9,618 research outputs found

    Neural Decoder for Topological Codes using Pseudo-Inverse of Parity Check Matrix

    Full text link
    Recent developments in the field of deep learning have motivated many researchers to apply these methods to problems in quantum information. Torlai and Melko first proposed a decoder for surface codes based on neural networks. Since then, many other researchers have applied neural networks to study a variety of problems in the context of decoding. An important development in this regard was due to Varsamopoulos et al. who proposed a two-step decoder using neural networks. Subsequent work of Maskara et al. used the same concept for decoding for various noise models. We propose a similar two-step neural decoder using inverse parity-check matrix for topological color codes. We show that it outperforms the state-of-the-art performance of non-neural decoders for independent Pauli errors noise model on a 2D hexagonal color code. Our final decoder is independent of the noise model and achieves a threshold of 10%10 \%. Our result is comparable to the recent work on neural decoder for quantum error correction by Maskara et al.. It appears that our decoder has significant advantages with respect to training cost and complexity of the network for higher lengths when compared to that of Maskara et al.. Our proposed method can also be extended to arbitrary dimension and other stabilizer codes.Comment: 12 pages, 12 figures, 2 tables, submitted to the 2019 IEEE International Symposium on Information Theor

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    SCREEN: Learning a Flat Syntactic and Semantic Spoken Language Analysis Using Artificial Neural Networks

    Get PDF
    In this paper, we describe a so-called screening approach for learning robust processing of spontaneously spoken language. A screening approach is a flat analysis which uses shallow sequences of category representations for analyzing an utterance at various syntactic, semantic and dialog levels. Rather than using a deeply structured symbolic analysis, we use a flat connectionist analysis. This screening approach aims at supporting speech and language processing by using (1) data-driven learning and (2) robustness of connectionist networks. In order to test this approach, we have developed the SCREEN system which is based on this new robust, learned and flat analysis. In this paper, we focus on a detailed description of SCREEN's architecture, the flat syntactic and semantic analysis, the interaction with a speech recognizer, and a detailed evaluation analysis of the robustness under the influence of noisy or incomplete input. The main result of this paper is that flat representations allow more robust processing of spontaneous spoken language than deeply structured representations. In particular, we show how the fault-tolerance and learning capability of connectionist networks can support a flat analysis for providing more robust spoken-language processing within an overall hybrid symbolic/connectionist framework.Comment: 51 pages, Postscript. To be published in Journal of Artificial Intelligence Research 6(1), 199

    Real-time predictive maintenance for wind turbines using Big Data frameworks

    Full text link
    This work presents the evolution of a solution for predictive maintenance to a Big Data environment. The proposed adaptation aims for predicting failures on wind turbines using a data-driven solution deployed in the cloud and which is composed by three main modules. (i) A predictive model generator which generates predictive models for each monitored wind turbine by means of Random Forest algorithm. (ii) A monitoring agent that makes predictions every 10 minutes about failures in wind turbines during the next hour. Finally, (iii) a dashboard where given predictions can be visualized. To implement the solution Apache Spark, Apache Kafka, Apache Mesos and HDFS have been used. Therefore, we have improved the previous work in terms of data process speed, scalability and automation. In addition, we have provided fault-tolerant functionality with a centralized access point from where the status of all the wind turbines of a company localized all over the world can be monitored, reducing O&M costs

    On The Robustness of a Neural Network

    Get PDF
    With the development of neural networks based machine learning and their usage in mission critical applications, voices are rising against the \textit{black box} aspect of neural networks as it becomes crucial to understand their limits and capabilities. With the rise of neuromorphic hardware, it is even more critical to understand how a neural network, as a distributed system, tolerates the failures of its computing nodes, neurons, and its communication channels, synapses. Experimentally assessing the robustness of neural networks involves the quixotic venture of testing all the possible failures, on all the possible inputs, which ultimately hits a combinatorial explosion for the first, and the impossibility to gather all the possible inputs for the second. In this paper, we prove an upper bound on the expected error of the output when a subset of neurons crashes. This bound involves dependencies on the network parameters that can be seen as being too pessimistic in the average case. It involves a polynomial dependency on the Lipschitz coefficient of the neurons activation function, and an exponential dependency on the depth of the layer where a failure occurs. We back up our theoretical results with experiments illustrating the extent to which our prediction matches the dependencies between the network parameters and robustness. Our results show that the robustness of neural networks to the average crash can be estimated without the need to neither test the network on all failure configurations, nor access the training set used to train the network, both of which are practically impossible requirements.Comment: 36th IEEE International Symposium on Reliable Distributed Systems 26 - 29 September 2017. Hong Kong, Chin
    • …
    corecore