16 research outputs found

    Finding common protein interaction patterns across organisms

    Get PDF
    Protein interactions are an important resource to obtain an understanding of cell function. Recently, researchers have compared networks of interactions in order to understand network evolution. While current methods first infer homologs and then compare topologies, we here present a method which first searches for interesting topologies and then looks for homologs. PINA (protein interaction network analysis) takes the protein interaction networks of two organisms, scans both networks for subnetworks deemed interesting, and then tries to find orthologs among the interesting subnetworks. The application is very fast because orthology investigations are restricted to subnetworks like hubs and clusters that fulfill certain criteria regarding neighborhood and connectivity. Finally, the hubs or clusters found to be related can be visualized and analyzed according to protein annotation

    Structure-Templated Predictions of Novel Protein Interactions from Sequence Information

    Get PDF
    The multitude of functions performed in the cell are largely controlled by a set of carefully orchestrated protein interactions often facilitated by specific binding of conserved domains in the interacting proteins. Interacting domains commonly exhibit distinct binding specificity to short and conserved recognition peptides called binding profiles. Although many conserved domains are known in nature, only a few have well-characterized binding profiles. Here, we describe a novel predictive method known as domain–motif interactions from structural topology (D-MIST) for elucidating the binding profiles of interacting domains. A set of domains and their corresponding binding profiles were derived from extant protein structures and protein interaction data and then used to predict novel protein interactions in yeast. A number of the predicted interactions were verified experimentally, including new interactions of the mitotic exit network, RNA polymerases, nucleotide metabolism enzymes, and the chaperone complex. These results demonstrate that new protein interactions can be predicted exclusively from sequence information

    Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners

    Get PDF
    Recent advances in high-throughput experimental methods for the identification of protein interactions have resulted in a large amount of diverse data that are somewhat incomplete and contradictory. As valuable as they are, such experimental approaches studying protein interactomes have certain limitations that can be complemented by the computational methods for predicting protein interactions. In this review we describe different approaches to predict protein interaction partners as well as highlight recent achievements in the prediction of specific domains mediating protein-protein interactions. We discuss the applicability of computational methods to different types of prediction problems and point out limitations common to all of them

    SH3 Domain-Peptide Binding Energy Calculations Based on Structural Ensemble and Multiple Peptide Templates

    Get PDF
    SH3 domains mediate signal transduction by recognizing short peptides. Understanding of the driving forces in peptide recognitions will help us to predict the binding specificity of the domain-peptide recognition and to understand the molecular interaction networks of cells. However, accurate calculation of the binding energy is a tough challenge. In this study, we propose three ideas for improving our ability to predict the binding energy between SH3 domains and peptides: (1) utilizing the structural ensembles sampled from a molecular dynamics simulation trajectory, (2) utilizing multiple peptide templates, and (3) optimizing the sequence-structure mapping. We tested these three ideas on ten previously studied SH3 domains for which SPOT analysis data were available. The results indicate that calculating binding energy using the structural ensemble was most effective, clearly increasing the prediction accuracy, while the second and third ideas tended to give better binding energy predictions. We applied our method to the five SH3 targets in DREAM4 Challenge and selected the best performing method

    A novel structure-based encoding for machine-learning applied to the inference of SH3 domain specificity

    Get PDF
    MOTIVATION: Unravelling the rules underlying protein-protein and protein-ligand interactions is a crucial step in understanding cell machinery. Peptide recognition modules (PRMs) are globular protein domains which focus their binding targets on short protein sequences and play a key role in the frame of protein-protein interactions. High-throughput techniques permit the whole proteome scanning of each domain, but they are characterized by a high incidence of false positives. In this context, there is a pressing need for the development of in silico experiments to validate experimental results and of computational tools for the inference of domain-peptide interactions. RESULTS: We focused on the SH3 domain family and developed a machine-learning approach for inferring interaction specificity. SH3 domains are well-studied PRMs which typically bind proline-rich short sequences characterized by the PxxP consensus. The binding information is known to be held in the conformation of the domain surface and in the short sequence of the peptide. Our method relies on interaction data from high-throughput techniques and benefits from the integration of sequence and structure data of the interacting partners. Here, we propose a novel encoding technique aimed at representing binding information on the basis of the domain-peptide contact residues in complexes of known structure. Remarkably, the new encoding requires few variables to represent an interaction, thus avoiding the 'curse of dimension'. Our results display an accuracy >90% in detecting new binders of known SH3 domains, thus outperforming neural models on standard binary encodings, profile methods and recent statistical predictors. The method, moreover, shows a generalization capability, inferring specificity of unknown SH3 domains displaying some degree of similarity with the known data

    Features analysis for identification of date and party hubs in protein interaction network of Saccharomyces Cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been understood that biological networks have modular organizations which are the sources of their observed complexity. Analysis of networks and motifs has shown that two types of hubs, party hubs and date hubs, are responsible for this complexity. Party hubs are local coordinators because of their high co-expressions with their partners, whereas date hubs display low co-expressions and are assumed as global connectors. However there is no mutual agreement on these concepts in related literature with different studies reporting their results on different data sets. We investigated whether there is a relation between the biological features of <it>Saccharomyces Cerevisiae</it>'s proteins and their roles as non-hubs, intermediately connected, party hubs, and date hubs. We propose a classifier that separates these four classes.</p> <p>Results</p> <p>We extracted different biological characteristics including amino acid sequences, domain contents, repeated domains, functional categories, biological processes, cellular compartments, disordered regions, and position specific scoring matrix from various sources. Several classifiers are examined and the best feature-sets based on average correct classification rate and correlation coefficients of the results are selected. We show that fusion of five feature-sets including domains, Position Specific Scoring Matrix-400, cellular compartments level one, and composition pairs with two and one gaps provide the best discrimination with an average correct classification rate of 77%.</p> <p>Conclusions</p> <p>We study a variety of known biological feature-sets of the proteins and show that there is a relation between domains, Position Specific Scoring Matrix-400, cellular compartments level one, composition pairs with two and one gaps of <it>Saccharomyces Cerevisiae'</it>s proteins, and their roles in the protein interaction network as non-hubs, intermediately connected, party hubs and date hubs. This study also confirms the possibility of predicting non-hubs, party hubs and date hubs based on their biological features with acceptable accuracy. If such a hypothesis is correct for other species as well, similar methods can be applied to predict the roles of proteins in those species.</p

    Using genome-wide measurements for computational prediction of SH2–peptide interactions

    Get PDF
    Peptide-recognition modules (PRMs) are used throughout biology to mediate protein–protein interactions, and many PRMs are members of large protein domain families. Recent genome-wide measurements describe networks of peptide–PRM interactions. In these networks, very similar PRMs recognize distinct sets of peptides, raising the question of how peptide-recognition specificity is achieved using similar protein domains. The analysis of individual protein complex structures often gives answers that are not easily applicable to other members of the same PRM family. Bioinformatics-based approaches, one the other hand, may be difficult to interpret physically. Here we integrate structural information with a large, quantitative data set of SH2 domain–peptide interactions to study the physical origin of domain–peptide specificity. We develop an energy model, inspired by protein folding, based on interactions between the amino-acid positions in the domain and peptide. We use this model to successfully predict which SH2 domains and peptides interact and uncover the positions in each that are important for specificity. The energy model is general enough that it can be applied to other members of the SH2 family or to new peptides, and the cross-validation results suggest that these energy calculations will be useful for predicting binding interactions. It can also be adapted to study other PRM families, predict optimal peptides for a given SH2 domain, or study other biological interactions, e.g. protein–DNA interactions.National Institutes of Health. National Centers for Biomedical Computing (Informatics for Integrating Biology and the Bedside)National Institutes of Health (U.S.) (grant U54LM008748

    Extracting large quasi-bicliques using a skeleton-based heuristic

    Get PDF
    One important computational problem is that of mining quasi bicliques from bipartite graphs. It is important because it has an almost endless number of applications and, in most real world problems, is more appropriate than the mining of bicliques. In my thesis I examine the following: the motivation for quasi bicliques, the existing literature for quasi bicliques, my implementation of a web application that allows the user to compute exact quasi biclique solutions using the biclique formulation and the exact solution algorithm provided by Chang et al.[1], and finally a polynomial heuristic algorithm for finding large quasi bicliques in the special case where we have all the biclique subgraphs of a bipartite graph available

    Automated linear motif discovery from protein interaction network

    Get PDF
    Master'sMASTER OF SCIENC

    Sequence Motifs in MADS Transcription Factors Responsible for Specificity and Diversification of Protein-Protein Interaction

    Get PDF
    Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and network evolution
    corecore