3,646 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Design and Development of an AIoT Architecture for Introducing a Vessel ETA Cognitive Service in a Legacy Port Management Solution

    Full text link
    [EN] Current Internet of Things (IoT) stacks are frequently focused on handling an increasing volume of data that require a sophisticated interpretation through analytics to improve decision making and thus generate business value. In this paper, a cognitive IoT architecture based on FIWARE IoT principles is presented. The architecture incorporates a new cognitive component that enables the incorporation of intelligent services to the FIWARE framework, allowing to modernize IoT infrastructures with Artificial Intelligence (AI) technologies. This allows to extend the effective life of the legacy system, using existing assets and reducing costs. Using the architecture, a cognitive service capable of predicting with high accuracy the vessel port arrival is developed and integrated in a legacy sea traffic management solution. The cognitive service uses automatic identification system (AIS) and maritime oceanographic data to predict time of arrival of ships. The validation has been carried out using the port of Valencia. The results indicate that the incorporation of AI into the legacy system allows to predict the arrival time with higher accuracy, thus improving the efficiency of port operations. Moreover, the architecture is generic, allowing an easy integration of the cognitive services in other domains.Funding This work has been developed under the framework of the COSIBAS project (funded by CDTI research and innovation programme under grant agreement No.EXP 00110912/INNO-20181033) and the EIFFEL project (funded by European Unions Horizon 2020 research and innovation programme under grant agreement No 101003518).Valero López, CI.; Ivancos Pla, E.; Vañó García, R.; Garro, E.; Boronat, F.; Palau Salvador, CE. (2021). Design and Development of an AIoT Architecture for Introducing a Vessel ETA Cognitive Service in a Legacy Port Management Solution. Sensors. 21(23):1-15. https://doi.org/10.3390/s21238133115212

    An evaluation of low-level automation navigation functions upon vessel traffic services work practices

    Get PDF
    The Sea Traffic Management (STM) Validation Project is a European-based initiative with ambitions to improve maritime safety and efficiency through information sharing in real time. The purpose of this paper is to evaluate the “STM services,” which can be categorized as low-level automated functions designed to improve information exchange between ship and shore. Full-scale simulated scenarios were developed and tested on 16 professional vessel traffic service (VTS) operators comparing VTS operations as they are today with the added STM functionality. Data collection involved observations which assessed the frequency and type of interactions between ships and VTS, followed by questionnaires to provide an overall assessment of the user experience. The results indicate that the frequency and method of communication patterns between VTS operators and ships will be affected by the integration of the STM services. Additional access to navigational information could change the role of VTS operators in traffic situations compared with traditional operations. This paper discusses the findings from a socio-technical systems perspective while also addressing the individual STM services and their potential impact on VTS operations. This research provides valuable information for European VTS centers that could be affected by the implementation of e-Navigation and, specifically, the STM services

    Automated Functions: Their Potential for Impact Upon Maritime Sociotechnical Systems

    Get PDF
    The shipping industry is evolving towards an unknown and unpredictable future. There is speculation that in the next two decades the maritime industry will witness changes far exceeding those experienced over the past 100 years. The rapid development of artificial intelligence (AI), big data, automation and their impacts upon fully autonomous ships have the potential to transform the maritime industry. While change is inevitable in the maritime domain, automated solutions do not guarantee navigational safety, efficiency or improved seaway traffic management. Such dramatic change also calls for a more systematic approach to designing, evaluating and adopting new solutions into a system. Although intended to support operator decision-making needs and reduce operator workload, the outcomes might create unforeseen changes throughout other aspects of the maritime sociotechnical system. In the maritime industry, the human is seldom put first in technology design which paradoxically introduces human-automation challenges related to technology acceptance, use, trust, reliance and risk. The co-existence and challenges of humans and automation, as it pertains to navigation and navigational assistance, is explored throughout this licentiate.\ua0This thesis considers the Sea Traffic Management (STM) Validation Project \ua0as the context to examine low-level automation functions intended to enhance operator (both Navigators and Vessel Traffic Service Operators) navigational safety and efficiency. The STM functions are designed to improve information sharing between ships and from ship to shore such as: route sharing, enhanced monitoring, and route crosschecking. The licentiate is built on two different data collection efforts during 2017-2018 within the STM Validation project. The functions were tested on two user groups: Bridge Officers and Vessel Traffic Service Operators. All testing was completed in high-fidelity bridge simulators using traffic scenarios developed by subject matter experts.The aim of this licentiate is to study the impact of low levels of automation on operator behavior, and to explore the broader impact upon the maritime sociotechnical system. A mixed-method approach was selected to address these questions and included the following: observations, questionnaires, numerical assessment of ship behavior, and post-simulation debrief group sessions. To analyze and discuss the data, grounded theory, subject matter expert consultation, and descriptive statistics were used. The results point towards a disruption in current working practices for both ship and shore operators, and an uncertainty about the overall impact of low-level automation on operator behaviour. Using a sociotechnical systems approach, gaps have been identified related to new technology testing and implementation. These gaps relate to the overall preparedness of the shipping industry to manage the evolution towards smarter ships. The findings discussed in this licentiate aim to promote further discussions about a quickly evolving industry concerning automation integration in shipping and the potential impact on human performance in safety critical operations

    "Are You Planning to Follow Your Route?" The Effect of Route Exchange on Decision Making, Trust, and Safety

    Get PDF
    The Sea Traffic Management (STM) Validation project is a European based initiative which focuses on connecting and updating the maritime world in real time, with efficient information exchange. The purpose of this paper is to evaluate two functions developed during the project: a ship to ship route exchange (S2SREX) function and rendezvous (RDV) information layer, collectively referred to as S2SREX/RDV. S2SREX displays the route segment consisting of the next seven waypoints of the monitored route of a collaborating ship and the RDV layer that predicts a meeting point. S2SREX/RDV provides supplementary information to data acquired by existing navigation systems and is intended to improve situational awareness and safety through a more comprehensive understanding of the surrounding traffic. Chalmers University of Technology and Solent University completed an experiment using twenty-four experienced navigators in bridge simulators. Six traffic scenarios were developed by subject matter experts and tested with and without S2SREX/RDV functionalities. Qualitative data were collected using post-test questionnaires and group debriefs to evaluate the participants\u27 perceptions of S2SREX/RDV in the various traffic scenarios, and quantitative data were collected to assess the ship distances and behavior in relation to the International Regulations for Preventing Collisions at Sea (COLREGs). The results revealed that participants generally trusted the S2SREX/RDV information, and most used S2SREX/RDV for decision support. The quantitative assessment revealed that the COLREGs were breached more often when S2SREX/RDV was used. Experimental findings are discussed in relation to safety, trust, reliance, situational awareness, and human-automation interaction constructs

    Impact of portable piloting units on the situation awareness of maritime pilots perspectives of Danish and West African pilots

    Get PDF

    Studying Control Processes for Bridge Teams

    Get PDF
    Several technological advances have been seen the maritime domain to achieve higher operational efficiency and to address the generally recognised causes of most maritime accidents. The International Maritime Organization (IMO) endorses the use of best available technology to “drive continuous improvement and innovation in the facilitation of maritime traffic” in line with the goal of sustainable development. It is commonly acknowledged that modern technology revolutionized marine navigation, and presently it has a large potential to increase safety in navigation. However, the incorporation of new technologies in support of navigation also brought unforeseen critical consequences, contributing to unsafe practices, or even to accidents or incidents. Several issues were associated with human factors. To properly address the adoption of the newest technology in support of safe navigation, IMO established the e-navigation concept, currently under implementation. The complexity of the maritime socio-technical system requires novel theoretical foundations, since many of the present framework rely on the analysis of accidents. The design of complex maritime navigation system must take place on several levels, providing different perspectives over the system problems. The evaluation and design of technologies envisaged by the e-navigation concept requires a better understand of how teams perform the navigation work in the pursuit of safe navigation. This study attempts to provide a better understanding on how maritime navigation is currently done on-board, considering the overarching elements and their interactions. In maritime navigation safety is a transverse issue, and that is why we need to know the conditions for safe navigation to improve the design of ship navigation control. The work supporting this thesis was focused on: (i) understanding how navigation is done and to perceive by the practitioners, (ii) understanding interactions between humans and technological interfaces, and (iii) understanding the relevant soft skills for the navigation functions. To address these topics, data was collected from expert practitioners such as navigators, pilots and instructors, thru semi structured interviews and questionnaires. The mains contribution of this study lies in presenting a framework of maritime navigation, exploring the control processes in the different levels of the maritime socio-technical system. In the view of safe operations, interactions between stakeholders are clarified, trying to determine how they influence safe navigation. This systemic view is then analysed from the perspective of the ship, considering it as a Joint-cognitive system (JCS). It is proposed that this JCS comprises 5 control levels: reactive, proactive, planning, strategic and political-economical. Planning is considered a fundamental process in the maritime Socio-technical system, because it facilitates the interactions between the different control level. It also increases the integrity of communications and enhances the predictability of the different control agents. New directions are proposed to improve the design of navigation system, recommending new roles for human and automated agents, and presenting a new conceptual navigation display.info:eu-repo/semantics/publishedVersio

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions
    corecore