4,307 research outputs found

    Three layer wavelet based modeling for river flow

    Get PDF
    All existing methods regarding time series forecasting have always been challenged by the continuous climatic change taking place in the world. These climatic changes influence many unpredictable indefinite factors. This alarming situation requires a robust forecasting method that could efficiently work with incomplete and multivariate data. Most of the existing methods tend to trap into local minimum or encounter over fitting problems that mostly lead to an inappropriate outcome. The complexity of data regarding time series forecasting does not allow any one single method to yield results suitable in all situations as claimed by most researchers. To deal with the problem, a technique that uses hybrid models has also been devised and tested. The applied hybrid methods did bring some improvement compared to the individual model performance. However, most of these available hybrid models exploit univariate data that requires huge historical data to achieve precise forecasting results. Therefore, this study introduces a new hybrid model based on three layered architecture: Least Square Support Vector Machine (LSSVM), Discrete Wavelet Transform (DWT), correlation (R) and Kernel Principle Components Analyses (KPCA). The three-staged architecture of the proposed hybrid model includes Wavelet-LSSVM and Wavelet-KPCA-LSSVM enabling the model to present itself as a well-established alternative application to predict the future of river flow. The proposed model has been applied to four different data sets of time series, taking into account different time series behavior and data scale. The performance of the proposed model is compared against the existing individual models and then a comparison is also drawn with the existing hybrid models. The results of WKPLSSVM obtained from Coefficient of Efficiency (CE) performance measuring methods confirmed that proposed model has encouraging data of 0.98%, 0.99%, 0.94% and 0.99% for Jhelum River, Chenab River, Bernam River and Tualang River, respectively. It is more robust for all datasets regardless of the sample sizes and data behavior. These results are further verified using diverse data sets in order to check the stability and adaptability. The results have demonstrated that the proposed hybrid model is a better alternative tool for time series forecasting. The proposed hybrid model proves to be one of the best available solutions considering the time series forecasting issues

    Reliable Linear, Sesquilinear and Bijective Operations On Integer Data Streams Via Numerical Entanglement

    Get PDF
    A new technique is proposed for fault-tolerant linear, sesquilinear and bijective (LSB) operations on MM integer data streams (M3M\geq3), such as: scaling, additions/subtractions, inner or outer vector products, permutations and convolutions. In the proposed method, the MM input integer data streams are linearly superimposed to form MM numerically-entangled integer data streams that are stored in-place of the original inputs. A series of LSB operations can then be performed directly using these entangled data streams. The results are extracted from the MM entangled output streams by additions and arithmetic shifts. Any soft errors affecting any single disentangled output stream are guaranteed to be detectable via a specific post-computation reliability check. In addition, when utilizing a separate processor core for each of the MM streams, the proposed approach can recover all outputs after any single fail-stop failure. Importantly, unlike algorithm-based fault tolerance (ABFT) methods, the number of operations required for the entanglement, extraction and validation of the results is linearly related to the number of the inputs and does not depend on the complexity of the performed LSB operations. We have validated our proposal in an Intel processor (Haswell architecture with AVX2 support) via fast Fourier transforms, circular convolutions, and matrix multiplication operations. Our analysis and experiments reveal that the proposed approach incurs between 0.03%0.03\% to 7%7\% reduction in processing throughput for a wide variety of LSB operations. This overhead is 5 to 1000 times smaller than that of the equivalent ABFT method that uses a checksum stream. Thus, our proposal can be used in fault-generating processor hardware or safety-critical applications, where high reliability is required without the cost of ABFT or modular redundancy.Comment: to appear in IEEE Trans. on Signal Processing, 201

    Operational use of machine learning models for sea-level modeling

    Get PDF
    1427-1434Intense activity offshore warrants a temporal and accurate prediction of sea-level variability. Besides, the sea-level plays an important role in the groundwater level and quality of coastal aquifer. Climate change influences considerable change in all the hydrological parameters and apparently affects sea-level variability. For prediction, highly complex numerical models are usually generated. To address these challenges, the study proposes the use of machine learning (ML) models with the climate change predictands and sea-level predictors. Three ML models are employed in this study, viz., Regression Vector Machine (RVM), Extreme Learning Machine (ELM), and Gaussian Process Regression (GPR). The performance of the developed models is evaluated by visual comparison of predicted and observed datasets. Regression error curve plots, frequency of forecasting errors and Taylor diagram, along with statistical performance metrics were developed. Overall, it is found that the operational use of the selected ML algorithms was quite appealing for modeling studies. Among the three ML models, GPR performed slightly better than ELM and RVM

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described

    An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms

    Full text link
    © 2017 Elsevier Ltd The uncertainty analysis and modeling of wind speed, which has an essential influence on wind power systems, is consistently considered a challenging task. However, most investigations thus far were focused mainly on point forecasts, which in reality cannot facilitate quantitative characterization of the endogenous uncertainty involved. An analysis-forecast system that includes an analysis module and a forecast module and can provide appropriate scenarios for the dispatching and scheduling of a power system is devised in this study; this system superior to those presented in previous studies. In order to qualitatively and quantitatively investigate the uncertainty of wind speed, recurrence analysis techniques are effectively developed for application in the analysis module. Furthermore, in order to quantify the uncertainty accurately, a novel architecture aimed at uncertainty mining is devised for the forecast module, where a non-parametric model optimized by an improved multi-objective water cycle algorithm is considered a predictor for producing intervals for each mode component after feature selection. The results of extensive in-depth experiments show that the devised system is not only superior to the considered benchmark models, but also has good potential practical applications in wind power systems
    corecore