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Intense activity offshore warrants a temporal and accurate prediction of sea-level variability. Besides, the sea-level plays 
an important role in the groundwater level and quality of coastal aquifer. Climate change influences considerable change in 
all the hydrological parameters and apparently affects sea-level variability. For prediction, highly complex numerical models 
are usually generated. To address these challenges, the study proposes the use of machine learning (ML) models with the 
climate change predictands and sea-level predictors. Three ML models are employed in this study, viz., Regression Vector 
Machine (RVM), Extreme Learning Machine (ELM), and Gaussian Process Regression (GPR). The performance of the 
developed models is evaluated by visual comparison of predicted and observed datasets. Regression error curve plots, 
frequency of forecasting errors and Taylor diagram, along with statistical performance metrics were developed. Overall, it is 
found that the operational use of the selected ML algorithms was quite appealing for modeling studies. Among the three ML 
models, GPR performed slightly better than ELM and RVM.  
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Introduction 
As the cities are growing at alarming rate with the 

nearby ports elevated by intense offshore structures, 
which has spurred the ocean engineers and water 
resource experts to focus on modeling the sea-level 
variability. Sea-level change in turn affects the 
salinity of coastal aquifers, groundwater tables in  
low-lying coastal areas, as well as hydrological 
regimes of some coastal rivers19,22. Change in the 
climatic variables can also be an imperative concern 
for sea-level change6,9. Reliable modeling techniques 
of sea-level integrated with climate change scenarios 
help to monitor the sea-level variations.  

Scientific interest in using numerical-based hybrid 
models in sea-level modeling has rapidly increased. It 
is arguably correct that numerical-based models are 
data-driven models and are not easily available for 
different topographical conditions. Under such 
circumstances, data-driven models that utilize 
machine learning (ML) algorithms prove to be give 
promising results. These models utilise, assimilate 
and ‘learn’ from the evidence of past climate trends 
using observational dataset to predict the future 
development. Many such models are utilized for 
various applications in hydrology4. Such ML models 
are highly advantageous when there is a lack of data 

for performing process-based modelling, or when 
downscaled parameters from climate change models 
need to be linked to regional/or local scales. Another 
feature of modern ML models is that they can produce 
local scale forecasts without performing downscaling 
operations23. 

An ML technique is an algorithm that estimates 
(induces) a hitherto unknown mapping (or dependency) 
between a system's inputs and its outputs from the 
available data. As such, a dependency is discovered, 
which can be used to predict (or effectively deduce) 
the future system's output from the known input 
values. The ML technique, on the basis of input data, 
tries to identify (‘learn/train’) the target function 
describing how the real system behaves10. Linear, 
non-linear or mixtures of both algorithms are used for 
the formulation of casual relationship between  
inputs and outputs. Linear models like multilinear 
regression, auto-regressive integrated moving average 
models perform with less accuracy than non-linear 
models1. Non-linear or hybrid models include 
artificial neural networks, support vector machines, 
genetic programming etc. Such soft computing 
approaches make the research fraternity to explore 
newer ideas for hydrological parameter modelling. 
For example, runoff occurred due to typhoon is 
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modelled using artificial neural network models3, 
whereas wavelet-support vector regression and wavelet-
gene expression programming is used for river flow 
simulation17. Among the ML group of models, the most 
modern are Regression Vector Machines (RVM), 
Extreme Learning Machines (ELM) and Guassian 
Process Regression (GPR). Sea-level modelling has 
never been performed earlier with these three  
ML models.  

The RVM model, a high-performance machine 
learning model has grown from support vector 
machines. The difference is that it allows for 
probabilistic regression within a Bayesian context.  
It has excellent generation skills because it combines 
the strengths of kernel-based methods and Bayesian 
theory. RVM has been utilized in hydrological 
applications for ground water quality monitoring 
network analysis8, long-term flow predictions for 
Caglayan Dam in Turkey12 and evaporative loss 
estimation5. Another high performance ML algorithm, 
ELM model7 is relatively faster three-step method with 
single layer feed forward neural network convergence. 
It is capable to solve the problems of back propagation 
algorithms and can be used for non-stationary time 
series prediction21. In hydrology, ELM is used for 
remote sensing image classification14, drought 
prediction4, monthly evaporation loss estimation5, and 
stream flow prediction24. The third category of ML 
algorithm, GPR has more effective use in hydrological 
applications. It is a generalization of a multivariate 
Guassian distribution to infinitely many variables. It is 
used in stream flow modelling18, and groundwater  
level forecasting15. These studies show that high 
performance machine learning models can thus be used 
for any multivariate processes in hydrology. Hence, an 
attempt was made for sea-level modeling with  
three ML models, viz., RVM, ELM and GPR.  
The operational use of these three advanced ML 
models is explained with the monthly sea-level data at 
Haldia Port, India. Climate change statistical predictors 
comprise air temperature, surface pressure, humidity, 
rainfall, and geopotential height. Performances of the 
developed models were compared by analyzing 
different statistical metrics. The study was undertaken 
as a novel approach in sea-level modelling. 
 

Theoretical background of models 
 

Regression Vector Machine (RVM) 
Relevance vector machines is a Bayesian treatment 

of support vector machine output formulation. RVM20 
seek to predict y for any x according to nxfy  )( , 

where the error term has a zero mean and square of 
the standard deviation as variance from a Gaussian 
process. In RVM, a fully probabilistic framework is 
adopted and introduced a priori over the model 
weights governed by a set of hyper parameters, 
associated with weights, whose most probable values 
are iteratively estimated from the data. 

The likelihood of the data sets can be defined as  
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Penalty of some prior constraints, W is imposed by 
adding a complexity penalty to the likelihood or the 
error function. An explicit zero-mean Gaussian prior 
probability distribution over the weights, W with 
diagonal covariance of a, which is a vector of hyper 
parameters, described as follows: 
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Where a is a hyper parameter vector that controls how 
far from zero each weight is allowed to deviate. Using 
Bayes rule, the posterior overall unknowns could be 
computed given the defined non-informative prior 
distributions as  
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The posterior distribution over the weights is given by  
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The optimization involved in RVM is 
maximization of most probable hyper parameters, i.e., 

     dwwpwypyp   22 ,,
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It is equivalent to  
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The result of this optimization is that many elements 
of α go to infinity such that w will have only a few 
non-zero weights that will be considered as relevant 
vectors. In SVM model, these relevant vectors are 
termed as support vectors. Similar to SVM-based 
models, selection of the convenient kernel function is 
also quite important in RVM modeling. The Gaussian 
radial basis function was preferred in RVM modeling. 
 

Extreme Learning Machine  
Extreme learning machine7 is the state-of-art novel 

machine learning algorithm for single layer feed 
forward neural network (SLFN). ELM allows for the 
analytical determination of the output weights using 
least-squares by reducing SLFNs to a linear system. 
These simplifications drastically increase the speed of 
the learning process, which also grants ELMs a better 
generalization than traditional SLFNs trained with 
gradient-based algorithms. From a topological point 
of view, the ELM resembles an SLFN with no biases 
on the output layer, for an ELM with one output 
neuron. For a given pattern x of p input variables, the 
output of an ELM with L hidden nodes and q output 
nodes is given by: 
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  is smallest norm least-square solution, H is called 
the hidden layer output matrix of the ELM, and H +is 
the Moore-Penrose generalized inverse of H. After the 
output weights have been determined, the ELM can 
be employed for prediction on a test dataset. The 
overall complexity m of an ELM is given by the sum 

of input layer (ai,bi) and hidden layer   parameters, 
for which an ELM with one output neuron is equal to 
m=(NI+1).NH+NH. NI is the number of model inputs 
and NH is the number of hidden neurons.  
 

Gaussian Process Regression  
Gaussian process regression is a probabilistic 

model that generalizes multivariate distribution of 
input data to infinite-dimensional space using a 
tractable Bayesian framework to infer posterior 
distributions16 

 

     )(kkxfky    … (15) 
 

Where  ky  =objective variable,  kx  are regressors, 

and    2,0~  Nk  is white Guassian noise. A 
positive semidefinite matrix K is generated by the 
covariance deduced between random variable and 
input vectors2,13. 
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Where, D=dimension of input (x); o is the noise of 

the training data. In the case of a fixed Gaussian 
noise, the model is trained by applying maximizing 
the marginal likelihood, which minimizes the negative 
log-posterior, namely, 
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Data used 

Haldia Port, situated near Kolkata, India, is 
emerging as the fastest growing port in India. The 
monthly variations of sea-level data from 1985-2012 
is obtained from Permanent Service for Mean Sea 
Level (PSMSL), Government of India, and is taken as 
predict and variable for this study. Climate variables 
or the predictor variables comprise air temperature, 
surface pressure, humidity, rainfall and geopotential 
height at different pressure levels. These 
hydroclimatic variables are selected because of their 
importance in sea-level dynamics studies11, available 
for a period of 1985-2012 from NCEP/ NCAR 
Reanalysis data. 
 

Model development 
For developing RVM, radial basis function was 

used as kernel function. For best performance of 
RVM, width of radial basis function was set to 0.45. 
Radial basis function was also adopted for developing 
the GPR model. The optimum values of error and 
width of radial basis function are 0.001 and 0.3, 
respectively. For developing ELM, radial basis 
function was taken as activation function. The number 
of hidden neurons was kept 8 for optimum 
performance of ELM.  
 

Model performance assessment 
Beyond developing ML models, another crucial 

task was assessing the model performances using 
statistical and graphical means. Statistical indicators 
like Nash–Sutcliffe model efficiency coefficient 
(NSE), coefficient of correlation (R), coefficient of 
determination (R2), root mean square error (RMSE), 
root square error (RSR), BIAS and index of agreement, 
d were used in this study. Visual comparison of 
observed and predicted values was performed through 
a time series plot. A scatter plot was also presented 
which shows the prediction interval band for all the 
models. Regression error characteristics curve (REC) 
plot and a Taylor diagram for the statistical analysis 
of the soft computing approaches were also 
considered for an easy and quick appraisal of the best 
performed model. Mathematically, the statistical 
metrics are defined as follows: 
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Where, hoi = observed groundwater level  
 

hci = calculated groundwater level, 
 

ioh = mean of observed ground water level and 

N = number of observations.  
RMSE indicates the discrepancy between the 

observed and calculated values, prediction is more 
accurate with lower RMSE values. The BIAS is a 
measure of a model estimating the true values.  
A model with a positive bias will consistently 
underestimate and with a negative bias will 
consistently overestimate. The model is said to be 
unbiased, if BIAS = 0. NSE evaluates the predictive 
capability of the developed models. 
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Results and Discussion 
 

Input Data Selection 
Potential predictors from NCEP/NCAR reanalysis 

data for the period 1985-2012 were selected based  
on correlation analysis using R studio. The air 
temperature at 500 mb pressure level, Geopotential 
height at 300 mb pressure level, specific humidity at 
925 mb pressure level and relative humidity at 1000 
mb pressure level were selected as potential predictors 
with correlation coefficient greater than 0.85. Table 1 
shows the correlation of the input variables at 
different pressure levels. The correlation of the 
potential predictors with that of the predictand sea-
level was also analyzed with wavelet coherence 
analysis shown in Figure 1. High correlation is visible 
in the corresponding plots of different potential 
predictors. Hence, these are used as the input nodes 
for all ML models. 
 

Model development results  
Three models; namely, RVM, ELM and GPR were 

developed. A visual comparison of the sea-level 
predicted from each model and observed is presented 
in Figure 2a. The three models predict the sea-level 
with more or less same accuracy. A scatter plot   with  

 
 

 
 

 
 

Fig. 1 — Wavelet coherence analysis plots between potential 
predictors and predictand sea-level (a) Air temperature at 500 mb 
pressure level, (b) Geopotential height at 300 mb pressure level, 
(c) Specific humidity at 925 mb pressure level and (d) Relative 
humidity at 1000 mb pressure level (period in months). 

Table 1 — Potential predictor selection for sea-level modeling 

Pressure 
Level 

Air 
temperature 

Geopotential 
height 

Specific 
humidity 

Relative 
humidity 

300mb 0.83 0.87 0.60 0.46 

400mb 0.84 0.83 0.57 0.41 

500mb 0.85 0.54 0.57 0.48 

600mb 0.83 -0.05 0.61 0.76 

700mb 0.82 -0.5 0.79 0.78 

850mb 0.50 -0.73 0.83 0.81 

925mb 0.36 -0.73 0.89 0.89 

1000mb 0.35 0.09 0.86 0.78 
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95% prediction interval bands is also shown  
(Figure 2b). Despite a very few scatter outside the 
95% bands, it appears in a good agreement in overall 
training and testing phases for the three models 
developed. It also indicates that all the three models 
are able to predict with reasonable accuracy levels.  

The demarcation visible in the training phase and 
testing phase is detailed in Table 2. During the 
training phase, when comparing all the statistical 
parameters, the best fit for sea-level model was found 
for GPR model. But in testing phase, best fit was 
found for RVM model. Although in training and 
testing phases, the percentage difference of best fit 
model with other two models are less than 0.1% only.  

To find the best model, a detailed analysis and fine 
tuning is required. REC curves estimate the 
cumulative distribution function of error. In support 
of the above performance metrics, a REC curve is 
plotted in Figure 3a. REC curves plotted for three 

models for both training and testing phases indicates a 
superior performance for GPR, as the absolute 
deviation is less for GPR, than ELM and RVM. As an 
additional measure, a frequency plot of forecasting 
error (in m) is plotted in Figure 3b. It is evident  
from close examination of each model that the 
forecasting error frequency decreases for GPR than 
other models. 

Before coming to conclude about the better 
performance of GPR, another close examination was 
done with the Taylor diagram for examining the 
performance of GPR, ELM and RVM models. Taylor 
diagram is plotted to compare the efficiency of 
models by correlation coefficient, RMSE and standard 
deviation (Figure 4). Again, GPR is found slightly 
superior to other models in Taylor diagram. However, 
the improvement percentage of GPR over ELM and 
RVM models is very less and in harmony with the 
other models.  

 
 

 
 

Fig. 2 (a) — Visual comparison of observed and predicted data models (b) Scatter plots between observed and predicted data at 95% 
prediction interval. 
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Fig. 3 — (a) REC plots (b) Frequency % for forecasting error for 
GPR, ELM and RVM models. 
 

 
 

Fig. 4 — Taylor diagram for (a) Training and (b) Testing phase 
for RVM, ELM and GPR models. 
 
Conclusion 

The primary objective of the paper was the 
operational use of high performance ML models  
for sea-level modelling. Regression vector machine, 
extreme learning models and guassian process 

regression were the three models used for prediction 
of monthly sea-level data at Haldia Port, India. The 
potential predictors for statistical downscaling of sea-
level variability were air temperature, geopotential 
height, specific humidity and relative humidity. The 
potentiality of the predictors with predictand sea-level 
was expressed as coefficients of correlation and the 
correlated variables were displayed with wavelet 
coherence analysis.  

Sea-level simulation by three models shows the 
potential capability of machine learning algorithms. 
By comparing the performance measure metrics and 
visual comparison between observed and predicted 
shows very little demarcation of the three models. 
Variations among the models are less than 0.1%. It 
indicates the successful application of ML algorithms 
for sea-level estimations. A detailed analysis by REC 
plots, frequency of forecasting errors plots and a 
Taylor diagram also aids visually to find the better 
performance of the models. It is evidently proved by 
the plots that the GPR shows a slightly better 
approach among others and appears to be a promising 
soft computing approach for prediction. The viability 
of ML models for sea-level predictions is quite 
appealing for incorporating accurate forecasts in 
suppressing climate change models. However, ML 
models are highly data-demanding and perform better 
with longer datasets. 
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