14,851 research outputs found

    Predicting protein function by machine learning on amino acid sequences – a critical evaluation

    Get PDF
    Copyright @ 2007 Al-Shahib et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Predicting the function of newly discovered proteins by simply inspecting their amino acid sequence is one of the major challenges of post-genomic computational biology, especially when done without recourse to experimentation or homology information. Machine learning classifiers are able to discriminate between proteins belonging to different functional classes. Until now, however, it has been unclear if this ability would be transferable to proteins of unknown function, which may show distinct biases compared to experimentally more tractable proteins. Results: Here we show that proteins with known and unknown function do indeed differ significantly. We then show that proteins from different bacterial species also differ to an even larger and very surprising extent, but that functional classifiers nonetheless generalize successfully across species boundaries. We also show that in the case of highly specialized proteomes classifiers from a different, but more conventional, species may in fact outperform the endogenous species-specific classifier. Conclusion: We conclude that there is very good prospect of successfully predicting the function of yet uncharacterized proteins using machine learning classifiers trained on proteins of known function

    PRED-CLASS: cascading neural networks for generalized protein classification and genome-wide applications

    Full text link
    A cascading system of hierarchical, artificial neural networks (named PRED-CLASS) is presented for the generalized classification of proteins into four distinct classes-transmembrane, fibrous, globular, and mixed-from information solely encoded in their amino acid sequences. The architecture of the individual component networks is kept very simple, reducing the number of free parameters (network synaptic weights) for faster training, improved generalization, and the avoidance of data overfitting. Capturing information from as few as 50 protein sequences spread among the four target classes (6 transmembrane, 10 fibrous, 13 globular, and 17 mixed), PRED-CLASS was able to obtain 371 correct predictions out of a set of 387 proteins (success rate approximately 96%) unambiguously assigned into one of the target classes. The application of PRED-CLASS to several test sets and complete proteomes of several organisms demonstrates that such a method could serve as a valuable tool in the annotation of genomic open reading frames with no functional assignment or as a preliminary step in fold recognition and ab initio structure prediction methods. Detailed results obtained for various data sets and completed genomes, along with a web sever running the PRED-CLASS algorithm, can be accessed over the World Wide Web at http://o2.biol.uoa.gr/PRED-CLAS

    Toward a multilevel representation of protein molecules: comparative approaches to the aggregation/folding propensity problem

    Full text link
    This paper builds upon the fundamental work of Niwa et al. [34], which provides the unique possibility to analyze the relative aggregation/folding propensity of the elements of the entire Escherichia coli (E. coli) proteome in a cell-free standardized microenvironment. The hardness of the problem comes from the superposition between the driving forces of intra- and inter-molecule interactions and it is mirrored by the evidences of shift from folding to aggregation phenotypes by single-point mutations [10]. Here we apply several state-of-the-art classification methods coming from the field of structural pattern recognition, with the aim to compare different representations of the same proteins gathered from the Niwa et al. data base; such representations include sequences and labeled (contact) graphs enriched with chemico-physical attributes. By this comparison, we are able to identify also some interesting general properties of proteins. Notably, (i) we suggest a threshold around 250 residues discriminating "easily foldable" from "hardly foldable" molecules consistent with other independent experiments, and (ii) we highlight the relevance of contact graph spectra for folding behavior discrimination and characterization of the E. coli solubility data. The soundness of the experimental results presented in this paper is proved by the statistically relevant relationships discovered among the chemico-physical description of proteins and the developed cost matrix of substitution used in the various discrimination systems.Comment: 17 pages, 3 figures, 46 reference

    Identification of functionally related enzymes by learning-to-rank methods

    Full text link
    Enzyme sequences and structures are routinely used in the biological sciences as queries to search for functionally related enzymes in online databases. To this end, one usually departs from some notion of similarity, comparing two enzymes by looking for correspondences in their sequences, structures or surfaces. For a given query, the search operation results in a ranking of the enzymes in the database, from very similar to dissimilar enzymes, while information about the biological function of annotated database enzymes is ignored. In this work we show that rankings of that kind can be substantially improved by applying kernel-based learning algorithms. This approach enables the detection of statistical dependencies between similarities of the active cleft and the biological function of annotated enzymes. This is in contrast to search-based approaches, which do not take annotated training data into account. Similarity measures based on the active cleft are known to outperform sequence-based or structure-based measures under certain conditions. We consider the Enzyme Commission (EC) classification hierarchy for obtaining annotated enzymes during the training phase. The results of a set of sizeable experiments indicate a consistent and significant improvement for a set of similarity measures that exploit information about small cavities in the surface of enzymes

    Introduction to Protein Structure Prediction

    Get PDF
    This chapter gives a graceful introduction to problem of protein three- dimensional structure prediction, and focuses on how to make structural sense out of a single input sequence with unknown structure, the 'query' or 'target' sequence. We give an overview of the different classes of modelling techniques, notably template-based and template free. We also discuss the way in which structural predictions are validated within the global com- munity, and elaborate on the extent to which predicted structures may be trusted and used in practice. Finally we discuss whether the concept of a sin- gle fold pertaining to a protein structure is sustainable given recent insights. In short, we conclude that the general protein three-dimensional structure prediction problem remains unsolved, especially if we desire quantitative predictions. However, if a homologous structural template is available in the PDB model or reasonable to high accuracy may be generated
    • …
    corecore