With the development of neural networks based machine learning and their
usage in mission critical applications, voices are rising against the
\textit{black box} aspect of neural networks as it becomes crucial to
understand their limits and capabilities. With the rise of neuromorphic
hardware, it is even more critical to understand how a neural network, as a
distributed system, tolerates the failures of its computing nodes, neurons, and
its communication channels, synapses. Experimentally assessing the robustness
of neural networks involves the quixotic venture of testing all the possible
failures, on all the possible inputs, which ultimately hits a combinatorial
explosion for the first, and the impossibility to gather all the possible
inputs for the second.
In this paper, we prove an upper bound on the expected error of the output
when a subset of neurons crashes. This bound involves dependencies on the
network parameters that can be seen as being too pessimistic in the average
case. It involves a polynomial dependency on the Lipschitz coefficient of the
neurons activation function, and an exponential dependency on the depth of the
layer where a failure occurs. We back up our theoretical results with
experiments illustrating the extent to which our prediction matches the
dependencies between the network parameters and robustness. Our results show
that the robustness of neural networks to the average crash can be estimated
without the need to neither test the network on all failure configurations, nor
access the training set used to train the network, both of which are
practically impossible requirements.Comment: 36th IEEE International Symposium on Reliable Distributed Systems 26
- 29 September 2017. Hong Kong, Chin