48,117 research outputs found

    Detecting Strong Ties Using Network Motifs

    Full text link
    Detecting strong ties among users in social and information networks is a fundamental operation that can improve performance on a multitude of personalization and ranking tasks. Strong-tie edges are often readily obtained from the social network as users often participate in multiple overlapping networks via features such as following and messaging. These networks may vary greatly in size, density and the information they carry. This setting leads to a natural strong tie detection task: given a small set of labeled strong tie edges, how well can one detect unlabeled strong ties in the remainder of the network? This task becomes particularly daunting for the Twitter network due to scant availability of pairwise relationship attribute data, and sparsity of strong tie networks such as phone contacts. Given these challenges, a natural approach is to instead use structural network features for the task, produced by {\em combining} the strong and "weak" edges. In this work, we demonstrate via experiments on Twitter data that using only such structural network features is sufficient for detecting strong ties with high precision. These structural network features are obtained from the presence and frequency of small network motifs on combined strong and weak ties. We observe that using motifs larger than triads alleviate sparsity problems that arise for smaller motifs, both due to increased combinatorial possibilities as well as benefiting strongly from searching beyond the ego network. Empirically, we observe that not all motifs are equally useful, and need to be carefully constructed from the combined edges in order to be effective for strong tie detection. Finally, we reinforce our experimental findings with providing theoretical justification that suggests why incorporating these larger sized motifs as features could lead to increased performance in planted graph models.Comment: To appear in Proceedings of WWW 2017 (Web-science track

    Reading the Source Code of Social Ties

    Full text link
    Though online social network research has exploded during the past years, not much thought has been given to the exploration of the nature of social links. Online interactions have been interpreted as indicative of one social process or another (e.g., status exchange or trust), often with little systematic justification regarding the relation between observed data and theoretical concept. Our research aims to breach this gap in computational social science by proposing an unsupervised, parameter-free method to discover, with high accuracy, the fundamental domains of interaction occurring in social networks. By applying this method on two online datasets different by scope and type of interaction (aNobii and Flickr) we observe the spontaneous emergence of three domains of interaction representing the exchange of status, knowledge and social support. By finding significant relations between the domains of interaction and classic social network analysis issues (e.g., tie strength, dyadic interaction over time) we show how the network of interactions induced by the extracted domains can be used as a starting point for more nuanced analysis of online social data that may one day incorporate the normative grammar of social interaction. Our methods finds applications in online social media services ranging from recommendation to visual link summarization.Comment: 10 pages, 8 figures, Proceedings of the 2014 ACM conference on Web (WebSci'14

    Resolving Multi-party Privacy Conflicts in Social Media

    Get PDF
    Items shared through Social Media may affect more than one user's privacy --- e.g., photos that depict multiple users, comments that mention multiple users, events in which multiple users are invited, etc. The lack of multi-party privacy management support in current mainstream Social Media infrastructures makes users unable to appropriately control to whom these items are actually shared or not. Computational mechanisms that are able to merge the privacy preferences of multiple users into a single policy for an item can help solve this problem. However, merging multiple users' privacy preferences is not an easy task, because privacy preferences may conflict, so methods to resolve conflicts are needed. Moreover, these methods need to consider how users' would actually reach an agreement about a solution to the conflict in order to propose solutions that can be acceptable by all of the users affected by the item to be shared. Current approaches are either too demanding or only consider fixed ways of aggregating privacy preferences. In this paper, we propose the first computational mechanism to resolve conflicts for multi-party privacy management in Social Media that is able to adapt to different situations by modelling the concessions that users make to reach a solution to the conflicts. We also present results of a user study in which our proposed mechanism outperformed other existing approaches in terms of how many times each approach matched users' behaviour.Comment: Authors' version of the paper accepted for publication at IEEE Transactions on Knowledge and Data Engineering, IEEE Transactions on Knowledge and Data Engineering, 201

    Crime and Social media

    Get PDF
    Purpose-The study complements the scant macroeconomic literature on the development outcomes of social media by examining the relationship between Facebook penetration and violent crime levels in a cross-section of 148 countries for the year 2012. Design/methodology/approach-The empirical evidence is based on Ordinary Least Squares (OLS), Tobit and Quantile regressions. In order to respond to policy concerns on the limited evidence on the consequences of social media in developing countries, the dataset is disaggregated into regions and income levels. The decomposition by income levels included: low income, lower middle income, upper middle income and high income. The corresponding regions include: Europe and Central Asia, East Asia and the Pacific, Middle East and North Africa, Sub-Saharan Africa and Latin America. Findings-From OLS and Tobit regressions, there is a negative relationship between Facebook penetration and crime. However, Quantile regressions reveal that the established negative relationship is noticeable exclusively in the 90th crime decile. Further, when the dataset is decomposed into regions and income levels, the negative relationship is evident in the Middle East and North Africa (MENA) while a positive relationship is confirmed for sub-Saharan Africa. Policy implications are discussed. Originality/value- Studies on the development outcomes of social media are sparse because of a lack of reliable macroeconomic data on social media. This study primarily complemented three existing studies that have leveraged on a newly available dataset on Facebook
    • …
    corecore