21,708 research outputs found

    On a multiscale strategy and its optimization for the simulation of combined delamination and buckling

    Full text link
    This paper investigates a computational strategy for studying the interactions between multiple through-the-width delaminations and global or local buckling in composite laminates taking into account possible contact between the delaminated surfaces. In order to achieve an accurate prediction of the quasi-static response, a very refined discretization of the structure is required, leading to the resolution of very large and highly nonlinear numerical problems. In this paper, a nonlinear finite element formulation along with a parallel iterative scheme based on a multiscale domain decomposition are used for the computation of 3D mesoscale models. Previous works by the authors already dealt with the simulation of multiscale delamination assuming small perturbations. This paper presents the formulation used to include geometric nonlinearities into this existing multiscale framework and discusses the adaptations that need to be made to the iterative process in order to ensure the rapid convergence and the scalability of the method in the presence of buckling and delamination. These various adaptations are illustrated by simulations involving large numbers of DOFs

    Multiscale virtual particle based elastic network model (MVP-ENM) for biomolecular normal mode analysis

    Full text link
    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for biomolecular normal mode analysis. The multiscale virtual particle model is proposed for the discretization of biomolecular density data in different scales. Essentially, the model works as the coarse-graining of the biomolecular structure, so that a delicate balance between biomolecular geometric representation and computational cost can be achieved. To form "connections" between these multiscale virtual particles, a new harmonic potential function, which considers the influence from both mass distributions and distance relations, is adopted between any two virtual particles. Unlike the previous ENMs that use a constant spring constant, a particle-dependent spring parameter is used in MVP-ENM. Two independent models, i.e., multiscale virtual particle based Gaussian network model (MVP-GNM) and multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. Even with a rather coarse grid and a low resolution, the MVP-GNM is able to predict the Debye-Waller factors (B-factors) with considerable good accuracy. Similar properties have also been observed in MVP-ANM. More importantly, in B-factor predictions, the mismatch between the predicted results and experimental ones is predominantly from higher fluctuation regions. Further, it is found that MVP-ANM can deliver a very consistent low-frequency eigenmodes in various scales. This demonstrates the great potential of MVP-ANM in the deformation analysis of low resolution data. With the multiscale rigidity function, the MVP-ENM can be applied to biomolecular data represented in density distribution and atomic coordinates. Further, the great advantage of my MVP-ENM model in computational cost has been demonstrated by using two poliovirus virus structures. Finally, the paper ends with a conclusion.Comment: 15 figures; 25 page

    Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes

    Get PDF
    Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by mainly redundant or synergistic information transfer persisting across multiple time scales or even by the alternating prevalence of redundant and synergistic source interaction depending on the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection of causal interactions in human epilepsy networks, for which we show the relevance of partial information decomposition to the detection of multiscale information transfer spreading from the seizure onset zone

    Multiscale Granger causality analysis by \`a trous wavelet transform

    Full text link
    Since interactions in neural systems occur across multiple temporal scales, it is likely that information flow will exhibit a multiscale structure, thus requiring a multiscale generalization of classical temporal precedence causality analysis like Granger's approach. However, the computation of multiscale measures of information dynamics is complicated by theoretical and practical issues such as filtering and undersampling: to overcome these problems, we propose a wavelet-based approach for multiscale Granger causality (GC) analysis, which is characterized by the following properties: (i) only the candidate driver variable is wavelet transformed (ii) the decomposition is performed using the \`a trous wavelet transform with cubic B-spline filter. We measure GC, at a given scale, by including the wavelet coefficients of the driver times series, at that scale, in the regression model of the target. To validate our method, we apply it to publicly available scalp EEG signals, and we find that the condition of closed eyes, at rest, is characterized by an enhanced GC among channels at slow scales w.r.t. eye open condition, whilst the standard Granger causality is not significantly different in the two conditions.Comment: 4 pages, 3 figure

    Multiscale identification of spatio-temporal dynamical systems using a wavelet multiresolution analysis

    Get PDF
    In this paper, a new algorithm for the multiscale identification of spatio-temporal dynamical systems is derived. It is shown that the input and output observations can be represented in a multiscale manner based on a wavelet multiresolution analysis. The system dynamics at some specific scale of interest can then be identified using an orthogonal forward leastsquares algorithm. This model can then be converted between different scales to produce predictions of the system outputs at different scales. The method can be applied to both multiscale and conventional spatio-temporal dynamical systems. For multiscale systems, the method can generate a parsimonious and effective model at a coarser scale while considering the effects from finer scales. Additionally, the proposed method can be used to improve the performance of the identification when measurements are noisy. Numerical examples are provided to demonstrate the application of the proposed new approach
    corecore