modulate chromosome dynamics in a G0 neuron, as discussed in the 

next section. 

1.10 rDNA condensation defects in HD 

Abnormal nucleolar ribosomal DNA (rDNA) condensation, during which 

condensin I and II subunits, including Smc2p and Smc4p, are recruited to the rDNA 

loci, is related to apoptotic death and DNA damage in mammalian cells(Blank et 

al., 2006) (Figure 1.3). Repeat-containing RNA has been demonstrated to associate 

with nucleolar protein complexes leading to “nucleolar stress”, which is thought to 

trigger cell death through activating the p53 mediated pathway.(Kreiner et al., 

2013) This phenomenon has been shown to be relevant for certain degenerative 

disorders of repeat sequences, including HD (Tsoi et al., 2012), ALS and 

frontotemporal dementia.(Haeusler et al., 2014) Interestingly, results from our 
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laboratory have recently demonstrated that mHtt toxicity in yeast can be suppressed 

by several rDNA genes (Chatterjee et al., 2013), most notably by the gene encoding 

L12p, a member of the L11p subgroup of ribosomal proteins. More recently it has 

been shown that L11p which is recruited to the nucleolus within a poorly-defined 

complex associated with repeat-containing noncoding RNA and chromatin 

proteins, is directly responsible for triggering apoptosis through activating p53 

(Maehama et al., 2014) (Figure 1.3).  

 

An emerging model is that premature or abnormal condensation of the chromatin 

at rDNA loci, facilitated by L11p-like proteins and condensins, such as Smc2p, 

sequesters an inhibitor of p53 (Mdm2) at the chromatin during S-phase, with the 

resulting activation of p53-mediated apoptosis (Figure 1.3). However, there is yet 

no direct evidence that mHtt-mediated apoptosis in human cells can be triggered by 

abnormal chromatin condensation. Consistent with these is the finding that an RNA 

Pol II associated protein UBTF is tri-methylated by ESET, a H3K9 methyl 

transferase, and this trimethylation deregulates rDNA condensation in a striatal 

Q111 knock-in cell line (relative to Q7 striatal cell line) model of HD(Hwang et al., 

2014) (Figure 1.3). Reduced acetylation of UBTF at K352 by an siRNA against the 

CREB protein also reduces rDNA transcription in striatal Q111 expressing neurons 

but not in Q7-expressing neurons.(Lee et al., 2011) A genetic evidence connecting 
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rDNA expression with mHtt toxicity comes from recent experiments with the yeast 

HD model (chromosomal 103Q N-terminal fragment expressed from GAL 

promoter in yeast)(Chatterjee et al., 2013) in which several strong rDNA 

suppressors of HD toxicity were discovered. In a genome-wide gain-of-function 

suppressor screen for a defect in chromosome condensation by mutation in the 

condensin-encoding gene smc2, we identified UME1 and BNA5 as 

suppressors.(Patra et al., 2013) UME1 encodes a member of the histone deacetylase 

complex, underscoring the importance of epigenetic processes in mHtt toxicity, and 

BNA4 and BNA5 encode two successive enzymes in the biosynthesis of NAD from 

kynurenine. The latter gene, BNA5, is a current target of HD drug 

development.(Beconi et al., 2012; Harris et al., 1998; Santamaría et al., 1996; 

Zwilling et al., 2011) The Bna4p enzyme localizes to the mitochondrial outer 

membrane, whereas Bna5p localizes both to the nucleus and the cytoplasm (Figure 

1.3), suggesting that these two enzymes might form a link between the chromatin, 

p53, and mitochondrial abnormality in cells expressing mHtt. These results are in 

general accordance with the idea that a defect in rDNA condensation, brought about 

by mHtt, could directly lead to DNA damage in the striatal neurons, thus triggering 

apoptosis. 
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1.11  Conclusion  

We have summarized here the current experimental models of HD, their relative 

usefulness, and have discussed molecular mechanism of HD pathogenesis. 

Evidence point to the importance of epigenetic mechanisms related to mHtt’s (a) 

direct interaction with epigenetic regulators, (b) indirect interaction with regulators 

of metabolic states of neurons leading to DNA damage and its persistence, (c) direct 

interaction with proteins important for chromosome condensation at the rDNA. 

Synergistic genetic interactions between mHtt and p53 or PGC1-α or both appear 

to be amplifier mechanisms of HD progression. A better understanding of the 

mechanisms of molecular pathogenesis of HD should be possible in the context of 

integrated networks of genetic modifiers. We have suggested areas of future 

experimental approaches to better understand the molecular pathogenesis of HD, 

such that this crippling disease becomes amenable to rational drug development. 
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1.12 Tables and Figures 

 

Figure 1.1 Clinical progression of Huntington’s disease as a function of 

accumulation of mHtt protein.  

The Y-axis on the left represents mHtt accumulation in the brain; y-axis on the 

right represents cognitive, motor activity. Axes are in arbitrary units. There is a 

substantial heterogeneity among patients as to when salient markers become 

visible, the age of onset of clinical presentations, the rate of progression of the 

disease and the time of death since diagnosis. While CAG repeat length at HTT is 

a strong determinant of the age of onset, there is still much variability among 

individual patients, indicating the influence of genetic or epigenetic modifiers as 

well as environmental effects 
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Figure 1.2 Models of mechanisms of action of mHtt.  

Full length mutant Huntingtin protein (mHtt) interferes with the interaction of p53 

with its regulator Mdm2, stabilizing p53 and inhibiting the latter’s downstream 

proteasomal degradation.  N-terminal fragments of mHtt (mHtt*) enter the 

nucleus leading to persistent transcription of many genes by p53, triggering the 

synthesis of pro-apoptotic proteins, such as Bax and Puma, eventually causing 

mitochondrial destruction. mHtt* also inhibits CREB and TAF4 to decrease the 

expression of transcriptional co-activator PGC1-alpha, leading to increased levels 

of reactive oxygen species (ROS) and cytochrome C release from the 

mitochondria, and also defects in the synthesis of electron transport chain 

components.  These subsequently lead to mitochondrial fragmentation, and cell 

death. mHtt (mHtt*) also inhibits protein deacetylase activity of SIRT1 which 

leads to abnormal accumulation of hyperacetylated FOXO3a and p53 proteins. 

Hyperacetylated FOXO3a and p53 participate in abnormal transcriptional factor 

activity, the latter specifically involving DNA damage response genes. 
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Figure 1.3 Chromosome condensation defects in Huntington’s disease.  

mHtt inhibits the function of ribosomal protein L11p, condensin proteins 

Smc2p/Smc4p, UBTF and other chromatin proteins, which are responsible for 

nucleolar rDNA condensation. These may lead to fragmentation of nuclear DNA, 

initiating DNA damage response, also involving p53, leading to triggering of 

apoptosis. Subsequent mitochondrial dysfunction may also contribute to apoptosis 

as described in Figure.1.2. Black boxes represent rDNA loci; red dots on 

chromosomes represent condensed rDNA regions including rRNA transcripts in 

the nucleolus. 
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Chapter 2 

2 Constructing the Huntington’s disease 

Integrome 

2.1 Introduction 

Huntington disease (HD) is a rare neurodegenerative disorder inherited in an 

autosomal dominant manner which is thought to be caused by a CAG triplet repeat 

expansion in exon1 of the Huntingtin (HTT) gene. HD is one among the group of 

PolyQ repeat disorders that include spinocerebellar ataxias, dentatorubral-

pallidoluysian atrophy (DRPLA) and spinal and bulbar muscular atrophy, X-linked 

1 (SMAX1/SBMA).(Fan et al., 2014) Other disorders such as Huntington’s disease 

-like 1 (HDL1) and Huntington’s disease -like 2 (HDL2) show close resemblance 

with the neuropathological and clinical presentation of HD.(Schneider and Bird, 

2016) On an average, the age of onset of disease is inversely proportional to the 

number of CAG repeats. While these repeat numbers account for approximately 

50-70% of the age of onset of data, various genetic and environmental factors 

explain the remaining variability in the age of onset.(Djoussé et al., 2003; Project* 

and Wexler, 2004) The number of CAG repeats is also an important determinant of 

the rate of clinical progression. Individuals with shorter CAG repeats display a 

gradual increase in clinical progression than patients with longer CAG repeats. 

Clinical features of HD range from subtle changes in cognition and motor control 
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(Walker, 2007) to distinct chorea, and profound motor incoordination(Watts and 

Koller, 1997; Weiner and Lang, 1989), cognitive dysfunction (Craufurd and 

Snowden, 2002), depression and suicidal behavior.(Walker, 2007) The patient 

generally succumbs to the disease. Although extensive studies reveal a complex 

pathophysiology of this severely crippling disorder, the sequence of events through 

which the mutant Huntingtin (mHtt) protein executes its action still remains elusive.  

 

The mHtt protein is thought to exert its effects mostly through a toxic gain of 

function via the short N-terminal fragments of mHtt that are produced as a result of 

proteolytic cleavage.(Bizat et al., 2003; Cowan and Raymond, 2006; Gafni and 

Ellerby, 2002; Gafni et al., 2004; Goffredo et al., 2002; Graham et al., 2006; Kim 

et al., 2001; Lee and Kim, 2006; Wellington et al., 1998)  Neuronal studies and 

mice models of HD also point to a loss of beneficial function of wild-type Htt 

protein.(Cattaneo et al., 2001; Faber et al., 1998; Hackam et al., 2000; Kalchman et 

al., 1997)  Accumulation of PolyQ aggregates also called as intraneuronal nuclear 

inclusions (INNs) in the neuronal cells (Davies et al., 1997) due to protein 

misfolding is one of the hallmarks of the HD. The overall burden of INNs correlates 

with the severity of the clinical symptoms of HD.  The cellular stress that builds up 

due to increasing levels of INNs unleashes a sustained unfolded protein response 

(UPR) and eventual neuronal apoptosis.(Soto, 2003) The normal HTT gene is 
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essential for survival in early embryogenesis, but its function, though ubiquitously 

expressed in later stages of development, is not well understood. The complexity 

of the pathophysiology of HD can be attributed to the tendency of mHtt to 

abnormally interact with various other proteins that either do or do not interact with 

the wild-type Htt protein in normal conditions. This is compounded by the presence 

of the Htt protein at various subcellular locations where it is proposed to participate 

in various signaling pathways and/or associate with numerous other protein 

partners during its normal course of action.(Cattaneo et al., 2005; MacDonald, 

2003; Marcora et al., 2003) Among the several molecular and cellular functions 

affected in HD, some important ones include transcriptional activity(Benn et al., 

2005; Luthi-Carter et al., 2000; Schilling et al., 2004), vesicle transport(DiFiglia et 

al., 1995; Gauthier et al., 2004; Velier et al., 1998), synaptic 

transmission.(Gutekunst et al., 1999; Li et al., 2000; Luthi-Carter et al., 2000; Sapp 

et al., 1999; Trettel et al., 2000; Velier et al., 1998), and mitochondrial 

functions.(Benchoua et al., 2006; Bezprozvanny and Hayden, 2004; Panov et al., 

2002)  

 

Curiously, although differentiated cortical neurons affected by HD do not divide, 

recent studies have highlighted the role of chromosome dynamics in the 

pathophysiology of HD and how epigenetic mechanisms might contribute to DNA 
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damage and cell death. SIRT1, whose protein deacetylase activity is inhibited by 

mHtt (Jiang et al., 2012), is one such epigenetic player. Several studies have shown 

SIRT1 to be important for DNA damage repair in mitotic cells (Tauchi et al., 2002; 

Wang et al., 2008) by helping with loading of histone 1 and condensin 1 complexes 

on to the mitotic chromosomes.(Fatoba and Okorokov, 2011) Association of SIRT1 

with the MRE11-RAD50-NBS1 (MRN) complex, leads to a deacetylated NBS1 

that helps in DNA damage detection.(Tauchi et al., 2002) Inhibition of SIRT1 by 

mHtt has therefore been thought to interrupt the process of DNA damage 

repair(Yuan et al., 2007), further affecting the processes of G2/M DNA-damage 

checkpoint arrest, and intra-S phase checkpoint of cell cycle.(Yuan et al., 2007) 

SIRT1 is known to be important for chromatin condensation during normal cell 

division.(Wang et al., 2008) It functions as a neuroprotective agent through its 

protein deacetylase activity on a number of protein substrates such as FOXO3a 

(Jiang et al., 2012; Kops et al., 2002; Mojsilovic-Petrovic et al., 2009; Peng et al., 

2010), p53(Bae et al., 2005; Grison et al., 2011; Toshiyuki and Reed, 1995; Yu et 

al., 2001), PGC1-alpha (Nemoto et al., 2005) and BDNF(Cattaneo et al., 2001) to 

regulate neuronal function including their metabolic states. Such indirect actions of 

mHtt through SIRT1 may lead to continuing accumulation of DNA damage. 
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Recent studies from our laboratory demonstrated that several rDNA genes encoding 

ribosomal proteins, specifically L12p suppresses mHtt toxicity in yeast (Chatterjee 

et al., 2013); Yeast L12p is equivalent to the human L11p, and L11p is known to 

be directly implicated in triggering apoptosis through the p53 pathway.(Maehama 

et al., 2014) An additional connection between mHtt and chromosome 

condensation defects exists which is implicated in DNA damage and apoptotic cell 

death in mammalian cells.(Blank et al., 2006) Abnormal association of repeat-

containing RNA with nucleolar protein complexes is known to cause “nucleolar 

stress” and activates the p53 pathway to trigger cell death(Kreiner et al., 2013), a 

process shown to be important for HD.(Tsoi et al., 2012) Thus, while neurons do 

not undergo mitosis, their death might indeed be triggered by rDNA condensation 

defects through the same molecular pathways that are used in mitotic DNA repair.   

 

Considering the above, it is now increasingly evident that the phenotype of HD is 

an outcome of numerous processes initiated by the mHtt protein (Culver et al., 

2012) along with other proteins that act as either suppressors or enhancers of the 

effects of mHtt protein and PolyQ aggregates. Detection and analysis of proteins 

that physically interact with wild-type and mHtt proteins have provided valuable 

information on various molecular and cellular processes affected in the mutant 

cells. Physical interactors of Htt proteins have been discovered using yeast two-
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hybrid (Y2H) and in vitro affinity pull-down experiments.(Faber et al., 1998; 

Goehler et al., 2004; Holbert et al., 2001; Li et al., 1995; Passani, 2000; Savas et 

al., 2008; Wanker et al., 1997; Yamamoto et al., 2006) Such proteomic studies have 

identified high-confidence Htt-associated proteins by using both wild-type and 

mutant full length Htt (fl-Htt) proteins.(Culver et al., 2012; Shirasaki et al., 2012) 

Proteomic analysis of human HD brain specimens reveal several differentially 

expressed proteins in substantia nigra (Chen et al., 2012), cortex (Schönberger et 

al., 2013) and striatum.(Sorolla et al., 2008) A recent proteomic study of HD and 

HDL2 disease brains uncovered several concomitantly affected pathways such as 

Rho-mediated signaling, axonal guidance and DNA/RNA processing.(Ratovitski et 

al., 2016) While these recent analytical studies have generated long lists of protein 

interactions that are affected in HD, the potential of using them to reveal disease 

mechanisms, poses interesting challenges considering the high volume data 

involved. 

 

 Network-based analysis of disease proteomes have provided important clues to 

mechanisms of molecular pathogenesis in HD. Such studies have so far been largely 

conducted on data derived from yeast-two hybrid protein interaction 

experiments.(Goehler et al., 2004; Riechers et al., 2016; Tourette et al., 2014) These 

studies have revealed important roles of Rho GTPase pathway (Tourette et al., 
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2014) and, caspase-6 interactors (Riechers et al., 2016) in HD pathogenesis.  A 

spatiotemporal proteomic study of HD and wild-type mouse brains performed using 

Affinity Purification Mass Spectrometry (AP-MS), identified candidate proteins 

found in complex with Htt protein and uncovered a modular network of Htt-

interacting proteins enriched in functions such as proteostasis, microtubule-based 

transport and 14-3-3 signaling.(Shirasaki et al., 2012) Construction of separate 

protein-protein interaction (PPI) networks for wild-type and mHtt protein have 

helped identify new interacting partners of the mHtt protein acquired in the diseased 

state.(Basu et al., 2013) Such protein-protein networks alone are of limited value 

without additional consideration, such as the functions of groups of these proteins, 

which might be affected by the disease.(Kelley and Ideker, 2005)  

 

Building network models by integrating genetic and physical interactions have been 

invaluable in understanding the organization and functions of disease 

pathways.(Kelley and Ideker, 2005) For example, integrated analyses of multiple 

datasets such as genome-wide linkage studies, genome-wide association studies 

and genome-wide expression profiling followed by PPI network modeling has 

prioritized candidate genes for Alzheimer’s disease.(Talwar et al., 2014) An 

interesting approach has been the integration of gene expression and protein 

interaction data from HD patients and progressively filtering the resultant HD 
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interaction network to predict brain-specific interactors of Huntingtin protein 

(Stroedicke et al., 2015). 

 

While protein interactions are valuable tools to explore still unknown molecular 

processes and functions, it has been shown that the ability of PPI data alone to 

predict interactions and molecular pathways improves with the inclusion of 

additional information. Such information may include tissue and cell type-specific 

gene expression data and further evidence about highly interacting proteins (Lopes 

et al., 2011). To enable functional linkages between PPI networks and biological 

functions, studies on model organisms have been of outstanding promise. 

 

To enable functional linkages between PPI networks and biological function, 

studies on model organisms have been of outstanding promise. C.elegans, D. 

melanogaster and S.cerevesiae models of HD toxicity have enabled the 

identification of genetic modifiers of HD (Chatterjee et al., 2013; Faber et al., 2002; 

Giorgini et al., 2005; Imamura et al., 2016; Jimenez-Sanchez et al., 2015; Mason 

and Giorgini, 2011; Mason et al., 2013; Parker et al., 2004; Silva et al., 2011; 

Willingham, 2003; Yamamoto et al., 2006; Zhang et al., 2010). However, the 

complexity of the mechanisms of action of these genetic modifiers on their targets 

pose a serious challenge for deciphering the causative mechanisms behind the 
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disease. It may be speculated that an integrative systems approach that includes 

both physical and genetic interactions could be a powerful avenue to decipher the 

complexities of this multi-system disorder and simultaneously obtain a 

comprehensive depiction of the perturbed molecular processes in HD. 

 

In this study, we construct an orthologous human HD interactome, using human 

orthologs of protein interactors of wild-type and mHtt in a mouse HD model 

(Shirasaki et al., 2012) combined with genetic modifiers of mHtt toxicity found in 

yeast HD models.(Chatterjee et al., 2013; Giorgini et al., 2005; Mason and Giorgini, 

2011; Mason et al., 2013; Willingham, 2003) Computational analysis of the 

orthologous interactome revealed a modular structure functionally enriched for 

DNA damage response, regulation of chromatid cohesion and chromosome 

organization, suggesting the hypothesis that these processes might be abnormal in 

cells expressing mHtt. We tested this hypothesis by combining a series of gene 

over-expression constructs with genes encoding the normal or mutant versions of 

the human Htt N-terminal fragments, and observing that 24 yeast genes related to 

chromosome dynamics, when over-expressed from multicopy plasmids, suppress 

mHtt-mediated toxicity. The computational predictions with the human HD 

interactome were confirmed further by an independent computational technique, 
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which allowed the identification of 27 candidate human genes as possible genetic 

modifiers of HD. We have validated 3 of these genes in a Drosophila model of HD 

The novelty of our approach is an iterative process: by integrating genetic 

interaction and protein interaction data from two different model organisms, we 

generate an orthologous human interactome, analyze that orthologous interactome 

for the presence of molecular functions enriched within topologically defined 

modules by unsupervised machine learning, and validate gene candidates as 

modifiers of HD in model organisms. 

 

2.2 Method 

2.2.1 Interaction data sets 

The huntingtin protein interactome was built using published datasets. Five sets of 

primary interactors of mHtt protein were retrieved from experiments performed in 

yeast (Chatterjee et al., 2013; Giorgini et al., 2005; Mason and Giorgini, 2011; 

Mason et al., 2013; Willingham, 2003) and mouse models (Shirasaki et al., 2012) 

of HD. Studies performed in yeast HD model(Chatterjee et al., 2013; Giorgini et 

al., 2005; Mason and Giorgini, 2011; Mason et al., 2013; Willingham, 2003) 

comprise of genetic suppressors and enhancers of mHtt protein, while Shirasaki et 

al is a spatiotemporal set of protein interactors identified using AP-MS that form 
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complexes with Htt in both wild-type and BACHD mouse brains (Shirasaki et al., 

2012).  

 

2.2.2 Ortholog detection and construction of orthologous HD interactome 

Human orthologs (n = 601) of the protein interactors were found using the 

Inparanoid algorithm using a threshold of 1 for detecting orthologs(O’Brien et al., 

2005; Remm et al., 2001) (R packages – hom.Hs.inp.db_3.0.0, 

hom.Mm.inp.db_3.0.0 and hom.Sc.inp.db_3.0.0). The first degree protein 

interactions for these human orthologs were obtained by querying the Human 

Integrated Protein-Protein Interaction rEference (HIPPIE) database – a human PPI 

database which contains an integration of multiple experimental PPI datasets 

normalized using a confidence score ranging from 0 to 1 for each protein 

interaction.(Schaefer et al., 2012) Protein interactions with a confidence score 

larger than 0.3 were chosen for network construction and analysis (Figure S1 in 

Text S1). 

 

2.2.3 Network construction and analysis 

HD interactome was built using the web-based Cytoscape tool.(Shannon et al., 

2003) Topological network analysis was performed using 

NetworkAnalyzer.(Assenov et al., 2008) ClusterONE(Nepusz et al., 2012) was 
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used to identify overlapping protein complexes within the HD interactome. 

Hierarchical network structure was obtained using Jerarca.(Aldecoa and Marín, 

2010) Additional information about ClusterONE and Jerarca algorithms is given in 

the forthcoming sections Dendrogram was visualized using the Phylowidget 

tool.(Jordan and Piel, 2008) 

 

2.2.4 Gene Ontology (GO) enrichment 

GO enrichment of the protein complexes was performed using the g:GOST tool 

from the g:Profiler package.(Reimand et al., 2016)  Significant GO enriched 

processes and pathways were estimated using the hypergeometric probablity 

distribution given by the following equation: 

𝑃 = 1 −  ∑
(𝑀

𝑖
)(𝑁−𝑀

𝑛−  𝑖
)

(𝑁
𝑖
)

𝑘−1

𝑖 =0

 

where, n is the number of genes of interest, k is the number of genes within that list 

that are annotated with a GO term, N is the total number of background genes in 

the distribution, M is the number of genes within that distribution that are annotated 

directly or indirectly with the GO term of interest.(Boyle et al., 2004) False 

Discovery Rate (FDR) was controlled using the Benjamini-Hochberg method for 

multiple correction.(Benjamini and Hochberg, 1995)  
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2.2.5 Yeast strains, media and plasmids 

The yeast strains for studying mHtt toxicity study were generous gifts from S. 

Lindquist (MIT). The two different versions of the N-terminal Htt fragment from 

exon 1 (25Q(normal) and 103Q(toxic)) are integrated into the chromosome of 

W303 yeast strain background for expression of poly(Q). W303 is a haploid yeast 

strain expressing FLAG-htt-poly(Q)-CFP under GAL1 promoter control in his3 

locus and the two strains used in this study are can1-100, his3-

11,15::FLAGhtt103Q-CFP, leu2-3,112, trp1-1, ura3-1, ade2-1; and  can1-100, 

his3-11,15::FLAGhtt25Q-CFP, leu2-3,112, trp1-1, ura3-1, ade2-1. Suppressors 

genes of smc2-8 were selected from Patra et al 2017.(Patra et al., 2017). They were 

individually selected from the MORF (Movable open reading frame) 

library.(Gelperin, 2005; Patra et al., 2017) The MORF library contains 5,871 ORFs 

in 2μ plasmids with galactose inducible promoter and a URA3 selectable marker. 

The plasmid DNAs were isolated separately for further transformation into the 

above two yeast strains. The yeast strains having 25Q and 103Q repeats, were 

grown in yeast complete media containing 1% raffinose followed by transformation 

of each strain with 1μg of individual gene. The transformants were selected on 

synthetic defined medium lacking uracil containing 1% raffinose and streaked for 

single colonies. A single colony corresponding to each candidate suppressor gene 

in each of the two different yeast strains was suspended in liquid broth for serial 

10X  dilution and titration spotted on synthetic media containing either 2% glucose 
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(repression) or 2% galactose (induction). The wild-type strain containing Htt25Q 

can grow normally when GAL1-25Q is overexpressed in presence of galactose, 

whereas the mHtt strain having Htt103Q should die or show reduced growth in 

presence of galactose.  

 

2.3 Results 

2.3.1 Construction of HD protein interactome 

We compiled a set of 1188 physical and genetic interactors of the normal Htt and 

mHtt proteins from published data(Chatterjee et al., 2013; Giorgini et al., 2005; 

Mason and Giorgini, 2011; Mason et al., 2013; Shirasaki et al., 2012; Willingham, 

2003) (Table S1) and obtained 601 human orthologs that were designated as 

primary interactors of Htt or mHtt protein. Next, we acquired the interacting protein 

partners of the above 601 human orthologs from HIPPIE (version 1.7), with a 

confidence score assigned to each interaction.(Schaefer et al., 2012) A total of 

32365 interactions were obtained, which comprised of both direct and indirect 

interacting partners of Htt protein. The interaction list was further narrowed down 

to 32243 interactions by selecting only those interactions that had a confidence 

score of more than 0.45 in the HIPPIE database. An integrated HD interactome was 

constructed from this final list of interactions and will be referred to as the 

Huntington’s disease integrome (HDI) (Figure 2.1). The HDI is densely connected 
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containing 7418 nodes that represent first and second-degree protein interactors of 

wild-type and mHtt protein and 31185 edges (self-loops and duplicate edges 

removed) that represent total interactions among the protein pairs. Note these lists 

of interactions contains two kinds of information (1) orthologous PPI pairs of 

mouse proteins mapped to the human proteome, (2) orthologous genetic interaction 

pairs of yeast genes mapped to the human proteome. Thus, these lists encapsulate 

heterogeneous properties of proteins and genes. 

 

2.3.2 Network properties of Huntington’s disease integrome 

The network properties of the HDI have been summarized in Table 2.1 and 

discussed in brief in the Appendix. The HDI follows a power-law degree 

distribution (Figure 2.2), with a clustering coefficient of 0.140 and a network 

density of 0.001 indicating a large sparse network of interactions characteristic of 

most biological networks.(Jeong et al., 2000, 2001; Watts and Strogatz, 1998) Out 

of the 601 human orthologs identified as primary interactors of the Htt protein, 578 

genes are directly connected to each other. The 5 most highly connected nodes with 

a degree > 350 are HSP90AA1, YWHAZ, HSP90AB1, VCP and CUL2 which act 

as network ‘hubs’ indicating their probable role in HD processes. Indeed, the 

binding activity of HSF1 – a master regulator of heat shock proteins such as 

HSP90AA1 and HSP90AB1 is known to be altered in Poly-Q cells (ST HdhQ111) 
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expressing full-length Htt.(Riva et al., 2012) Both wild type and mHtt are known 

to interact with HSP90; a pharmacological inhibition of this interaction leads to 

increased clearance of mHtt and degradation through the ubiquitin-proteasome 

systems.(Baldo et al., 2012) HSP90AA1 has also been identified has a potential 

gene of interest in HD in another study involving microarray analysis of post-

mortem human brain samples.(Chandrasekaran and Bonchev, 2016) VCP is known 

to localize chiefly in the nucleus of the adult neurons and interacts with both wild 

and type mHtt protein. Its interaction with mHtt alters the recruitment of VCP to 

DNA damage foci causing inhibition of DNA repair (Fujita et al., 2013) and 

modulates neurodegeneration. Loss-of-function mutants of ter94 gene in 

Drosophila encoding for VCP act as genetic modifiers of 

neurodegeneration.(Higashiyama et al., 2002) Overexpression of cul-2, a 

Drosophila ortholog for the human gene CUL2, is known to suppress an expanded 

(128Q) Htt- fragment induced neurodegeneration in the Drosophila 

eye.(Kaltenbach et al., 2007) Taken together, these findings present evidence that 

our orthologous HDI displays a ‘network-hub’ driven structure characteristic of a 

scale-free topology associated with robust biological interaction networks, where 

the major hubs represent genes/proteins known to be important in HD pathogenesis. 

Chapter 3 covers the analysis of the integrome using an unsupervised machine 

learning approach and the results of validation.  



46 

 

 

 

2.4 Tables and Figures 

Table 2.1 Network properties of Huntington's disease integrome (HDI) 

Network Properties   

Number of nodes 7418 

Number of edges 31185 

Connected components 12 

Network density 0.001 

Network heterogeneity 3.405 

Network diameter 9 

Clustering Coefficient 0.14 

Average shortest path length 3.545 

Average number of neighbors (mean 

degree) 
8.408 
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Figure 2.1 Workflow to generate and identify candidate genes from the 

Huntington’s disease integrome (HDI).  

The workflow for the integrome includes integrating physical and genetic 

interactors of wild-type and mHtt protein from various HD model organisms 

finding the human orthologs (n = 601) for these interactors, and mining a protein 

interaction database for secondary interactions. The integrated network thus 

constructed contains first and second-degree interactors of the wild-type and mutant 

Htt protein. 

 

Figure 2.2 Degree distribution of the Huntington's disease interactome (HDI).  

The HDI follows a power-law distribution fit in the form of y = ax-b (a = 1053.7, b 

= 1.313 and R2 = 0.857) 
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Chapter 3 

3 Analysis of Huntington’s disease integrome and 

candidate gene validation using unsupervised 

machine learning  

An important approach to understand the biological significance of a large 

interaction network is to apply unsupervised machine learning algorithm to reduce 

the dimensionality of the data. When the interaction data are reduced to smaller 

numbers of subclasses according unbiased methods of dimensionality reduction, 

one can then ask whether such classes have biological significance. One such 

method of unsupervised machine learning method for dimensionality reduction is 

clustering the network members on the basis of some graph-theoretic properties. 

We thought that within a large interactome with potentially many false positives, 

nodes (genes/proteins) that are connected topologically to other genes/proteins, 

especially those within overlapping clusters where connections to the same 

members are repeated many times, could provide clues to important biological 

functions in common among those proteins belonging to overlapping clusters.   

With the aim of detecting highly connected overlapping clusters of proteins within 

the HDI, 
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3.1 Pre-requisites to choose a clustering algorithm for the HDI. 

Considering the heterogenous nature of the information contained in the HDI 

network, we devised a list of pre-requisites that needed to be fulfilled that would 

help extract biological meaningful information from the graph. Since proteins have 

multiple biological functions, and operate in various cellular compartments over 

time, a clustering method that captures these overlapping relationships of functions 

with each other and also with other proteins was an essential pre-requisite. 

Computationally efficiency of the clustering approach and the ability of the 

algorithm to scale up to larger networks was also a necessary requisite in choosing 

a method. Ability of the algorithm to be robust and produce consistent results, albeit 

with some performance degradation, even when a certain level of noise is 

introduced in the graph was also an important criterion. Since there is no gold 

standard dataset for HD for the algorithm to compare against, we believe, another 

essential criterion to be the ability of the algorithm to assess the quality and 

accuracy of the cluster output by using an internal validity measure that is built into 

the algorithm itself.  

 

Based on the above pre-requisites we chose ClusterONE – an overlapping complex 

detection method as the primary clustering algorithm for HDI. While ClusterONE 

detects overlapping relationships between clusters, it also was found to be a 
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computationally efficient method that could be scaled up to support clustering of 

larger networks. Another method Jerarca – a non-overlapping hierarchical 

clustering algorithm was used to validate in-silico the findings obtained from 

ClusterONE. Jerarca though computationally more expensive – a typical feature of 

hierarchical clustering algorithm, compares reasonably well to other algorithms in 

the same category Both these algorithms have internal parameters built into them 

that ensure that the quality and accuracy of clusters compare favorably to those 

found in the literature. These two clustering methods will be overviewed in the 

forthcoming sections  

3.2 ClusterONE Algorithm 

The ClusterONE algorithm (Nepusz et al., 2012) detects potentially overlapping 

protein complexes in protein-interaction networks.  Typically, a protein complex 

within a network is a group of nodes (proteins) that are densely connected to each 

other, as compared to the rest of the network. ClusterONE algorithm explores this 

inherent property of protein complexes to identify overlapping network clusters.  

The algorithm implements a function called ‘cohesiveness’ of nodes to identify the 

quality of the nodes included in the complex. Some basic terminology used by the 

algorithm to determine cohesiveness of nodes is explained briefly as follows: 

Consider the graph G in Figure 3.1 below with a group of vertices V0 (the shaded 

gray region) 
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The vertices of V0 are called internal vertices, while the vertices not included in V0 

are called external vertices. The edge between two internal vertices is called an 

internal edge, while an edge between an internal and external edge is called the 

boundary edge. The edge between two external vertices is called the external edge. 

An internal boundary vertex is an internal vertex that has at least one boundary 

edge incident on it. An external boundary vertex is an external vertex that has at 

least one boundary edge incident on it.  

The ClusterONE algorithm proceeds through three distinct stages: 

Step 1: Beginning from a single seed vertex – a protein with the highest degree, the 

algorithm greedily adds or removes vertices to find groups of nodes with high 

cohesiveness (See below).  

Step 2: The next step, measures the extent of overlap between each pair of node 

groups and merges those groups that have an overlap score greater than a specified 

threshold (an overlap threshold score of 0.8 was used for our analysis). The overlap 

score between two protein sets A and B is given as follows (Bader and Hogue, 

2003): 
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Basically, ClusterONE calculates the overlap scores of each pair of protein set and 

builds an overlap graph in which each vertex represents a cohesive group and the 

two protein sets are connected by an edge if they have an overlap score more that 

the overlap threshold. Groups of proteins that are connected to each other directly 

through an edge or indirectly through a path of edges are merged as protein complex 

candidates. 

Step 3: In this step, the algorithm discards those nodes from complexes that have 

size less than 3 proteins or whose density δ is less than a given threshold (0.3 in this 

case for weighted networks). The density of a complex with n proteins is defined 

as the total weight of its internal edges, divided by n(n-1)/2.  

3.2.1 Cohesiveness of nodes: 

The algorithm uses the concept of cohesiveness (Nepusz et al., 2012) to greedily 

build groups of proteins in the PPI network. Cohesiveness measures how likely the 

group of proteins can form a protein complexes. 

Let w 
in(V) be the total weight of edges within a group of proteins V, and wbound (V) 

be the total weight of edges that connect the group with the rest of the network. 

Then the cohesiveness of V is given by 
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Where, p|V| is a penalty term that models the uncertainty in the data by presuming 

the existence of yet undiscovered interactions in the PPI network.  The penalty term 

is set to 2 for the current analysis. Cohesiveness is a simple and efficient way to 

evaluate how well a group of proteins aligns with respect to its w 
in and w 

bound 

property. An increase in cohesiveness indicates two kinds of subgraphs: a subgraph 

with many reliable edges and hence a high w 
in or a well-separated subgraph with a 

low w 
bound 

The algorithm retains computational efficiency during its implementation by 

maintaining two variables (wi
in and wi

out) for every protein i in the network. If we 

consider Vt to denote the cohesive subgroup in step t, then, 

wi
in denotes the total edge weight that connect protein i with members of Vt, and 

wi
out denotes the total edge weight that connect protein i with non-members of Vt . 

A boundary-set of Vt is also retained by the algorithm to calculate the cohesiveness 

measure. The cohesiveness after adding protein i, is calculated the above preserved 

current variables wi
in and wi

out of Vt and is given by: 
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3.2.2 Evaluating the quality of detected complexes: 

Since the amount of information contained in disease proteomes is still incomplete, 

it is difficult to construct a gold standard to compare predicted complexes against. 

Therefore, in such cases, the quality of the predicted complexes can be assessed by 

determining the cellular localization of its protein candidates.(Jansen et al., 2003) 

If the protein members within a complex are localized in the same cellular 

compartment, then it is highly likely that they are members of the same complex. 

ClusterONE uses a ‘co-localization score’(Friedel et al., 2009) using localization 

annotations of yeast proteins and a standard overrepresentation analysis of 

biological process, molecular function and cellular component terms from the Gene 

Ontology to evaluate the biological significance of predicted complexes. The 

significance levels of the p-values of this overrepresentation analysis were adjusted 

using the Benjamini-Hochberg method.(Benjamini and Hochberg, 1995)  

The quality of clusters is also evaluated by calculating the p-value of a one-sided 

Mann-Whitney U test performed on the in-weights and out-weights of the vertices. 

A low p-value indicates that the in-weights are significantly larger than the out-

weights, and hence it is more likely that the cluster is a valid finding and not the 

result of random fluctuations. While internal quality indices such as Dunn’s index 

or Silhouette index are used to measure quality of clusters, these methods are used 

to cluster points in a high-dimensional space where a sensible distance or similarity 

matrix can be defined. Since ClusterONE is a graph clustering algorithm, the notion 
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of ‘distance’ does not apply in our particular case. Hence, based on communication 

with the author of the algorithm, the p-value of the detected complexes was decided 

to be a suitable internal validation measure to evaluate the quality of a cluster in the 

graph,. (Nepusz, 2016) 

3.2.3 Results using ClusterONE 

An implementation of the ClusterONE algorithm on the Huntington’s disease 

integrome revealed 3065 overlapping protein complexes out of which 48 

complexes were found to be statistically significant in terms of their p-value. (p-

value < 0.05). 12 complexes out of 48 were further chosen for functional 

enrichment analysis. The members of these complexes are shown in Table 3.1 

3.2.3.1 Gene Ontology Functional Enrichment 

The g:GOST tool.(Ashburner et al., 2000; Reimand et al., 2016; The Gene 

Ontology Consortium, 2015) was chosen for detecting the cellular functions 

enriched in the selected 12 complexes.  

The primary interactors within the HDI (n = 578) are directly connected to each 

other through biological and molecular processes representing various protein 

transport and mitochondrial functions  
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3.2.3.2 DNA repair and chromosome condensation related functions enriched in 

HDI 

Among the 12 statistically significant complexes (p-value<0.05), we found four 

modules specifically enriched for functions related to DNA repair and chromosome 

condensation  We name these modules as VCP complex, PSMC complex, 

YWHAG complex and CCT complex for convenience (Figure 3.2) The members 

of these four complexes were functionally enriched for molecular processes  such 

as “DNA damage response, signal transduction by p53 class mediator resulting in 

cell cycle arrest” (GO:0006977, p-value = 9.7E-49), “G1 DNA damage 

checkpoint” (GO:0044783, p-value= 1.3E-46), “cellular response to DNA damage 

stimulus” (GO:0006974, p-value = 3.8E-28) and “DNA repair” (GO:0006281, p-

value= 0.00549) (Table S5). More interestingly, biological functions closely related 

to chromatin cohesion and chromosome organization such as “negative regulation 

of sister chromatid cohesion” (GO:0045875, p-value = 0.00016), “chromosome 

organization” (GO:0051276, p-value =0.00582) were also found to be enriched 

within three of the four complexes. (Figure 3.2) (Table 3.2). A detailed list of the 

enriched GO terms and Reactome pathways and their corresponding gene lists is 

given in Table 3.2 and Table 3.3 respectively. 
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mHtt interrupts the processes of DNA damage repair including G2/M and intra-S 

phase cell cycle checkpoints (Yuan et al., 2007) and chromatin condensation 

(Fatoba and Okorokov, 2011) by inhibiting SIRT1 deacetylase activity. Ku70, a 

component of the DNA damage repair complex, is also targeted by mHtt for 

impairing its DNA-dependent protein kinase function (Enokido et al., 2010).  

Considering these and several additional information, we have recently proposed 

that mHtt could affect cell cycle checkpoint regulation related to chromatin 

condensation defects, chromosome breaks and abnormal DNA repair processes, 

including those involved in ribosomal DNA condensation pathways.(Lokhande et 

al., 2016) GO enrichment results described here are generally supportive of this 

proposal.  

Interestingly, functional GO enrichment of the first significant protein complex (n 

= 105) revealed enrichment for various GO terms related to mitochondrial functions 

and processes. Some of the significantly enriched terms include - “mitochondrial 

translation (GO:0032543, p value = 1.35x10-54), “mitochondrion organization” 

(GO: 0007005, p value = 1.7x10-47), “mitochondrial electron transport, NADH to 

ubiquinone” (GO:0006120, p-value = 2.5x10-11). These findings recapitulate 

observations from various animal model studies that have found the role of 

functions such as maintenance of electron transport chain (Hausladen and 

Fridovich, 1994; Tabrizi et al., 1999, 2000), mitochondrial organization, biogenesis 
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(Chakraborty et al., 2014; Damiano et al., 2010; Johri et al., 2013) and mobility 

(Chang et al., 2006; Orr et al., 2008; Trushina et al., 2004) in HD.  

3.2.4 Scalability of ClusterONE 

To ensure the algorithm we used for clustering HDI was computationally efficient 

for other datasets of comparable size or larger, we ventured to determine the 

scalability of ClusterONE to larger datasets.  

Before we tested if the method was scalable, we attempted to find the Big O 

notation of the method. Considering that this algorithm forms initial clusters based 

on the cohesiveness measure of each node in the graph, we assumed that the initial 

step would require a total of n2 operations. The next step involves measuring the 

extent of overlap between each pair of node groups formed in the first step. This 

step is dependent on the number of groups created in the previous stage and hence 

it becomes difficult to formally compute the complexity of the algorithm and assign 

a definite BigO notation to the method. This conclusion was drawn after 

communication with the author of the algorithm and indicates that the runtime of 

the algorithm depends on the exact structure of the network it is trying to cluster. 

While there might be artificially constructed graphs that might make ClusterONE 

run slowly, these graphs will most likely not be a representative of ‘real’ world 

datasets that the algorithm will be confronted with.  
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We therefore proceeded to analyze the run time of the algorithm by implementing 

it on the entire Human protein-protein interaction (PPI) network from BIOGRID. 

The run time on this network with 19634 unique proteins and 270,970 non-

redundant interactions was found to be 2 mins 40 secs.  

ClusterONE has a scaled-up version of its algorithm that was obtained from the 

author of this technique. This version parallelizes the cluster growth phase of the 

algorithm by using multiple CPU cores. We implemented this scaled version on 

two large datasets –  

 The Amazon graph - 863 nodes and 925,872 edges 

 The YouTube graph – 1,13,4890 nodes and 2,98,7624 edges 

The run time of the scaled-up version of ClusterONE on the Amazon graph and the 

YouTube graph was 7.23 seconds and 2.3 minutes (141 seconds) respectively 

Details of the graph properties and the run times are given in Table 3.4. The above 

scalability studies were performed using a Window PC laptop with the following 

processor:  

Processor – Intel(R) Core(TM) i7 – 6500 CPU @ 2.50GHz 2.59 GHz, 2 Cores, 4 

Logical Processors (x64-based processor)  

3.2.5 Robustness of ClusterONE 

To demonstrate the robustness of the algorithm used for clustering HDI, we 

subjected the HDI network to the following perturbations: 
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 Dropping edges weights below a threshold score of 0.5 (~10% edges), 0.6 

(~20% edges) and 0.63 (~50% edges) 

 Rewiring the edges and edge weights within a range of 20% - 100% while 

maintaining a constant degree distribution of the graph.  

For each perturbation, we noted the number of statistically significant complexes 

detected, and calculated the significance of overlap (p-value) of the member of 

these complexes with the statistically significant complexes detected from HDI. A 

background genome size of 19000 was used for calculating the overlap 

significance. A Jacquard’s index and Odds ratio was also determined for each 

perturbation. We find that the performance of the algorithm starts showing signs of 

degradation when we drop edges with a score of 0.6 and less (~ 20% of the edges). 

The network fragments into smaller connected components as the percentage of 

dropped edges increases to 50% which is also indicated by a drop in the clustering 

coefficient of the graph. (Figure 3.3) On the other hand, rewiring just 20% of the 

network edges and edge weights, lead to sharp drop in the Jacquard’s index and 

Odds ratio which also indicates a significant departure from the clusters obtained 

from HDI. Such a performance degradation is however expected considering that 

the HDI graph is a weighted graph and contains carefully curated and scored 

interactions between nodes. A perturbation via rewiring essentially alters the 

biological information contained in the graph and inadvertently introduces a high 

number of false positives in the process leading to performance degradation.  
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Table 3.5 summarizes the results of robustness analysis. We conclude that while 

ClusterONE can handle a drop of ~20% of weighted interactions comfortably 

without affecting the connectedness of the graph, it performance significantly 

degrades after 20% or more of HDI edges and edge weights are rewired. 

3.2.6 Reproducibility of results 

To ensure the results obtained using ClusterONE are reproducible, the Rscripts and 

step by step code used to bring about this analysis has been documented in the form 

of Jupyter notebooks and have been uploaded on GitHub. This will enable users to 

run these scripts on the data themselves and verify the results. 

The above clustering approach using ClusterONE can find multiple applications in 

other PolyQ disorders such as spinocerebellar Ataxia, dentatorubral-pallidoluysian 

atrophy (DRPLA) and spinal and bulbar muscular atrophy, X-linked 1 

(SMAX1/SBMA). Other neurodegenerative disorders such as Parkinson’s disease 

and Alzheimer’s disease can also find this algorithm useful for analysis. Since the 

algorithm creates clusters based on a cohesiveness measure, any biological data 

which depicts relationships between two or more proteins, genes, cellular 

components, functions or processes could serve as a potential source of input. We 

however believe that assigning weights to the edges and carefully curating the input 

data allows for elimination of noise to a reasonable extent which has positive 

implications on the algorithm output as evident from our HDI analysis. 
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3.2.7 Jerarca algorithm 

We implemented a different clustering approach on the HD integrome, and 

performed an in-silico validation of the results obtained using ClusterONE before 

we proceeded find in-vitro and in-vivo support for any of the findings. We 

specifically looked at the hierarchical clustering algorithm Jerarca to understand 

the hierarchy of HDI.  

3.2.7.1 Description of the Jerarca algorithm: 

Jerarca (Aldecoa and Marín, 2010) is a suite of three hierarchical clustering 

algorithms that converts a PPI network into dendrograms through iterative 

hierarchical clustering. The suite consists of three algorithms namely UVCluster (a 

modified version), RCluster and SCluster. For purposes of analysis of the HDI, we 

have implemented the modified more efficient version of UVCluster to reveal the 

hierarchical structure of the network.  

The suite implements the following steps to detect a hierarchy in the PPI network. 

1. The program reads an input file to create an adjacency matrix A of the 

PPI graph; where Aij = 1 if vertices i and j are connected and Aij = 0 if 

they are not.  

2. An iterative UVCluster algorithm (please refer below for details) is run 

depending upon the number of nodes in the network. The ideal number of 
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iterations suggested by authors is approximately 10 times the number of 

nodes in the network. We have used 70000 iterations for our analysis. 

3. Step 3 - A matrix of secondary distances is calculated. For each pair of 

nodes, the algorithm saves, the number of iterations for which the nodes 

have been separately clustered. The secondary distances are then 

computed by finding the ratio of these values to the number of iterations.  

4. Step 4 - A dendrogram is built using one of the two phylogenetic 

algorithms – UPGMA and Neighborhood-joining. We have used the 

UPGMA to build a dendrogram from the secondary distance matrix.  

5. Step 5 – The resulting dendrogram is evaluated at each level by using two 

indices – modularity (Q) and the Surprise (H) score. The optimal partition 

of the tree is saved for both the indices. 

The workflow of the Jerarca suite considering UVCluster is given in Figure 3.4 

3.2.7.1.1 UVCluster Algorithm 

The modified version of UVCluster algorithm(Arnau et al., 2005) iteratively uses 

agglomerative hierarchical clustering using the primary distance matrix of the PPI 

graph. Based on the number of iterations (N) specified by the user before the 

analysis starts, the algorithm generates N clustering solutions by randomly 

sampling elements of the dataset. The elements in the dataset are clustered using 

the average linkage method (Everitt et al 2001). Another parameter that is set by 

the user besides the number of iterations is the Affinity Coefficient (AC) which is 
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the global stopping parameter for the agglomerative process. The AC is given by 

the following equation: 

AC = 100[(Pm – Cm)/ (Pm – 1)] where, 

Cm is the cluster mean which is the average of distances for all the members in the 

clusters, and, 

Pm is the partition mean which is the average of the distances for the entire set of 

selected proteins. 

If Cm = 1, then AC = 100, which signifies that the proteins clustered together have 

a distance equal to 1. 

A modified version of UVCluster fixes the AC value as 100 (maximally strict) for 

the Jerarca suite of algorithms. This value is suitable for PPI networks wherein 

many proteins are directly connected to each other and have shorter average path 

lengths. The Huntington’s Disease Integrome (HDI) has an average path length of 

3.54 and hence an AC value of 100 was deemed appropriate to find protein clusters 

in the network. A strict AC value essentially helps to find clique-like subgraphs 

within the network. 

After obtaining N clustering solutions in the previous step, the algorithm proceeds 

to calculate a secondary distance matrix as described in the section above. Such a 

secondary distance matrix displays the strength of connection between all pairs of 
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elements in the dataset. This distance matrix serves as an input to build a 

dendrogram. 

3.2.8 Results using Jerarca 

The time complexity of the Jerarca algorithm (UV cluster implementation) with an 

AC of 100 is O(n2) (Aldecoa and Marín, 2010) Hence we ran this algorithm using 

a Trial allocation of 1000 SUs on the Comet cluster of the San Diego 

Supercomputing Center (SDSC). The run time of the algorithm was 4 hours and 41 

minutes. 

Jerarca partitioned the HDI network into 592 distinct non-overlapping clusters 

(Figure 3.5) with a modularity (Q) score of 0.31. Examination of the dendrogram 

output showed results that were coherent with the output of ClusterONE. Genes 

such as FANCI, WAPAL, ESPL1, TUBGCP2 and ANAPC7, which are implicated 

in chromosome condensation related functions, were seen to assemble in a single 

module (Figure 3.5). Similarly, genes such as ERCC3, UCHL5, SHFM1, NPLOC4, 

UFD1L and COPS2 that are related to DNA damage response and DNA repair were 

found to be clustered in a separate module. Consistent with results from 

ClusterONE, we also found several genes related to mitochondrial functions also 

clustered together in a separate module. Such functional segregation in modules is 

expected. considering that the hierarchical algorithm does not output overlapping 

clusters. These results using an entirely distinct approach recapitulate the 
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observations from ClusterONE and lend an additional in-silico support to the 

biological quality of data obtained. 

We now proceeded to closely examine the clusters obtained using ClusterONE. 

3.3 HD integrome reveals novel genes that link chromosome 

condensation defects with Htt toxicity 

The HDI dataset that yielded a possible link between Huntington’s disease protein 

and chromosome condensation/DNA damage repair pathways was only indirectly 

derived from yeast genetic interaction data. A fraction of these interactions 

contained suppressor and enhancer mutations of mHtt toxicity in yeast. In addition, 

they contained 41 ribosomal gene dosage suppressors of mHtt toxicity. Previous 

studies with these interaction datasets did not reveal a noteworthy enrichment of 

chromosome condensation or DNA damage response pathways among suppressors 

or enhancers of mHtt toxicity. We have recently generated a large collection of 

gene-dosage suppressors of lethal mutations in yeast (Patra et al., 2017), which 

presented an opportunity to ask whether there might be any indirect connection 

between suppressors of chromosome condensation defects and genes known to 

modify mHtt toxicity.  

3.4 Validation in a yeast HD model.  

We noticed four yeast homologs among two of the 12 statistically significant 

complexes within HDI, detected using ClusterONE, which are known to function 
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in chromosome dynamics. These four interactors are SPC24, MSH4, NDC80(TID3) 

and NMD3. Among these, Spc24p and Ndc80p are part of core kinetochore protein 

complex involved in chromosome segregation. This provoked us to hypothesize 

that SPC24 and NDC80 might genetically interact with mHtt in yeast. However, 

loss of function mutations in these two genes were not previously recovered as 

suppressors or enhancers of mHtt toxicity in previous studies. Therefore, we 

hypothesized that gain of function (overexpression) could potentially modify the 

phenotype of mHtt expression. 

 

We tested this hypothesis by directly overexpressing SPC24 gene under the control 

of a galactose-inducible promoter on a multicopy yeast plasmid (see Methods). This 

plasmid was introduced into a yeast strain that expresses a chromosomal copy of 

mHtt encoding the N-terminal (103Q), also under the control of a galactose-

inducible promoter. If grown on glucose, these cells do not produce mHtt. 

However, in the presence of galactose, these cells produce both mHtt and Spc24p 

proteins. A control strain contains exactly the same constructs except that the N-

terminal fragment of normal Htt is produced in the presence of galactose. 

Overexpression of SPC24 was found to suppress mHtt toxicity (Figure 3.6).  

Incidentally, SPC24 was also found to be among the set of genes that suppresses 

smc2-8 chromosome condensation defective mutant.(Patra et al., 2017) These 
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findings led us to hypothesize whether overexpression of smc2-8 suppressors could 

suppress mHtt toxicity (Figure 3.7).  As a test of this hypothesis, we examined if a 

set of suppressors of smc2-8 mutation (including SMC2), and a selected set of 

cohesin/condensin genes could suppress mHtt toxicity in yeast. We examined 36 

suppressors of smc2-8 mutant and seven condensin/cohesion related genes, which 

were not previously described as modifiers of smc2-8.  Results showed that 

approximately 50 percent of these genes (23 of 43 tested), suppressed mHtt toxicity. 

The panel that tested for SPC24, is shown in Figure 3.6. Since these 23 genes are 

all known to function in chromosome condensation/cohesion processes, these 

results are consistent with the hypothesis that mHtt toxicity is related to these 

processes. 

3.5 Identification of candidate genes 

Emboldened by the results with yeast genes, we ventured to look for genes with 

similar functions in HDI because we thought chromatin condensation/dynamics 

related genes in humans might indeed play important roles in HD. We specifically 

chose a subset of 27 candidate genes (Table 3.6) within the first 12 statistically 

significant ClusterONE complexes with the additional criteria that they have 

orthologs in Drosophila. Among these genes, FANCI, WAPAL, ESPL1, TRIP12, 

ANAPC7, UBC, NDC80, TUBGCP2, PPP6C were functionally enriched for 

processes such as chromosome organization, regulation of chromosome 
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segregation, mitotic cell cycle and cellular response to DNA damage. These 

findings are significant considering their enrichment is represented across all the 

three aspects of GO classes (biological process, molecular function and cellular 

component) and the Reactome pathways (Table 3.2 and Table 3.3) 

3.6 Candidate gene validation in a Drosophila HD model  

The validation experiments in this section were carried out in collaboration with a 

different laboratory and is not a contribution by the author of this thesis. For 

purposes of validation, two fully balanced lines: one that stably expresses the 

pathogenic Htt variant (128-Q) in Drosophila eye (under the eye-specific 

promoter), and one that stably expresses the non-pathogenic Htt variant (16-Q) that 

serves as one of the controls was generated. Each of these lines was crossed with 

an RNAi, overexpression and/or deletion line from the list of 27 potential 

interacting genes. The phenotype of the double transgenic flies was assessed and 

compared to the driver-alone control and to the eye expressing the non-pathogenic 

Htt variant. Any suppression or enhancement of the phenotype strongly suggests a 

genetic interaction. 

 

Using this approach, it was found that a loss of function of NPLOC4 (Npl4) gene 

in drosophila suppresses mHtt effects in the eye. A loss of function of TUBGCP2 

(Grip84) gene was also found to suppress mHtt effects in the drosophila eye. On 
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the other hand, a loss of function of the NLRC4 (Diap2) gene was found to enhance 

the mHtt effects in the drosophila eye. 

NPLOC4 is known to form a complex with VCP and UFD1L, which in turn 

complexes with FAF1 receptor to promote Endoplasmic-reticulum associated 

degradation (ERAD) of polyubiquitinated proteins. (Lee et al., 2013) Additionally, 

NPLOC4 is a crucial component of the Cdc48/p97–Ufd1–Npl4 complex which 

negatively regulates Aurora B early in the mitosis of human somatic cells. A 

depletion of the Ufd1–Npl4 by using siRNA is known to cause defects in 

chromosome alignment and in the anaphase. (Dobrynin et al., 2011) These findings 

lend support to our assumption that NPLOC4 could be an intermediate partner 

influencing the action of mHtt. This makes NPLOC4 an attractive therapeutic 

candidate for Huntington’s disease. TUBGCP2 is component of the Gamma-

tubulin complex and is necessary for microtubule nucleation at the centrosome 

(Murphy et al., 1998) However, there have been no studies reported so far 

documenting its interaction with the Htt protein and its downstream effects. NLRC4 

encodes a member of the NLR family and contains the caspase recruitment domain. 

It is known to be essential in eliciting an innate immune response to a wide range 

of tissues and organisms, thus playing an important role in tissue damage and 

cellular stress. (Kitamura et al., 2014; Romberg et al., 2014; Thalappilly et al., 

2006)  While the role of caspases in apoptosis and mitochondrial dysfunction in 

HD has been studied, its role in causing an auto-inflammatory response leading to 
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cellular stress and damage remains to be fully explored. The above findings from 

validation experiments throw light on this portion of NLRC4 in causing apoptosis 

and neuronal cell death in HD. 

3.7 Conclusion 

In this study, we have integrated and analyzed a diverse set of human orthologs of 

Htt interacting proteins obtained using both physical and genetic studies. The 

resulting HDI captured a brief snapshot of the HD pathogenetic process and helped 

us identify clusters of genes that were overexpressed for functions related to 

chromosome condensation, DNA damage and DNA repair.  

In particular, we have identified 27 candidate genes as potential targets that can 

alter or modify the progress of HD. Three of these candidate genes NPLOC4, 

TUBGCP2 and NLRC4 have been successfully validated in a drosophila model of 

HD and could be considered as potential therapeutic targets to alter the course of 

HD. Our results demonstrate and support our hypothesis that mHtt affects and alters 

the processes related to chromosome condensation and DNA repair eventually 

leading to cell death. 
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3.8 Tables and Figures 

Table 3.1 Members of the first 10 statistically significant complexes detected in HDI by ClusterONE 

Complex 

No. 

Member of complex 

1 MUT,ADCK3,PNPT1,ACADVL,SUPV3L1,C10orf2,FARS2,MTPAP,TFAM,CPT2,MCU,N

DUFS1,PCCB,AFG3L2,TMLHE,NDUFS2,DBT,PYCR2,NME4,NDUFV1,YARS2,GLDC,N

DUFS3,CLPX,AARS2,MTERF4,ACOT9,AASS,ALDH1B1,ALDH1L2,ATAD3B,C6orf203,

CECR5,CHCHD1,CLPTM1,SLC25A10,ECH1,ECI1,FASTKD1,FASTKD2,GADD45GIP1,S

LC25A18,GRSF1,GTPBP10,GRPEL1,MTIF2,ICT1,ISCA1,MALSU1,MMAB,METTL17,R

NMTL1,MTERF3,PMPCB,MRM1,MTG1,NDUFS8,NDUFAF3,NDUFV2,NGRN,NDUFA2,

NDUFA9,NDUFS7,NSUN4,NOA1,POLDIP2,PTCD1,PUSL1,RBFA,MRPL21,MRPL28,M

RPL48,MRPL3,MRPL27,MRPL32,MRPL18,MRPL19,MRPL54,MRPL39,MRPS11,MRPS1

5,MRPS18A,MRPS22,MRPS6,MRPS23,MRPS25,DAP3,MRPS24,MRPS27,RPUSD3,MRP

S7,MRPS17,MRPS18B,MRPS31,HARS2,PARS2,VARS2,SYNJ2BP,TARS2,RARS2,TFB1

M,THNSL1,TEFM,TRUB2,SLC25A1 

2 VCP,RAD23A,RAD23B,PSMD4,UBC,ANXA5,ANAPC7,ARFGAP2,ARIH1,ATXN3,BAI

AP2L1,CDC42EP1,BRAT1,UBQLN1,CAAP1,CDKN2AIP,C3orf17,CCDC132,CCDC134,C

DK2AP1,CENPH,CIDEC,KIAA1524,CNOT10,COG5,COMMD6,COMT,HSP90B2P,ESPL

1,FANCI,G3BP2,TUBGCP2,GOLPH3L,HS1BP3,H2AFJ,HAUS1,HEATR1,HELLS,HOOK

1,HSBP1,INF2,NPLOC4,LRIG1,MAP7D3,NGLY1,NMD3,DDIAS,PPP6C,UFD1L,PTCRA,

UBE4B,POLR3C,SPAST,SPC24,TAF6L,TBC1D10B,TBC1D9B,SCD,CLN6,DCAF11,MSH

4,RHBDL3,UBE2J1,UBXN11,GTF3C3,GTF3C5,TMEM33,TRIP12,ULK3,VIL1,WAPAL 

3 NAPA, SNAP25, STX1A, ANKRD35, STXBP1, STX1B, STX2, CCSER2, KIAA0319L, 

LAMA4, MYH7B, CPLX1, SLC6A5, SLC6A9, SCNN1A, STXBP2, SNAP23, UNC13B, 

VAMP8, STMN4, STX17, CAPG, CCDC93, FAM161B, FGB, FUBP3, SLC6A2, SCRT1, 
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Complex 

No. 

Member of complex 

SNPH, STXBP5, TTC3, TXLNA, TXLNB, ZNF189, ZNF226, ZNF254, ZNF526, ZNF799, 

VAMP2, TRIM14, TSPAN7, TXLNG, UACA, VAPB 

4 YWHAZ, YWHAH, HDAC4, HDAC7, MARK2, NEDD4L, PARD3, MST1R, MARK1, 

MARK3, PARD6G, PRKCI, CDC25B, PARD6A, SFN, BSPRY, EFNB3, KRT19, LDB1, 

PDE1A, SNX24, POTEKP, ACTN3, ADRA2C, ARL6IP1, ATL2, ATL3, CTH, CHTOP, 

CIC, DCAF7, TSFM, HIST2H2BF, EIF5B, HECTD4, CMPK1, WWC1, MEF2C, MYH3, 

NAPSA, NUFIP1, PGLYRP1, PRIM2, ADSSL1, REEP6, RPRD1A, SMC5, SUPT6H, 

SRGAP1, SRSF8, TNS1, SNRPD2P1 

5 ADRM1, UCHL5, RAD23A, RAD23B, PSMD4, PSMA1, PSMC4, PSMC2, PSMD3, 

SHFM1, PSMD6, CIITA, PSMC5, PSMD2, COPS2, PSMD8, PSMA2, PSMD13, EPHA8, 

ERCC3, POLR2M, HERPUD1, PSMD7, NDC80, NLRC4, PCDH10, GTF2F1, USP14, 

ZCCHC8, PSMC6, PSMC1, PSMC3, HTR1E, ATG4C, PAAF1, PSMB2, PSMD10, PSMD5, 

RIOK3, POLR2M, MYZAP, PSMD14, ESRRG, HNF4G, MYO18B, PTGS2, PLEKHO1, 

PSMB9, PSMD1, RORA, PSMA8, PSMB6, PSMB8, PSMD11, PSMD12, HMOX1, 

JKAMP, NUB1, ACTR3B, TSPYL2, RARB, RARG,  SUGT1, ST18, TEKT4, UBLCP1, 

XBP1P1 

6 CTNNB1, CTNNBIP1, CDH1, CTNNA1, JUP, CDH10, CDH17, CDH18, CDH5, CDH6, 

AJAP1, BOC, CDH11, CDH7, CDH8, CDH9, CDON, DLG5, JRK, LEF1, PCSK1, 

NEURL2, PROP1, TCF7L2, UHRF2, VEZT, CTNND1, FOXO4, SOX6, TAX1BP3, 

BCR/ABL 

7 YWHAG, YWHAH, HDAC7, MARK2, NEDD4L, PARD3, MARK1, MARK3, SIMC1, 

FARP2, HOXC10, LATS2, MAP3K6, PRPF4B, RMDN3, SFN, CAMSAP2, CCS, CKAP2, 

EPN2, FAM65B, FRY, INPP5E, JAKMIP1, KRTAP195, KRT34, KRT35, KRT37, KRT38, 

KRT82, LRCH3, LTB4R, MPHOSPH9, NELFE, PRLR, TRIM21, SHCBP1, SHKBP1, 

SHPRH, SYNPO, USP37, VANGL2, ATP6V0B, IGKV1-12,170549 
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Complex 

No. 

Member of complex 

8 PPP2R2B, HDAC3, RFWD2, PPP2R2A, ATG16L1, CCT7, CCT8, CCT4, CCT5, CCT2, 

TCP1, TBK1, PPP2R2C, METTL20, METTL21B, RPAP1, PPP2R4, PPP4C, CCT6A, 

PPP2CA, BBS7, GCNT1, GPN1, MKKS, PACRG, IGBP1, KDM5A, MLST8, MED31, 

PPP2CB, MYBPC2, MOB4, STRN, STRN3, STRN4, PPP2R2D, BBS10, CTTNBP2, 

DOCK5, FAM86B2, GPR37, TRAF3IP3, THEG, CCT3, CCT6B, IMPA2, MLX, PARP4 

9 GNB5, GNG2, PDCL, GNB2, GNGT1, GNG10, GNG13, GNG3, GNG4, GNG5, GNG7, 

GNGT2, RGS6, RASD2, GNG12, GNB3, GNB4, GNG8 

10 GNB5, GNG2, GNB1, GNB2, KCNJ3, GNG10, GNG11, GNG13, GNG3, GNG4, GNG5, 

GNG7, GNGT2, GNG12, GNB3, GNB4 

11 CTBP1, ACTL6B, HIC1, MECOM, LCOR, ZEB1 

12 CTBP1, EHMT1, HIC1, MECOM, LCOR, ZEB1 
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Table 3.2 List of GO terms related to DNA repair, DNA damage and chromosome condensation found to be enriched 

in PPI network complexes 

GO term ID p-value 

No. 

of 

genes 

GO 

type 
GO term description List of genes 

GO:0006977 9.70E-49 26 BP 

DNA damage response, 

signal transduction by p53 

class mediator resulting in 

cell cycle arrest 

PSMC4, PSMC5, PSMD5, 

PSMD8, PSMC6, PSMC1, 

PSMD10, PSMD7, PSMA2, 

PSMD3, PSMD11, PSMD14, 

PSMB2, PSMA1, PSMB6, 

PSMA8, PSMD4, PSMC2, 

PSMD6, PSMC3, PSMD1, 

PSMD2, PSMD13, PSMD12, 

PSMB8, PSMB9 

GO:0072431 1.60E-48 26 BP 

signal transduction 

involved in mitotic G1 

DNA damage checkpoint 

GO:0044783 1.30E-46 26 BP 
G1 DNA damage 

checkpoint 

GO:0006974 3.80E-28 33 BP 
cellular response to DNA 

damage stimulus 

PSMC4, PSMC5, PSMD5, 

PSMD8, HMOX1, PSMC6, 

PSMC1, PSMD10, PSMD7, 

PSMA2, PSMD3, PSMD11, 

PSMD14, UCHL5, RAD23B, 

PSMB2, SHFM1, PSMA1, 

PSMB6, PSMA8, PSMD4, 

PSMC2, ERCC3, PSMD6, 

PSMC3, COPS2, PSMD1, 

PSMD2, RAD23A, PSMD13, 

PSMD12, PSMB8, PSMB9 

GO:0006974 5.90E-05 13 BP 
cellular response to DNA 

damage stimulus 

MSH4, ATXN3, UFD1L, BRAT1, 

RAD23B, FANCI, UBC, TRIP12, 
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GO term ID p-value 

No. 

of 

genes 

GO 

type 
GO term description List of genes 

PSMD4, VCP, CDKN2AIP, 

RAD23A, NPLOC4 

GO:0045875  0.00016 2 BP 
negative regulation of 

sister chromatid cohesion 
WAPAL, ESPL1 

GO:0006281  0.00017 10 BP DNA repair 

MSH4, ATXN3, UFD1L, 

RAD23B, FANCI, UBC, TRIP12, 

VCP, RAD23A, NPLOC4 

GO:0007084 0.00325 2 BP 
mitotic nuclear envelope 

reassembly 
PPP2CA, PPP2R2A 

GO:0003684 0.00422 3 MF damaged DNA binding RAD23B, ERCC3, RAD23A 

GO:0006281 0.00549 7 BP DNA repair 

PSMD14, UCHL5, RAD23B, 

SHFM1, ERCC3, COPS2, 

RAD23A 

GO:0051276 0.00582 12 BP chromosome organization 

MSH4, WAPAL, ATXN3, 

RAD23B, HELLS, ESPL1, UBC, 

CENPH, TRIP12, TAF6L, 

ANAPC7, H2AFJ 

GO:0051985 0.00922 3 BP 
negative regulation of 

chromosome segregation 
WAPAL, ESPL1, ANAPC7 

GO:2001251 0.0101 4 BP 
negative regulation of 

chromosome organization 

WAPAL, ESPL1, TRIP12, 

ANAPC7 

GO:0030472 0.0298 1 BP 
mitotic spindle 

organization in nucleus 
PPP2R4 
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GO term ID p-value 

No. 

of 

genes 

GO 

type 
GO term description List of genes 

GO:1903047 1.89E-23 30 BP mitotic cell cycle process 

PSMC4, NDC80, PSMC5, 

NLRC4, PSMD5, PSMD8, 

PSMC6, PSMC1, PSMD10, 

PSMD7, PSMA2, PSMD3, 

PSMD11, PSMD14, PSMB2, 

PSMA1, PSMB6, PSMA8, 

PSMD4, PSMC2, ERCC3, 

PSMD6, SUGT1, PSMC3, 

PSMD1, PSMD2, PSMD13, 

PSMD12, PSMB8, PSMB9 

GO:0000922 0.00551 4 CC spindle pole FRY, CKAP2, RMDN3, LATS2 
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Table 3.3 List of pathways found to be enriched in HDI network complexes 

Pathway ID 
p-value 

No 

of 

gene

s 

GO term description List of genes 

REAC:69563 

REAC:69580 
1.9E-45 26 

p53-Dependent G1 

DNA Damage 

Response/ p53-

Dependent G1 DNA 

damage checkpoint 

PSMC4, PSMC5, PSMD5, PSMD8, PSMC6, 

PSMC1, PSMD10, PSMD7, PSMA2, PSMD3, 

PSMD11, PSMD14, PSMB2, PSMA1, PSMB6, 

PSMA8, PSMD4, PSMC2, PSMD6, PSMC3, 

PSMD1, PSMD2, PSMD13, PSMD12, PSMB8, 

PSMB9 

REAC:24678

13 
3.9E-35 27 

Separation of Sister 

Chromatids 

PSMC4, NDC80, PSMC5, PSMD5, PSMD8, 

PSMC6, PSMC1, PSMD10, PSMD7, PSMA2, 

PSMD3, PSMD11, PSMD14, PSMB2, PSMA1, 

PSMB6, PSMA8, PSMD4, PSMC2, PSMD6, 

PSMC3, PSMD1, PSMD2, PSMD13, PSMD12, 

PSMB8, PSMB9 

REAC:74752 1.3E-25 26 
Signaling by Insulin 

receptor 

PSMC4, PSMC5, PSMD5, PSMD8, PSMC6, 

PSMC1, PSMD10, PSMD7, PSMA2, PSMD3, 

PSMD11, PSMD14, PSMB2, PSMA1, PSMB6, 

PSMA8, PSMD4, PSMC2, PSMD6, PSMC3, 

PSMD1, PSMD2, PSMD13, PSMD12, PSMB8, 

PSMB9 

REAC:24659

10 
1.3E-05 3 

MASTL Facilitates 

Mitotic Progression 
PPP2CB, PPP2CA, PPP2R2D 

REAC:75035 
1.67E-

05 
3 

Chk1/Chk2(Cds1) 

mediated inactivation 
YWHAH, YWHAG, SFN 
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Pathway ID 
p-value 

No 

of 

gene

s 

GO term description List of genes 

of Cyclin B: Cdk1 

complex 

REAC:69278 
0.00040

7 
9 Cell Cycle, Mitotic 

WAPAL, TUBGCP2, ESPL1, UBC, HAUS1, 

CENPH, PSMD4, SPC24, ANAPC7 

REAC:73894 
0.00081

8 
7 DNA Repair 

UFD1L, RAD23B, FANCI, UBC, VCP, RAD23A, 

NPLOC4 

REAC:56963

94 
0.00163 3 

DNA Damage 

Recognition in GG-

NER 

RAD23B, COPS2, RAD23A 

REAC:69473 0.00983 3 
G2/M DNA damage 

checkpoint 
YWHAH, YWHAG, SFN 
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Table 3.4  - Scalability analysis of ClusterONE algorithm 

Network Network size Minimum 

Complex 

Size 

Node 

penalty 

Minimum 

Density 

Overlap 

threshold 

Run time 

Human PPI network – 

BIOGRID 

Nodes: 19634 

Edges: 270,970 

5 2 0.5 0.8 2 mins 40 

seconds 

Scaled version of ClusterONE 

Human PPI network – 

BIOGRID 

Nodes: 19634 

Edges: 270,970 

5 2 0.5 0.8 16.3 seconds 

Amazon graph Nodes: 334,863 

Edges: 925,872 

5 2 Auto 0.8 7.23 seconds 

YouTube graph Nodes: 1134890 

Edges: 2987624 

5 2 Auto 0.8 2.3 minutes 

(141 secs) 
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Table 3.5 Robustness analysis of ClusterONE 

Network 

name 

Perturbation Edges Nodes Percent of 

interactions 

dropped 

No. of 

significant 

complexes 

Intersection 

size of 

members of 

significant 

complexes 

Overlappi

ng p-value 

(overlap 

significan

ce) against 

a genome 

size of 

19000 

Jaccard 

index 

Odds 

Ratio 

ED 

network1 

3628 27557 7418 11.6 53 537∩ 481 = 

412 

0 e +00 0.68 891 

ED 

network2 

6736 24449 7418 21.6 71 537∩ 621 = 

364 

0 e +00 0.5 148 

ED 

network3 

14888 16297 7418 47.7 98 537∩ 722 = 

299 

1.5e -299 0.3 53.5 

EWS 

network1 

all edges 

and weights 

shuffled 

31185 7418 0 20 537∩72 = 

38 

6.20E-40 0.06 41.2 

EWS 

network2 

20% edges 

and weights 

shuffled 

31185 7418 0 9 537∩207 = 

38 

2.40E-20 0.05 8.24 

EWS 

network3 

40% edges 

and weights 

shuffled 

31185 7418 0 8 537∩ 292= 

58 

1.70E-32 0.075 9.43 
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Table 3.6 - List of 27 candidate genes with a viable and visible phenotype chosen 

for validation in a Drosophila model of HD 

Human 

Genes Drosophila Orthologs 

UFD1L Ufd1-like 

FANCI* FANCI* 

UBC Ubi-p63E 

TRIP12* Ctrip* 

NPLOC4 Npl 

WAPAL* wpl* 

TUBGCP2* Grip84* 

ESPL1 Sse 

ANAPC7 APC7 

PPP6C PpV 

UCHL5 uch-L5 

SHFM1 sem1 

ERCC3* hay* 

COPS2 alien  

NDC80* Ndc80* 

NLRC4 Diap2 

SUGT1 Sgt1 

YWHAH 14-3-3zeta 

YWHAG 14-3-3zeta 

SFN 14-3-3zeta 

FRY fry 

RMDN3 CG1575 

LATS2* Wts* 

PPP2CB mts 

PPP2CA* mts  

PPP2R2A tws 

PPP2R4 Ptpa 
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Figure 3.1 An example graph depicting internal and external vertices and edges 

along with the boundary vertex 
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Figure 3.2 - Protein complexes within HDI that are enriched for DNA repair and 

chromosome condensation related functions.  

The primary interactors within these complexes as colored as follows: genes 

interacting with wt-Htt (blue), with mHtt (red), with both wt and mHtt (purple). 

 

  

VCP complex PSMC complex 

YWHAG complex CCT complex 



86 

 

 

 

 

Figure 3.3 Robustness of ClusterONE to edge perturbation.  

Dropping edges ranging from 10% to approximately 50% leads to a drop in the 

clustering coefficient and an increase in the number of connected components in 

the fragmented network. 
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Figure 3.4 An adapted workflow layout of the Jerarca 
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Figure 3.5  Cladogram of HDI hierarchy  

The top left panel shows a hierarchical structure of HDI depicted in a circular 

cladogram. The top right panel shows a module containing candidate genes 

functionally enriched for chromosome condensation processes. while the bottom 

panel shows, the module containing candidate genes functionally enriched for DNA 

damage and mitotic cell cycle processes.  
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Figure 3.6 Suppressors of smc2-8 and condensin-cohesin genes suppress the mHtt 

toxicity (103Q) in yeast.  

A group of 36 smc2-8 mutant suppressors and seven condensin/cohesion related 

genes were tested. 23 genes were found to suppress mHtt (103Q) toxicity in yeast 

  

 - Gal + Gal 

25Q- SPC24 

103Q- SPC24 
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Figure 3.7 Hypothesis model of suppressors of smc2-8 mutation suppressing mHtt 

toxicity 

Overexpression of SPC24, a yeast homolog from one of the significant protein 

complexes detected in HDI, suppresses smc2-8 mutation and also suppresses mHtt 

toxicity. Hence, we hypothesize that overexpression of a set of genes known to 

suppress smc2-8 mutant, can also suppress mHtt toxicity. 

 

SPC24p 

Overexpression 

Smc2-8 mutation 

smc2 
smc4 

smc1 smc3 mHtt toxicity 

Chromosome condensation defect 

suppresses suppresses 

Overexpression of  
other suppressors of 

smc2-8 mutation 

Suppress or 
enhance ??? 
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Chapter 4 

4 Predicting physical interactors of the Huntingtin 

protein using Supervised Machine Learning 

methods. 

Experimental approaches such as Y2H (yeast two-hybrid) mass spectrometry (MS), 

Tandem Affinity Purification (TAP) and protein microarrays have been the most 

widely adopted method to identify protein-protein interactions (PPIs). While Y2H 

is sensitive to detection of potential protein partners, it cannot detect interactions 

involving more than two protein partners. Additionally, these interactions are 

detected by virtue of their occurrence in the Y2H system and do not affirm their 

interaction in a physiological state.  

The biological data generated using these experimental approaches though 

valuable, is subject to disadvantages; a high number of false positives being an 

important one of them. Machine learning approaches utilize the existing knowledge 

of protein interactors generated using these experimental approaches and help 

predict protein interactors. These methods use various protein features related to 

their structure, function or sequence to make PPI predictions to achieve better 

accuracy (A. Theofilatos et al., 2011). Other computational methods that integrate 
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various protein features into one predictor-classifier model have been able to 

accomplish higher accuracy (A. Theofilatos et al., 2011; Chen and Liu, 2005)  

In this study, we integrate various protein features such as motifs, domains and their 

topological properties in a PPI network, to predict protein interactors of mutant Htt 

(mHtt) protein. We propose a Gradient Boosting Modeling (GBM) based classifier 

that helps to predict Htt-interacting proteins. This classifier examines the 

relationships between the topological characteristics of proteins within a protein-

protein interaction network along with the structural and functional properties of 

the proteins to group them as interactors or non-interactors of mHtt protein. We 

study the extent of information captured by structural and topological aspects of 

proteins and investigate whether this information is sufficient enough to predict wt 

and/or mHtt protein interactors. 

4.1 Data 

4.1.1 Model development dataset: 

The machine learning model was built using a set of primary interactors of Htt 

protein experimentally detected in wild-type and BACHD mouse brains. This 

dataset is spatiotemporal collection of 747 candidate proteins identified using AP-

MS that form complexes with Htt in both wild-type and BACHD mouse brains 

(Shirasaki et al., 2012). This dataset was divided into 3 separate, non-overlapping 

groups as follows: Group 1 – containing proteins that interact with wt Htt protein 
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only, Group 2 – containing proteins that interact with mHtt only and Group 3 – 

containing proteins that interact with both wt and mHtt proteins.  

4.1.2 Input features 

4.1.2.1 Motif and domain properties  

Motif and domain information related to each of the three groups in the dataset were 

obtained from the Uniprot database (Magrane and Consortium, 2011) and used as 

features for the input data.  

4.1.2.2 PIN graph-theoretic properties  

Additionally, graph properties were computed for each protein in the dataset and 

used as feature inputs to the machine learning classifier. To compute these network 

properties, we used the protein-protein interactions in mouse, curated by the 

BIOGRID database. The mouse PPI network obtained from BIOGRID consists of 

8629 proteins and 19828 interactions. The following graph properties were 

calculated for candidate proteins in the input set: 

(a) Average Shortest Path Length: also, known as the characteristic path length. It 

measures the expected distance between two connected nodes in a network. 

(Assenov et al., 2008) 

(b) Betweenness Centrality: If p,q is the number of shortest paths between 

proteins p and q, and p,q(r) is the number of shortest paths between p and q 

that pass through protein r in a protein interaction network, then betweenness 
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centrality of the protein r is defined as p,q(r) /p,q , where the sum is taken 

over all distinct pairs p and q. The betweenness value for each node r is 

normalized by dividing by the number of node pairs excluding r: (Freeman, 

1977) 

(c) Closeness Centrality: it measures the extent to which a protein r is close to all 

the proteins in the network. If d(r, s) is the shortest distance between proteins 

r and s in a protein network, then the closeness centrality of protein r is 

defined as (n - 1)/Σq d(r, s), where n is the total number of proteins in the 

network (Beauchamp, 1965). 

(d) Clustering Coefficient: it is the fraction of the total possible interactions 

among direct neighbors of a protein in a protein interaction network. It is 

always a number between 0 and 1 (Watts and Strogatz, 1998). 

(e) Degree: is the number of edges connected to a node. 

(f) Eccentricity: it the maximum (non-infinite) length of a shortest path between r 

and another node in the network. If r is an isolated node, the value of this 

attribute is zero. 

(g) Neighborhood Connectivity: The neighborhood connectivity of a node r is 

defined as the average connectivity of all neighbors of r. The neighborhood 

connectivity distribution gives the average of the neighborhood connectivities 

of all nodes r with k neighbors for k = 0, 1…. Therefore, if the neighborhood 

connectivity distribution is a decreasing function of k, then the network 
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displays edges between low connected and highly connected nodes (Maslov 

and Sneppen, 2002) 

(h) Radiality: it is an index computed as follows:  

(Diameter of the connected component of node r) – (Average shortest path 

length of a node r) + 1. 

It is a number between 0 and 1.  

(i) Stress Centrality: is the number of shortest paths passing through a node. 

(j) Topological Coefficient: this is a measure attributed to those protein in the 

network that are not necessarily directly connected to each other. The measure 

is given by TCp = average(J(p,j)/kp), where J(p, j) denotes the number of 

nodes to which both p and j are linked, plus 1 if there is a direct link between 

p and j and kp is the number of links of node p (Stelzl et al., 2005). 

The graph properties of the proteins were calculated using the Network Analyzer 

application in Cytoscape (Assenov et al., 2008; Shannon et al., 2003) 

4.1.3 Dataset formatting 

Variable names for motif and domain information were coded, instead of their long 

raw names, with numerical identifiers for classifier models. Additionally, presence 

of motif or domain for a certain protein was denoted as ‘1’ while absence of a motif 

was denoted as ‘0’. The resultant master dataset had 554 proteins as 

rows/observations and motifs, domains and graphical properties (n=779) as 

columns/dimensions. Detailed characteristics of the master dataset are given in the 
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Table 4.1. Evidently, the master dataset is sparsely populated and has a higher 

number of variables than the number of observations. This requires variable 

reduction and dimension reduction methods, which is explained in Section 4.2.1   

4.1.4 Classification target 

For classification, a multivariate prediction approach was initially used to 

accommodate the three response variables. However, we later moved on to a 

binomial prediction approach for better prediction power and simply focused on 

two response variables/groups of proteins viz. (a) proteins that interact with wHtt 

only (n = 116) (group1) and (b) proteins that interact with mHtt (n = 438) (group 2 

(n = 108) + group 3 (n= 330)). This binary approach to analysis showed an 

improvement in the model’s predictive power. The three classifiers used for model 

development are addressed in the next section. 
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4.2 Methods 

4.2.1 Variable and dimension reduction methods 

The set of variables that best capture the relationship between the response variable 

and the predictor variables was determined by calculating the Information Value 

(IV) of the predictor variables (Shannon, 1948). Information value helps in variable 

selection during model building. Information value of x for measuring y is a number 

that attempts to quantify the predictive power of x in capturing its relationship with 

y. Assuming that the target variable y is binary in nature, IV is defined as, 

𝑰𝑽 =  ∑(𝒃𝒂𝒅𝒊 −  𝒈𝒐𝒐𝒅𝒊) 𝐥𝐧
𝒃𝒂𝒅𝒊

𝒈𝒐𝒐𝒅𝒊

𝟏𝟎

𝒊=𝟏

 

 

where,  

i ranges from 1 to 10, in which the data is divided, 𝑏𝑎𝑑𝑖 is the proportion of bad 

accounts captured in the ith division out of all bad accounts in the population and 

𝑔𝑜𝑜𝑑𝑖 is the proportion of good accounts in the ith division. 

Additionally, Principal Component Analysis (PCA) of motif and domain variables 

was used for dimension reduction (Hotelling, 1933; Pearson, 1901). PCA converts 

a set of observations into a smaller set of linearly uncorrelated variables called as 

principal components through orthogonal transformation thus leading to variable 

reduction. Each principal component depicts variability in the data, in a descending 

order of magnitude, with the first component capturing the maximum variability.  
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4.2.2 Logistic regression with regularization 

A logistic regression model depicts the relationship between the categorical 

dependent variable (response variable) and the independent feature variables 

(predictor variables) by estimating probabilities through a cumulative logistic 

distribution function (Wedderburn, 1974). Considering that the response variable 

for our dataset is binary in nature, the logistic regression model takes the form of a 

Generalized Logistic Model (GLM) through the following equation: 

log (
𝜋(𝑥)

1 −  𝜋(𝑥)
) = 𝛼 +  𝛽𝑥 

The output of a logistic regression model is the probability that a given protein is 

an interactor of either wt Htt, mHtt or both wt and mtHtt protein.  

Logistic regression with regularization was used to obtain stable fit to the sparse 

data in this study. Regularization methods work by penalizing the coefficients of 

the features and minimize the error between the predicted and actual observations 

either through L2 regularization (Ridge regression) or through L1 regularization 

(Lasso regression) (Tibshirani, 1996).  The cost function that needs to be minimized 

is also called as RSS (Residual Sum of Squares) and is given by the equation: 

Cost (W) = RSS(W) = ∑ {𝑦𝑖 − 𝑦𝑖̂}
2𝑁

𝑖=1  =  ∑ {𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗
𝑀
𝑗=0 }

2𝑁
𝑖=1  
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where X is the matrix of input features, y is the actual outcome variable, ŷ is the 

predicted value of y, w is the weights or the coefficients, N is the total number of 

data points available, and M is the total number of features. 

Penalizing the coefficients with a regularization parameter helps to avoid a large 

emphasis on any one particular feature and also helps to reduce the model 

complexity. Lasso regression performs L1 regularization by adding a penalty equal 

to the absolute value of the magnitude of the coefficients and is given by the 

following equation: 

Cost (W) = RSS(W) +  * (sum of absolute value of weights) 

=  ∑ {𝑦𝑖 −  ∑ 𝑤𝑗𝑥𝑖𝑗

𝑀

𝑗=0

}

2

+   ∑|𝑤𝑗|

𝑀

𝑗=0

𝑁

𝑖=1

 

Ridge regression performs L2 regularization by adding a penalty equal to the square 

of the magnitude of the coefficients and is given by the following equation: 

Cost (W) = RSS(W) +  * [sum of square of weights] 

=  ∑ {𝑦𝑖 −  ∑ 𝑤𝑗𝑥𝑖𝑗

𝑀

𝑗=0

}

2

+   ∑|𝑤𝑗
2|

𝑀

𝑗=0

𝑁

𝑖=1
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4.2.3 Random forest 

Random Forest is an ensemble decision tree-based machine learning method that 

combines groups of weak tree models to result in a stronger model. This model 

grows multiple decision trees, wherein, each tree ‘votes’ for a class based on the 

attributes (predictor variables) the tree was built on. The model predicts new data 

by choosing the classification that receives the most votes over all the trees 

(Breiman, 2001). Random forest model thus reduces the variance of prediction 

while retaining a low bias. A lower bias and variance translates to a reduction in 

the prediction error and also avoids the issue of over-fitting the model to the training 

data. 

4.2.3.1 Implementation and Parameters used: 

We used the random forest package in R for analysis (Breiman, 2001; Liaw and 

Wiener, 2002). All the three types of predictor variables – motifs, domains and 

graphical properties were used as input for the Random Forest model. The data was 

scaled and centered prior to employing the model. The parameters used to run the 

model were as follows: 

 ntree – number of trees to grow. Higher number of trees gives a better 

performance., 

 mtry – number of variables randomly sampled as candidates at each split. 
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 Nodesize – minimum size of terminal node/leaf of the decision tree. A 

smaller node size causes the model to capture more noise in the train data.  

4.2.4 Gradient Boosting Machine (GBM) 

Gradient Boosting is also a process that generates an ensemble of trees. However, 

the main premise of this model is the concept of ‘boosting’ that serially adds new 

prediction models to the ensemble. A new weak, base-learner model is trained at 

every iteration based on the negative gradient of the loss function of the entire 

ensemble obtained till that point (Friedman, 2001; Natekin and Knoll, 2013). Since 

our response variable is binary in nature, we used a ‘binomial’ distribution of the 

variable to calculate the loss of function gradient. The model complexity is 

controlled by using a shrinkage factor that reduces the impact of each base-learner 

model added to the ensemble. Shrinkage penalizes the magnitude of each iteration 

and reduces the size of additional steps. Such a method helps to improve the model 

accuracy through a series of smaller steps rather than a few large steps (Natekin 

and Knoll, 2013) The parameters used to run the  model were as follows: 

 n.trees – the total number of trees to fit which is equal to the number of 

iterations  

 cv.folds – number of cross-validations to perform  

 interaction depth – the maximum depth of variable interactions 
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 n.minobsinnode – minimum number of observations in the terminal nodes 

of the trees. 

 shrinkage – also known as learning rate or step-size reduction parameter 

for the model that is applied to each tree during expansion.   

4.3 Results 

The master dataset was prepared before model training and testing, first, by 

imputing the missing values in the dataset. The missing values in the motif and 

domain predictor variables were replaced with “-1” while the missing values in the 

topology/graphical predictor variables were imputed with the mean of their 

respective column data. The 769 predictor variables in the master data, which 

consist of motif, domain, and graph-theoretic properties, were then reduced 

dimensionally using two approaches – (a) Information Value (IV) and (b) Principal 

Component Analysis (PCA)   

4.3.1 Variable and dimension reduction 

Figure 4.1 shows the information values of the predictors in descending order. The 

IV of the motif, domain, graph-theoretic variables ranged from 0.2256 to 0.0108. 

IV cutoffs of 0.1, 0.056 and 0.055 were initially selected for variable reduction. 

Among these, an IV cutoff ≥ 0.056 was chosen for variable reduction because of 

the large plateau, corresponding to 0.055, as seen in Figure 4.1. The accuracy of a 

lasso regression model using this cutoff value was found to be the best as well. 



103 

 

 

 

To reduce the dimension of the input variables, we also tried PCA analysis, 

applying only on motif and domain variables since they account for a vast majority 

of the input variables. 

PCA on the motif and domain variables (n = 769) revealed 554 principal 

components (PCs). The three leading PCs captured most of the variance in the input 

data viz. 33.5 %, 7.9 % and 5.3 % respectively (Figure 4.2). These top three PCs 

were then combined with 10 graph-theoretic variables to form a development 

dataset for further testing. 

4.3.2 Logistic regression with regularization 

We have performed a series of experiments using the logistic regression with Lasso 

regularization to determine the best variable/dimension reduction approach. The 

following set of experiments were considered with various configurations of input 

data: 

1. Experiment 1 – Raw input of master dataset with imputed missing values: 

779 predictor variables 

2. Experiment 2 – [Variable selection of motif and domain variables using an 

IV cutoff of ≥ 0.056]. + [Topology/Graphical predictors]:157 predictor 

variables 

3. Experiment 3 – [Variable reduction of motif and domain variables using 

PCA] + [Topology/Graphical predictors]: 13 predictor variables  
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Because of the small sample size, each experiment is evaluated using 10-fold cross-

validation. 10-fold validation splits the original dataset randomly into 10 samples 

of equal size. Out of these 10 samples, one is retained as a validation dataset, while 

the remaining 9 samples are used as a training set. This cross-validation process is 

repeated k times (k = 10 in this experiment), with each of the 10 samples used 

exactly once as a validation dataset. This method therefore makes sure that all the 

observations are used for both training and validation while each observation gets 

to be used exactly once as a validation sample.  

The AUC values of regularized logistic regression using the lasso, elastic-net and 

ridge regularization are given in the Table 4.2. AUC values for experiment 1 with 

10-fold cross-validation ranged from 0.611 (Lasso and Elastic-net) to 0.584 

(Ridge). For experiment 2, they ranged from 0.621 (Lasso and Elastic-net) to 0.619 

(Ridge). For experiment 3, AUC values were 0.615 (Lasso), 0.613 (Elastic-net) and 

0.599 (Ridge). Among the 3 different regularization methods, Lasso performed the 

best in all 3 experiments although the Elastic net results were very close to those of 

Lasso.  

Among the three experiments, experiment 2 with variable selection by IV gave the 

best prediction accuracy (AUC = 0.621) in 10-fold cross-validation. Note that the 

performance of all three experiments with Lasso is very close, with AUC values 
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ranging between 0.611 and 0.621. Such minimal differences can be explained by 

the built-in variable selection methods within Lasso itself. 

4.3.3 Lasso with data segmentation 

We further adopted a segmentation approach to achieve better prediction accuracy 

with the Lasso model by dividing the Experiment 2 dataset into four segments as 

follows: 

1. Lasso Segment 1-  Motif-Topology segment - containing proteins with 

only motif and topological properties as the predictor variables (48 

proteins, 157 predictor variables) 

2. Lasso Segment 2-  Domain-Topology segment – containing proteins with 

only domains and graphical properties as the predictor variables, (231 

proteins, 157 predictor variables) and 

3. Lasso Segment 3-  Motifs and Domain-Topology segment- containing 

proteins with motifs, domains and graphical properties as the predictor 

variables (35 proteins, 157 predictor variables) 

4. Lasso Segment 4 – Only Topology segment – containing proteins with 

only graphical properties as the predictor variables (240 proteins, 157 

predictor variables). 

Considering the low sample size of Segments 1 and 3, in-sample predictions were 

obtained for these segments using LOOCV (Leave one out cross-validation). The 
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AUC values for all the four data segments range from 0.6 to 0.85 (Table 4.3 and 

Figure .4.3) Though these values suggest a better prediction accuracy, it should be 

noted that in-sample predictions usually depict an optimistic picture of the model 

fit and the model accuracy more than often drops after using repeated cross-

validation.  

Nonetheless, these AUC values, encouraged us to believe that a segmentation 

approach using other models could help us reach better prediction accuracies. 

4.3.4 Random forest 

Random forest is a decision-tree based ensemble model known to reduce the 

variance and also retain a low bias in its model predictions, thus balancing accuracy 

and complexity of the model. A series experiments were conducted by varying two 

main hyper-parameters used in Random forest, the number of trees (ntree) and the 

number variables available for splitting at each node (mtry). The 10-fold cross-

validated AUC values from these experiments are given in Table 4.4. 

The AUC values ranges from 0.54 to 0.594, which are lower than the logistic 

regression with Lasso regularization. Experiment 2 with variable selection by IV 

again revealed the best prediction accuracy (AUC = 0.594, ntree = 500, mtry = 12) 

in 10-fold cross-validation among all the parameter tuning experiments. The 

variable importance for proteins interacting with mutant Htt in experiment 2 is 
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shown in Figure 4.4. It was found that Random forest relies heavily on the graphical 

properties of the proteins while fitting the model.  

One of the explanations for a lower predictive power of the Random forest model 

could be the small sample size in our data. Random forest works well by 

intentionally overfitting the data with deep bushy trees and averaging out these 

overfit and diverse trees. The small samples size in our data makes it difficult to 

create diverse overfit trees, thus hindering Random forest’s performance. 

4.3.5 Gradient Boosting Machine (GBM) 

GBM is another tree-based ensemble model by reducing bias step-by-step using 

shallow trees. A GBM model was used to fit the input data for all the three 

experiments, which examine the effect of variable and dimension reduction. For 

these initial experiments, the following parameters were used:  

 5000 trees with 10-fold cross-validation to determine the optimal number 

of trees 

 interaction depth of 1 

 number of minimum observation in each node equals to 1 

 shrinkage of 0.001  

Initial implementation of the GBM algorithm on all the three experiments showed 

that the AUC ranged from 0.584 to 0.6, with experiment 2 obtaining the highest 

AUC (0.6) among the three experiments (Table 4.5). Experiment 2 selects variable 
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by using Information value >= 0.056 and this turns out to be consistently the best 

method across all machine learning algorithms we tested. 

Since GBM has more hyper-parameters to tune than the other machine learning 

methods we tested so far, we decided to conduct additional experiments to check 

the sensitivity to different hyper parameters. The hyper-parameter tuning 

experiments were conducted after the variable selection by IV (Experiment 2). The 

experimental design and the AUC values from 10-fold cross-validations are shown 

in Table 4.6. In these experiments, the interaction depth were set to 1 to avoid 

overfitting and 5000 trees with 10-fold cross validation was used within the fitting 

process to determine the optimal number of trees. Two key parameters, shrinkage 

and the minimum number of observation in each node, were varied. 

It was found that a shrinkage factor of 0.001 and a minobsnode of 10 gave the 

highest AUC of 0.61 for experiment 2. This result is better than that of Random 

forest (AUC = 0.594) but is not as good as the logistic regression with Lasso 

(0.621). 

4.3.6 GBM with data segmentation 

Encouraged by the prospect of better prediction accuracy using data segments, we 

adopted a segmentation approach with the GBM model and divided the master 

dataset into three segments as follows: 
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5. Segment 1-  Motif-Topology segment - containing proteins with only 

motif and topological properties as the predictor variables (48 proteins, 60 

predictor variables) 

6. Segment 2-  Domain-Topology segment – containing proteins with only 

domains and graphical properties as the predictor variables, (231 proteins, 

596 predictor variables) and 

7. Segment 3-  Motifs and Domain-Topology segment- containing proteins 

with motifs, domains and graphical properties as the predictor variables 

(35 proteins, 143 predictor variables) 

Note that the number of input predictor variables vary for each segment since the 

set of proteins in each segment contains a different number of motifs and/or 

domains. 

PCA analysis was used for motif and domain variable reduction for the above 

segments. The following set of GBM experiments were considered with various 

configurations of input data: 

1. GBM Segment Experiment 1 – [Variable selection of motif variables 

using PCA]. + [Topology/Graphical predictors]: 22 predictor variables 

2. GBM Segment Experiment 2 – [Variable selection of domain variables 

using PCA]. + [Topology/Graphical predictors]: 95 predictor variables 
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3. GBM Segment Experiment 3 – [Variable reduction of motif and domain 

variables using PCA] + [Topology/Graphical predictors]: 23 predictor 

variables  

For these experiments, the following parameters were used:  

 5000 trees with 10-fold cross-validation to determine the optimal number 

of trees 

 interaction depth of 1 

 number of minimum observation in each node equals to 1 

 shrinkage of 0.001  

The 10-fold cross-validated AUC values from these experiments are given in Table 

4.7.  AUC values for all the three experiments range from 0.55 to 0.88. GBM 

Segment Experiment 1 with motifs and topology as predictor variables revealed the 

best prediction accuracy (AUC = 0.88, ntree = 5000, shrinkage factor = 0.001, 

n.minobsnode = 1, interaction depth = 1).  

4.3.7 Important Predictor variables 

The above results demonstrate that logistic regression with Lasso gives better 

prediction accuracy for experiment 2 among the three experiments that use IV for 

variable reduction. However, data segmentation allows us to achieve much better 

prediction accuracy using the GBM model, with GBM Segment Experiment 1 

revealing the best AUC among the three data segment models (Figure 4.5).  
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We therefore proceeded to examine the variables of importance found from the 

GBM Segment Experiment 1. Table 4.8 shows the top 5 important variables for 

GBM Segment Experiment 1 in predicting proteins that interact with mutant Htt 

protein. Among the graphical properties of proteins, degree, average shortest path 

length, betweenness centrality and neighborhood connectivity were found to be the 

most important predictor variables. This is indeed true to imagine intuitively as a 

protein with numerous interacting proteins is more likely to interact with 

Huntingtin protein. Next, we examined the motif variables that contributed to the 

PC4, PC6 and PC10. Important motifs in the list were found to encode for an amino 

acid sequence relating to nuclear localization signals in proteins (Table 4.9). These 

specific proteins are encoded by genes such as RAB3D, RAB3A and RAB3B which 

are known to function in GTPase mediated signal transduction pathways and 

vesicle mediated transport. We also find the gene NPM1 that encodes for a protein 

that is essential for ribosome biogenesis, centrosome duplication, histone assembly 

and suppression of p53/TP53. Another set of proteins SLC25A4p and SLC25A5p 

are involved in chromosome segregation and in catalyzing exchange of ADP with 

mitochondrial ATP across the inner mitochondrial membrane. The above findings 

recapitulate the observations made in various animal and cell models of HD and 

therefore lend support to the results obtained by the GBM model.  

We also examined motifs and domains of relative importance as found by the Lasso 

regression model (Table 4.10). Important motifs in the list were found to encode 
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for an amino acid sequence relating to nuclear localization signals in proteins 

(Table 4.11). Other motifs were found to encode a SUMO paralog- specific binding 

sequence in proteins. Proteins containing these motifs are encoded by genes such 

as HNRNPQ, HNRNPA2B1 and LMNB1. HNRNPQ, HNRNPA2B1 are nuclear 

ribonucleoproteins involved in pre-mRNA processing in the nucleus, mRNA 

processing, RNA binding and splicing. HNRNPA2B1 has been shown to bind to 

telomeric DNA sequences thus protecting telomeric DNA from digestion. It is also 

involved in chromatin regulation and telomere extension. LMNB1 is a component 

of the inner nuclear membrane and is thought to interact with chromatin. DDX4p, 

a protein encoded by the gene DDX4 has ATP-dependent helicase activity and is 

involved in translational control and gene silencing processes by RNA in the 

mitotic cell cycle phase.  

Similarly, proteins containing domains of importance are encoded by genes such as 

HIST1H1C, HIST1H1E and HIST1H1B that are members of the histone family 

(Table 4.11). Histones are required for condensation of nuclear chromatin and are 

known to regulate gene transcription to chromatin remodeling and DNA 

methylation. Histones are also involved in cellular response to stress.  Another set 

of proteins containing domains of importance are encoded by the genes such as 

RAD23A and RAD23B that are known to play an important role in DNA nucleotide 

excision repair and in generating a cellular response to DNA damage. RAD23B is 
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specifically involved in global genome nucleotide-excision repair (GG-NER) and 

in modulating proteasomal degradation of ubiquinated proteins. 

4.4 Conclusion 

Our results demonstrate the informative value of motifs, domains of proteins in 

predicting interactors of mHtt. We show that graph theoretic properties of these 

protein interactors also help to determine a possible existence of interaction with 

Htt. Considering the sparse nature of predictor variables, we show that while using 

Information Value (IV) for variable reduction to provide us with better prediction 

accuracy, a segmentation approach using the GBM model coupled with PCA for 

dimension reduction, enables us to reach a higher prediction accuracy. The GBM 

model specifically reveals the importance of motifs and topology variables in 

predicting protein interactors of mutant Htt. The protein motifs of relative 

importance detected using this approach are known to annotated with functions 

such as vesicular transport, mitochondrial permeability and GTPase activity; all of 

which are established cellular processes known to be affected in HD. Additionally, 

we show that motifs and domains of importance required to predict proteins 

interacting with mHtt, as found by the Lasso model are annotated with functions 

such as condensation of nuclear chromatin, DNA nucleotide-excision repair, DNA 

and chromatin binding and cellular response to stress. These findings, support our 

assumption that mHtt interferes with chromosome condensation and DNA repair 



114 

 

 

 

processes and leads to accumulation of DNA damage in neuronal cells eventually 

leading to apoptosis. 
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4.5 Tables and Figures 

Table 4.1 - Characteristics of data fed to the classifiers 

Proteins 
M1 … 

Mxx 

Myy- 

Mzz 

D1 ... 

Dxx 

Dyy … 

Dzz 
Topology 

Response 

variables 

P1 –  

Px 

Only motif 

information 
      

 
 

Topology 

Px – 

 Py 
  

Both motif and 

domain 
information 

  

 Group 1, 

Group 2, 
Group 3 

Topology 

Py - Pz       

Only 

domain 
information 

 

Topology 

Pz – 
P554 

    

Only 

Topology 

information 

 

* Number of rows (proteins) = 554 

* Number of predictors (motifs, domains and topology) = 779  

* Response variables (Group 1, Group 2 and Group 3) are binary in nature.  
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Table 4.2 – Area under curve for regularized logistic regression using Lasso, 

Ridge and Elastic-net models from 10-fold cross-validation experiments.  

The predictor variables include motifs, domains and graphical properties of the 

proteins. 

Regularized Regression - AUC values 

(Predictor variables include motifs, domains and graphical properties) 

Experiment 1 – Raw input of master dataset with imputed missing 

values 

 Lasso (  = 1) Ridge ( = 0) Elastic net ( = 0.5) 

10-fold CV 0.611 0.584 0.61 

     

Experiment 2 – [Variable selection with an IV cutoff >= 0.056]  

 Lasso (  = 1) Ridge ( = 0) Elastic net ( = 0.5) 

10-fold CV 0.621 0.619 0.62 

     

Experiment 3 - [Top 3-PCs on all motif/domain information without IV 

filtering] + [Topology/Graphical predictors]  

 Lasso (  = 1) Ridge ( = 0) Elastic net ( = 0.5) 

10-fold CV 0.615 0.599 0.613 
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Table 4.3 Area under curve for data segments of Experiment 2 obtained using the 

Lasso regression model.  

The predictor variables include motifs and/or domains and graphical properties of 

the proteins. 

Experiment 2 - Data Segmentation 

Lasso regression - AUC values 

(Predictor variables include motifs, domains and graphical properties) 

Segment 1 – Motif - Topology Segment (48 proteins and 157 predictor 

variables) 

 Lasso (  = 1) 

In-sample predictions (LOOCV) 0.787 

   
Segment 2 – Domain - Topology Segment (231 proteins and 157 

predictor variables) 

 Lasso (  = 1) 

In-sample predictions (LOOCV) 0.597 

   
Segment 3 – Motif and Domain - Topology Segment (35 proteins and 

157 predictor variables) 

 Lasso (  = 1) 

In-sample predictions (LOOCV) 0.848 

  

Segment 4 – Only Topology Segment (240 proteins and 157 predictor 

variables) 

 Lasso (  = 1) 

In-sample predictions (LOOCV) 0.669 
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Table 4.4 - Area under curve for random forest model from 10-fold cross-

validation experiments.  

Predictor variables include motifs, domains and graphical properties of the 

proteins 

Random Forest - AUC values 

(Predictor variables include motifs, domains and graphical properties) 

Experiment 1 – Raw input of master dataset with imputed missing values 

 mtry = 5 mtry = 10 mtry = 12 mtry = 13 mtry = 15 

10-fold cv 

(ntree = 500) 
0.566 0.573 0.563 0.57 0.57 

10-fold cv 

(ntree = 1000) 
0.559 0.576 0.577 0.58 0.575 

Experiment 2 – [Variable selection with an IV cutoff >= 0.056]  

 mtry = 5 mtry = 10 mtry = 12 mtry = 13 mtry = 15 

10-fold cv 

(ntree = 500) 
0.585 0.577 0.594 0.58 0.581 

10-fold cv 

(ntree = 1000) 
0.584 0.581 0.59 0.581 0.579 

Experiment 3 - [Top 3-PCs on all motif/domain information without IV 

filtering] + [Topology/Graphical predictors] 

 mtry = 5 mtry = 10 mtry = 12 mtry = 13 mtry = 15 

10-fold cv 

(ntree = 500) 
0.564 0.57 0.554 0.569 0.569 

10-fold cv 

(ntree = 1000) 
0.567 0.569 0.571 0.569 0.569 
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Table 4.5 - Area under curve for GBM model from 10-fold cross-validation 

experiments. 

 Predictor variables include motifs, domains and graphical properties of the 

proteins 

Gradient Boosting Machine (GBM) - AUC values 

(Predictor variables include motifs, domains and graphical properties) 

Experiment 1 – Raw input of master dataset with imputed missing values 

10-fold CV 0.591 

Experiment 2 – [Variable selection with an IV cutoff >= 0.056]  

10-fold CV 0.6 

Experiment 3 - [Top 3-PCs on all motif/domain information without IV 

filtering] + [Topology/Graphical predictors]  

10-fold CV 0.584 

 

Table 4.6 – Experiment 2 – Parameter tuning for GBM 

Experiment 2- Variable selection by IV >= 0.056 

GBM parameter tuning 

 cv.folds 
Interaction 

depth 
n.tree shrinkage n.minobsinnode AUC 

1 10 1 5000 0.001 5 0.608 

2 10 1 5000 0.001 10 0.61 

3 10 1 5000 0.005 1 0.6 

4 10 1 5000 0.005 5 0.6 

5 10 1 5000 0.005 10 0.601 

6 10 1 5000 0.01 1 0.597 

7 10 1 5000 0.01 5 0.605 

8 10 1 5000 0.01 10 0.607 
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Table 4.7 - Area under curve for GBM with data segmentation using 10-fold 

cross-validation.  

Gradient Boosting Machine (GBM) with data segmentation- AUC values 

(Predictor variables include motifs, domains and graphical properties) 

GBM Segment Experiment 1 - [Variable selection of motif variables 

using PCA]. + [Topology/Graphical predictors]: 

10-fold CV 0.88 

GBM Segment Experiment 2 - [Variable selection of domain variables 

using PCA]. + [Topology/Graphical predictors]: 

10-fold CV 0.549 

GBM Segment Experiment 3 - [Variable selection of motif and 

domainvariables using PCA]. + [Topology/Graphical predictors]: 

10-fold CV 0.588 

 

Table 4.8 – Overall importance of top 5 variables in predicting proteins 

interacting with mutant Htt protein using GBM model. 

Predictor Variable 

Relative 

Influence 

Degree 12.17 

PC4 11.70 

Average Shortest Path Length 10.88 

PC10 9.16 

PC6 8.98 
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Table 4.9  Genes and their encoded proteins containing motifs of importance for GBM Segment Experiment 1 

Motif name Mouse 

Uniprot 

Protein 

ID 

Human 

Ortholog 

Protein Function 

MOTIF 153 158 Nuclear 

localization signal 

MOTIF 686 690 DXDXT 

motif 

MOTIF 697 701 LXXIL 

motif 

Q99PI5 LPIN2 nuclear transcriptional coactivator for PPARGC1A to 

modulate lipid metabolism 

Fatty acid metabolism 

MOTIF 51 59 Effector 

region 

MOTIF 51 59 Effector 

region 

P35276 

P63011 

Q9CZT8 

RAB3D 

RAB3A 

RAB3B 

GTPase mediated signal transduction, protein (vesicular) 

transport 

Exocytosis, regulation of synaptic vesicle fusion, 

neurotransmitter release 

Protein transport (vesicular traffic of proteins) 

MOTIF 55 65 HIGH region 

MOTIF 718 722 KMSKS 

region 

Q8BMJ2 LARS nucleotide binding and aminoacyl-tRNA editing activity 

MOTIF 372 377 Selectivity 

filter 

MOTIF 493 495 PDZ-

binding 

P16388 KCNA1 ion channel activity and potassium channel activity 

primarily in the brain 

MOTIF 152 157 Nuclear 

localization signal 

MOTIF 190 196 Nuclear 

localization signal 

Q61937 NPM1 ribosome biogenesis, centrosome duplication, histone 

assembly, cell proliferation, and regulation of tumor 

suppressors p53/TP53 
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Motif name Mouse 

Uniprot 

Protein 

ID 

Human 

Ortholog 

Protein Function 

MOTIF 235 240 Substrate 

recognition 

P48962 SLC25A4 Catalyzes the exchange of cytoplasmic ADP with 

mitochondrial ATP across the mitochondrial inner 

membrane. 

MOTIF 235 240 Substrate 

recognition 

P51881 SLC25A5  Role in chromosome segregation, Catalyzes the exchange 

of cytoplasmic ADP with mitochondrial ATP across the 

mitochondrial inner membrane. 
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Table 4.10 – Overall importance of top 10 variables in predicting proteins 

interacting with mutant Htt protein using Lasso Regression model. 

Predictor variable 
Overall 

importance 

Betweenness Centrality 55.73068938 

Closeness Centrality 3.79704057 

DOMAIN 36 109 H15 0.391185768 

MOTIF 564 578 Bipartite nuclear localization signal 0.262330373 

MOTIF 416 421 Nuclear localization signal. 0.236135785 

MOTIF 9 15 Nuclear localization signal. 0.212858651 

Topological Coefficient 0.202029349 

MOTIF 89 95 Required for SUMO paralog-specific binding. 0.155780768 

DOMAIN 1 79 Ubiquitin-like. 0.141763696 

MOTIF 261 289 Q motif 0.138626675 
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Table 4.11 Genes and their encoded proteins containing motifs and domains of importance found using Lasso 

regression for Experiment 2. 

Motif/Domain 

name 

Mouse 

Uniprot 

Protein ID 

Human 

Ortholog 

Protein Function 

MOTIF 564 578 

Bipartite nuclear 

localization signal. 

Q7TMK9 HNRNPQ RNA binding and splicing, mRNA processing, 

Component of the GAIT (gamma interferon-activated 

inhibitor of translation) complex, mediates interferon-

gamma-induced translation inhibition in inflammation 

processes. 

MOTIF 416 421 

Nuclear localization 

signal. 

P14733 LMNB1 provides a framework for the nuclear envelope, 

interacts with chromatin. 

MOTIF 9 15 

Nuclear localization 

signal.  

O88569 HNRNPA2B1  pre-mRNA processing in the nucleus, mRNA 

metabolism and transport, involved in chromatin 

regulation and acetylation and telomere extension, 

protecting telomeric DNA repeat against endonuclease 

digestion, 

MOTIF 89 95 

Required for SUMO 

paralog-specific 

binding. 

P57080 USP25  

 

peptidase activity and thiol-dependent ubiquitin-

specific protease activity. 

MOTIF 261 289 Q 

motif 

Q61496 DDX4  nucleic acid binding and ATP-dependent helicase 

activity, involved in gene silencing processes by RNA 

in mitotic prophase. 
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Motif/Domain 

name 

Mouse 

Uniprot 

Protein ID 

Human 

Ortholog 

Protein Function 

DOMAIN 36 109 

H15 

P15864 

P43274 

P43276 

HIST1H1C  

HIST1H1E  

HIST1H1B 

condensation of nucleosome chains, DNA, RNA and 

chromatin binding, DNA methylation, cellular 

response to stress, chromatin regulation/acetylation 

DOMAIN 1 79 

Ubiquitin-like 

P54726 

P54728 

RAD23A 

RAD23B 

nucleotide excision repair, and recognition of DNA 

repair and DNA damage, delivery of polyubiquitinated 

proteins to the proteasome,  
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Figure 4.1- Information Value of Motif and domain variables.  

The red dotted line (IV = 0.056) represents the cutoff IV selected for model building.  
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Figure 4.2 - Full scree plot of variance explained by the top 150 principal components of motif and domain variables.  
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Figure 4.3- Receiver Operating Curves (ROC) of data segments for Experiment 2 using Lasso regression  

Motif-topology segment (in Red), domain-topology segment (in Green) and motif and domain - topology segment (in 

Blue), only topology segment (purple)   
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Figure 4.4 - Variable importance of proteins interacting with mutant Htt as shown by the Random Forest.   
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Figure 4.5 – Receiver Operating Curves (ROC) for data segments of the master dataset using GBM model. 

Motif-topology segment (in Red), domain-topology segment (in Green) and motif and domain - topology segment (in 

Blue). 
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5 Summary 

Although extensive studies on Huntington’s disease (HD) have revealed the 

complex pathophysiology of this severely crippling disorder, the sequence of 

events through which the mutant Huntingtin (mHtt) protein executes its action still 

remains elusive. The complexity of the pathophysiology of HD can be attributed to 

the tendency of mHtt to abnormally interact with various other proteins that either 

do or do not interact with the wild-type Htt protein in normal conditions. The 

presence of Htt protein at various subcellular locations and its association with 

numerous other protein partners during its normal course of action also complicates 

the picture. The phenotype of HD is therefore an outcome of numerous processes 

initiated by the mHtt protein along with other proteins that act as either suppressors 

or enhancers of the effects of mHtt protein and PolyQ aggregates. To address this 

complexity, researchers have detected and analyzed proteins that physically interact 

with wild-type and mHtt proteins and have provided valuable information on 

various molecular and cellular processes affected in the mutant cells. 

We hypothesized that integration of physical and genetic interactors of wild type 

and mHtt protein would enable us to predict unknown interactors of Htt protein 

using both unsupervised and supervised machine learning approaches. We built a 

Huntington’s disease integrome (HDI) integrating human orthologs of protein 
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interactors of wild-type and mHtt in a mouse model of HD, with genetic modifiers 

of mHtt toxicity found in yeast HD models.  

We used an unsupervised machine learning algorithm to partition the network into 

clusters and in the process discovered a novel connection linking Huntington’s 

disease with chromosome condensation, DNA damage and apoptosis. We 

identified 27 candidate genes and validated three (NPLOC4, TUBGCP2 and 

NLRC4) of those genes in a drosophila model of HD These findings are novel and 

remarkable for Huntington’s disease and help establish our model implicating the 

role of mHtt in causing abnormal chromatin condensation, DNA damage, and 

neuronal cell death. 

We used a separate supervised machine learning approach to create a model that 

built on the structural and graphical properties of protein interactors of both wild 

and mHtt protein. This model demonstrated that the information contained in 

proteins such as their motifs, domains and graphical properties have the ability to 

predict an interaction with Huntingtin protein, and offer a way to test and predict 

other interactors of wild type and mHtt protein.  

Despite extensive research, researchers are still working to close gaps between the 

molecular processes affected in HD and their transition to clinical symptoms in HD 

patients. We postulated a systems biology approach utilizing machine learning 

techniques to reconcile the space between the HD genotype and phenotype. Indeed, 
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the machine learning approaches applied here put forth a system to identify 

molecular processes yet unknown to be involved in HD, in the hope of developing 

curative therapeutic options for this disabling disease. 
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6 Appendices 

6.1 Network Properties of HDI 

Given a graph G with vertices {v1, v2, ……, vn}, the adjacency matrix of G is 

defined to be as follows: 

𝐴 = (𝑎𝑖𝑗) with 𝑎𝑖𝑗 =  {
1 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗)𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑖𝑛 𝐺

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            
  

For an unweighted network, the adjacency 𝑎𝑖𝑗 = 1 if the nodes i and j are connected 

and 0 otherwise while for a weighted network, 0 ≤ 𝑎𝑖𝑗 ≤ 1. 

6.1.1 Network heterogeneity 

The connectivity of a node is denoted by the number of its direct neighbors (for 

unweighted networks) and by the sum of the strength of its connections to other 

nodes (for weighted networks)(Dong and Horvath, 2007) 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖 =  𝑘𝑖 =  ∑ 𝑎𝑖𝑗

𝑗 ≠𝑖

 

Network heterogeneity is the coefficient of variation of the connectivity.(Dong and 

Horvath, 2007)  

𝐻𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  
√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑘)

𝑚𝑒𝑎𝑛 (𝑘)
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A network with high heterogeneity has a tendency to exhibit hubs in its 

structure.(Dong and Horvath, 2007) 

6.1.2 Average number of neighbors 

It denotes the average connectivity of a node in the network.(Assenov et al., 2008) 

(See Network density) 

6.1.3 Network density 

For a given network with n nodes, the connectivity of n, is denoted by kn, which is 

a set of numbers of its neighbors. The average number of neighbors of the node n, 

indicates its average connectivity (average number of neighbors) in the network. 

Network density is a normalized version of the average connectivity(Dong and 

Horvath, 2007) and is given by: 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝛼𝑖𝑗𝑗≠𝑖𝑖

𝑛(𝑛 − 1)
=  

𝑆1 (𝑘)

𝑛(𝑛 − 1)
=

𝑚𝑒𝑎𝑛(𝑘)

𝑛 − 1
 

The density of a network lies between 0 and 1; as the value leans towards 1, the 

density of edges in the network increases. Network density does not consider 

duplicated edges or self-loops. 

6.1.4 Network diameter 

Network diameter is the largest distance between two nodes in a network.  
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6.1.5 Clustering coefficient 

The clustering coefficient of a node is ratio N/M, where N is the total number of 

edges between the neighbors of n, and M is the total number of edges that can 

possibly exist between the neighbors of n. This is represented by the following 

equation(Dong and Horvath, 2007): 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑒𝑓𝑖 =  
∑ ∑ 𝑎𝑖𝑙𝑎𝑙𝑚𝑎𝑚𝑖𝑚≠𝑖,𝑙𝑙 ≠𝑖

(∑ 𝑎𝑖𝑙𝑙≠𝑖 )2 − ∑ 𝑎𝑖𝑙
2

𝑙≠𝑖

 

 

It can also be defined as (Assenov et al., 2008) 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑒𝑓𝑖 =  
2𝑒𝑖 

𝑘𝑖 (𝑘𝑖−1 )
 

where, 𝑘𝑖 is the number of neighbors of node i, and 𝑒𝑖 is the total number of 

connected pairs between all neighbors of node i. The clustering coefficient of a 

node always lies between 0 and 1. The network clustering coefficient is the average 

of clustering coefficients of all the nodes in the network.  

6.1.6 Average shortest path length 

It is also known as the characteristic path length. It measures the expected distance 

between two connected nodes in a network.(Assenov et al., 2008) 



137 

 

 

 

6.2 Rscripts 

To ensure reproducibility of results, Rscripts used for analysis have been 

documented in the form of Jupyter notebooks and uploaded on GitHub. 

6.2.1 IV calculation and Lasso Regression – Experiment 2 

################################################################## 

## STEP I - Calculate Information values of variables 

## STEP II - Lasso regularization 

################################################################## 

## Read files 

setwd("C:/PhD folder/SVM project/AnalysisOutputs/MLProject_PhaseII") 

library(dplyr) 

df2 <- read.delim(file = "mergedfiles_all_withNA.txt", header = T, sep = "\t") 

df2[1:5, 778:781] 

rownames(df2) <- df2$Row.names 

predictorX <- df2[,3:781] # identify the columns representing the variables and 

convert to matrix. 

dim(predictorX) 

predictorX[1:5,775:779] 

class(predictorX) 

 

### Data prep ###################################################### 

### STRATEGY - Impute missing values in the data  

### Step 1 - Impute missing values in motif-domain segments with -1 

### Step 2 - Impute missing values in topology columns with the mean of each 

column. 

### Step 3 - Find Information Values of the predictor variables  

##################################################################  

### Imputation of missing values in motif, domain segments with -1 

predictorX[,1:769][is.na(predictorX[,1:769])] <- -1 # replace all NA in the 

categorical variables (motif and domain) with -1 

 

# Imputation of missing values in topology columns with mean of the column 

values. 

library (zoo) 

predictorX[,770:779] <- na.aggregate(predictorX[,770:779]) 

sum(is.na(predictorX)) # check ..should be zero 
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# Linking the uniprot IDS with their respective group labels. 

predictorX$uniprot_swissprot <- row.names(predictorX) # create a column with 

uniprot IDs based on the row names. 

class(predictorX$uniprot_swissprot) # must be character 

dataf <- read.delim(file= "all_uniprotIDs.txt", header = TRUE, sep= "\t") ## Data 

frame containing Uniprot Swiss ID 

dataf$uniprot_swissprot <- as.character(dataf$uniprot_swissprot) # convert factor 

to character. 

class(dataf$uniprot_swissprot)# must be "character" 

target <- left_join (predictorX,dataf,by="uniprot_swissprot") # this function will 

link the unique protein ids with their group labels !! 

mytarget <- target[,c(1:780,782)] 

mytargetvariable <- mytarget[,781] # the target variable 

 

x = predictorX[1:779] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# recreate binary tags 

y.wtmt <- ifelse(y %in% c("group2", "group3"), 1, 0) 

y.wtOnly <- ifelse(y=="group1", 1, 0) 

y.mtOnly <- ifelse(y=="group2", 1, 0) 

table(y.wtmt,y) 

table(y.wtOnly,y) 

table(y.mtOnly,y) 

 

class(y.wtmt); class(y.wtOnly) # both (target variables) have to be numeric 

class(x$M.18) 

x[,c(1:769)] <- lapply(x[,c(1:769)], factor) # convert independent categorical 

variables to factor 

#data[cols] <- lapply(data[cols], factor) 

 

x <- cbind(x,y.wtmt); x[1:5,775:780] # bind target variable to the predictor 

variables. 

 

################################################################## 

# Compute Information value and WOE 

# NOTE: The binary target variable is set to "Binding to mutant (mutant only vs. 

mutant+WT)" 

################################################################## 

library (Information) # load library 
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library(xlsx) 

IV <- create_infotables(data=x, y="y.wtmt", bins=10, parallel=FALSE) # all 554 

entries 

#summary of IV values of all independent variables 

V_Value = data.frame(IV$Summary) 

range_V_Value <- range(V_Value$IV) 

#write.xlsx(V_Value, file = "IVvalues.xlsx", col.names = TRUE, row.names = 

FALSE) 

V_Value <- V_Value[order(- V_Value$IV),] # order the IV values in descending 

order. 

#plot IV values in bar plot 

barplot(V_Value$IV[1:157], col = "darkgreen", xlab = "Variables", ylab = "IV 

value", names.arg = names(IV$Summary$Variable), main = "Information Value 

Summary") 

 

####### Select variables with IV value >= 0.056 

V_Value <- subset(V_Value, IV>= 0.056) 

 

# Subset predictorX with the variables with IV >= 0.056 

myvec <- as.vector(V_Value$Variable) 

predictorX.subset <- predictorX[, myvec]; dim(predictorX.subset) # subset and 

check. 

# Note: the predictor subset has missing values imputed as -1 for motif domain 

variables and mean of  

# column values for topology variables. 

 

###################################### 

###### Logistic Regression on the new subset  

###################################### 

# Input Data prep  

# Linking the uniprot IDS with their respective group labels. 

predictorX.subset$uniprot_swissprot <- row.names(predictorX.subset) # create a 

column with uniprot IDs based on the row names. 

class(predictorX.subset$uniprot_swissprot) # must be character 

dataf <- read.delim(file= "all_uniprotIDs.txt", header = TRUE, sep= "\t") ## Data 

frame containing Uniprot Swiss ID 

dataf$uniprot_swissprot <- as.character(dataf$uniprot_swissprot) # convert factor 

to character. 

class(dataf$uniprot_swissprot)# must be "character" 

target <- left_join (predictorX.subset,dataf,by="uniprot_swissprot") # this 

function will link the unique protein ids with their group labels !! 
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mytarget <- target[,c(1:158,160)] 

mytargetvariable <- target[,160] # the target variable 

x = predictorX.subset[1:157] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# recreate binary tags 

y.wtmt <- ifelse(y %in% c("group2", "group3"), 1, 0) 

y.wtOnly <- ifelse(y=="group1", 1, 0) 

y.mtOnly <- ifelse(y=="group2", 1, 0) 

table(y.wtmt,y) 

table(y.wtOnly,y) 

table(y.mtOnly,y) 

 

# ############### Lasso Group 2 + Group 3########################## 

## AUC = 0.652 for IV cutoff >= 0.056 

################################################################ 

library(glmnet) # load library 

set.seed(1) 

lasso <- glmnet(as.matrix(x), y.wtmt, alpha = 1,family = "binomial") 

plot(lasso, label = TRUE) 

plot(lasso, xvar = "lambda", label = TRUE) 

print(lasso) 

 

set.seed(2) 

cvfit_lasso <- cv.glmnet(as.matrix(x),y.wtmt,alpha = 1, family = 

"binomial",type.measure = "deviance") 

plot(cvfit_lasso) 

 

#lambda minimum of cvfit which gives minimum mean cross-validated error.(k-

means cross validation) 

cvfit_lasso$lambda.min 

cvfit_lasso$lambda.1se 

 

#coefficients for  the lambda minimum (lambda.min) and most regularized 

lambda (lambda.1se) values. 

coef(cvfit_lasso, s = "lambda.min") 

coef(cvfit_lasso, s = "lambda.1se") 

 

## prediction using lambda min for lasso regression 

mypc.comp <- as.matrix(x); class(x) 
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lasso_pred <- predict(lasso, newx = mypc.comp, type = "response", s = 

cvfit_lasso$lambda.min) 

lasso_pred 

class(y.wtmt) 

class(lasso_pred) 

 

## ploting the ROC curve using the above predictions 

library(pROC) 

lrocobj <- roc(y.wtmt,as.numeric(lasso_pred)) 

plot.roc(lrocobj, print.auc = TRUE, legacy.axes = TRUE, grid=c(0.1, 

0.2),print.thres=TRUE, main = "Lasso ROC - All-in-one| IV>=0.056|group 2 & 

3") 

# plot.roc(smooth(lrocobj)) 

auc(lrocobj) # area under curve for lasso ROC 

 

# Variable importance  

# use caret package 

library(caret) 

varimp_lasso <- varImp(lasso, lambda = cvfit_lasso$lambda.min) 

# write.xlsx(varimp_lasso,file = "varimp_lasso.xlsx", sheetName = 

"Varimp_lasso") 

 

# ##Lasso - 10-fold cv - Grp 2 +Grp 3 ############################### 

# ## AUC - 0621 for IV >= 0.056 

############################################################## 

library(cvTools) #run the above line if you don't have this library 

library (glmnet) 

 

k <- 10 #the number of folds 

set.seed(123) 

folds <- cvFolds(NROW(x), K=k) 

x$kfoldlpred <- rep(0,nrow(x)) 

 

kfoldprediction <-  

  for(i in 1:k){ 

    train <- x[folds$subsets[folds$which != i], -158] #Set the training set  

    train_response <- y.wtmt[folds$subsets[folds$which != i]] # set the training set 

response 

    validation <- x[folds$subsets[folds$which == i], -158] #Set the validation set 

    lasso_newglm <- glmnet(as.matrix(train), train_response, alpha = 1,family = 

"binomial") #Get your new logistic regression model (just fit on the train data) 
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    randomseed = 123 + (i-1)*10 

    set.seed(randomseed) 

    lasso_cvglm <- cv.glmnet(as.matrix(train), train_response, alpha = 1, family = 

"binomial",type.measure = "deviance") 

    lasso_newpred <- predict(lasso_newglm,newx = as.matrix(validation), type = 

"response", s = c(lasso_cvglm$lambda.min)) #Get the predicitons for the 

validation set (from the model just fit on the train data) 

    x[folds$subsets[folds$which == i], ]$kfoldlpred <- lasso_newpred #Put the 

hold out prediction in the data set for later use 

  }  

as.data.frame(x$kfoldlpred) # predictions for all proteins using k-fold validation ! 

(10-fold) 

 

# ROC curve  

class(lasso_newpred) 

lrocobj1 <- roc(y.wtmt,as.numeric(x$kfoldlpred)) 

plot.roc(lrocobj1, print.auc = TRUE, legacy.axes = TRUE, grid=c(0.1, 

0.2),print.thres=TRUE, main = "Lasso ROC|All-in-one|IV>=0.056\n|k-

foldpredictions - group 2 & 3") 

# plot.roc(smooth(lrocobj)) 

auc(lrocobj1) # area under curve for lasso ROC 

 

### END!! DO NOT RUN 

################################################################## 
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6.2.2 Random forest – Experiment 2 

# Identify features and variables. 

x = predictorX.subset[1:157] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# ## Random Forest ############################################ 

# ## RF parameters - ntree = 500, mtry = 12 

############################################################# 

library (cvTools) 

k <- 10 #the number of folds 

set.seed(123) 

folds <- cvFolds(NROW(x), K=k) 

x$kfoldlpred0 <- rep(0,nrow(x)) 

x$kfoldlpred1 <- rep(0,nrow(x)) 

kfoldprediction <-  

  for(i in 1:k){ 

    train <- x[folds$subsets[folds$which != i], c(1:157)] # training set  

    train_response <- y.wtmt[folds$subsets[folds$which != i]] # training set 

response 

    validation <- x[folds$subsets[folds$which == i], c(1:157)] # validation set 

    rf_grp1 <- randomForest(as.factor(train_response)~., data = train, importance = 

TRUE)# get the RF model (just fit on the train data) 

    randomseed = 123 + (i-1)*10 

    set.seed(randomseed) 

    rf_newpred <- predict(rf_grp1, newdata = validation, type = "prob", norm.votes 

= TRUE, predict.all = FALSE) #Get the predicitons for the validation set (from 

the model just fit on the train data) 

    x[folds$subsets[folds$which == i], ]$kfoldlpred0 <- rf_newpred[,1] 

    x[folds$subsets[folds$which == i], ]$kfoldlpred1 <- rf_newpred[,2]#Put the 

hold out prediction in the data set for later use 

  }  

as.data.frame(x[,158:159]) # predictions for all proteins using 10-fold validation  

 

# ROC curve for Random forest 10-fold cv  

library(pROC) 

rocobj_grp1 <- roc(y.wtmt, x$kfoldlpred1) 

plot.roc(rocobj_grp1, print.auc = TRUE, legacy.axes = TRUE, grid=c(0.1, 

0.2),main = "Random Forest| 10-fold cv|IV>= 0.056|\nmutant binding 

(Grp2+Grp3)|mtry = 12|ntree = 500") 
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6.2.3 Gradient Boosting Machine – Experiment 2 

# Identify features and variables. 

x = predictorX.subset[1:157] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# ## GBM ################################################### 

# ## GBM parameters – minobsnode = 10, shrinkage =0.001, ntrees = 5000 

############################################################# 

library (cvTools) 

train <- data.frame(x, y.wtmt) 

k <- 10 #the number of folds 

set.seed(123) 

folds <- cvFolds(NROW(train), K=k) 

train$kfoldlpred <- rep(0,nrow(train)) 

 

kfoldprediction <-  

  for(i in 1:k){ 

    training <- train[folds$subsets[folds$which != i], -159] #Set the training set  

    training_response <- y.wtmt[folds$subsets[folds$which != i]] # set the training 

set response 

    validation <- train[folds$subsets[folds$which == i], -159] #Set the validation 

set 

    fit.gbm <- gbm(y.wtmt~., data=training, distribution = "bernoulli", 

                   n.trees = 5000,  

                   interaction.depth = 1, 

                   n.minobsinnode = 10, 

                   shrinkage = 0.001, 

                   cv.folds = 10 

    ) 

    #gbm.perf(fit.gbm)     

    randomseed = 123 + (i-1)*10 

    set.seed(randomseed) 

    gbm_newpred <- predict(fit.gbm, newdata=validation, 

gbm.perf(fit.gbm,plot.it=F),type="response") #Get the predicitons for the 

validation set (from the model just fit on the train data) 

    train[folds$subsets[folds$which == i], ]$kfoldlpred <- gbm_newpred #Put the 

hold out prediction in the data set for later use 

  }  

as.data.frame(train$kfoldlpred) # predictions for all proteins using 10-fold 

validation 
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# ROC curve for GBM 10-fold cv  

library(pROC) 

roc(train$y.wtmt, train$kfoldlpred, plot= TRUE,  

    legacy.axes = TRUE, grid=c(0.1, 0.2), print.auc = T,  

    main = "GBM | All-in-one | Binary Target=Mutant (Grp 2+Grp 3) \n| 10-fold 

cv | n.minobs = 10, shrinkage = 0.001, ntrees = 5000") 

 

### create a graph with all ROC curves for Exp 2 - Lasso, Random Forest, GBM 

roc(train$y.wtmt, train$kfoldlpred, plot= TRUE,  

    legacy.axes = TRUE, grid=c(0.1, 0.2), print.auc = T,  

    main = "Experiment 2 | ROC curves\n Lasso, Random Forest and GBM |Binary 

Target=Mutant (Grp 2+Grp 3)") 

plot.roc(lrocobj1, print.auc = TRUE, add = TRUE, col = "red", legacy.axes = 

TRUE, grid=c(0.1, 0.2),print.auc.y = 0.8,print.auc.x = 0.2) 

plot.roc(rocobj_grp1, print.auc = TRUE,add = TRUE, col = "green", legacy.axes 

= TRUE, grid=c(0.1, 0.2), print.auc.y = 0.6,print.auc.x = 0.4) 

legend("bottomright", col = c("black", "red", "green"), legend = c("GBM", 

"Lasso", "Random Forest"), lty = 1) 
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6.2.4 Gradient Boosting Machine – with Data segmentation 

## GBM for Motif-Topology segment 

################################## 

# Identify features and variables 

x = predictorX[1:60] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# Creating binary tags 

# group 2 and group 3 proteins are tagged with 1 and group 1 proteins with 0  

y.wtmt <- ifelse(y %in% c("group2", "group3"), 1, 0) 

y.wtOnly <- ifelse(y=="group1", 1, 0) 

table(y.wtmt,y) 

table(y.wtOnly,y) 

 

train5 <- data.frame(y.wtmt, x) 

 

# .. PCA analysis to reduce motif variables 

pc.motif <- prcomp(train5[,12:61]) 

summary(pc.motif) 

plot(pc.motif, type='l') # .. scree plot  

# check R's PCA list object 

names(pc.motif) 

# variable loadings: projections of the original variable onto the PC-space 

head(pc.motif$rotation) 

head(pc.motif$x) 

# variance explained by top PCs 

plot(pc.motif$sdev/sum(pc.motif$sdev)*100) # .. full scree plot 

# keep only top 12 PCs 

pcs <- pc.motif$x 

pcs12 <- pcs[,1:12]  

############################################################## 

Repeated 10-fold cross validation - Motif- Topology Segment 

# AUC 0.88 for nsim = 1 

# AUC - 0.86 for nsim = 100 

############################################################## 

library (gbm) 

library(cvTools) 

library(ROCR) 

library(pROC) 

library(xlsx) 
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# create empty roc plot to plot roc curves  

plot.roc(0:1, 0:1, type = "n", legacy.axes = TRUE, main = "GBM | Binary 

Target=MT binding with PCA | repeated 10-Fold CV") 

 

k <- 10 #the number of folds 

x = cbind(predictorX[1:10], pcs12) 

y <- y.wtmt 

set.seed(1234) 

 

folds <- cvFolds(NROW(x), K=k) 

nsim <- 1 # number of repetitions 

myauc <- rep(0, nsim) 

mypreds <- data.frame(matrix(0, nrow(x),ncol = 100)) # create a dataframe to 

store results of all 100 nsim repetitions 

row.names(mypreds) <- row.names(x) # row names for the dataframe 

names(mypreds) <- paste("K", (1:100), sep = "") # column names 

j <- 1 

x$kfoldlpred <- rep(0,nrow(x)) # append a column to original dataframe to 

temporarily store results of each k-fold 

ptm <- proc.time() 

 

repeatcv <- function(){ 

  while (j <= nsim){ 

    for(i in 1:k){ 

      train <- x[folds$subsets[folds$which != i], -23] #Set the training set  

      train_response <- y[folds$subsets[folds$which != i]] # set the training set 

response 

      validation <- x[folds$subsets[folds$which == i], -23] #Set the validation set 

      randomseed = 7842 + (i-1)*10 +j 

      set.seed(randomseed) 

      new_gbm.fit <- gbm(train_response~., data=train, distribution = "bernoulli", 

                         n.trees = 5000, 

                         interaction.depth = 1, 

                         n.minobsinnode = 1, 

                         shrinkage = 0.001, 

                         cv.folds = 10) 

      new_gbmpred <- predict(new_gbm.fit, newdata=validation,  

                             gbm.perf(new_gbm.fit,plot.it=F), 

                             type="response")  

      x[folds$subsets[folds$which == i],]$kfoldlpred <- new_gbmpred  

    }  



148 

 

 

 

    mypreds[,j] <- x$kfoldlpred 

    rocobj2 <- roc(y.wtmt, as.numeric(mypreds[,j])) 

    myauc[j] <- rocobj2$auc # assign auc value to the jth item of your numeric 

vector 'myauc' 

    plot.roc(rocobj2,add = TRUE) 

    j <- j+1 

  } 

  predictions <- as.data.frame(mypreds[,1],row.names = row.names(mypreds)) 

  write.xlsx(predictions, file = "predictions_gbmmotiftop.xlsx", col.names = 

TRUE, row.names = TRUE) 

  returnlist = list(predictions,myauc,mean(myauc), sd(myauc)) 

  returnlist 

  roc(train5$y.wtmt, mypreds[,1], plot= TRUE,legacy.axes = TRUE, grid=c(0.1, 

0.2), print.auc = T, main = "GBM|Motif-Top with PCA| Binary Target = 

Mutant(Grp2+Grp3)") 

} 

repeatcv() 

proc.time() – ptm 

 

# create ROC chart for motif-topology segment 

gbm_motiftop <- read.xlsx(file = "predictions_gbmmotiftop.xlsx", sheetIndex = 

1, sheetName = "Sheet1") 

roc(train5$y.wtmt, gbm_motiftop$mypreds...1., plot = TRUE, col = "red", 

legacy.axes = TRUE, grid=c(0.1, 0.2),print.auc = TRUE, print.auc.y = 

0.2,print.auc.x = 0.75, main = "GBM ROC| Data segmentation with PCA|\nBinary 

Target = Mutant (Grp 2 & 3)") 
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