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Abstract

This chapter gives a graceful introduction to problem of protein three-
dimensional structure prediction, and focuses on how to make structural
sense out of a single input sequence with unknown structure, the ‘query’ or
‘target’ sequence. We give an overview of the different classes of modelling
techniques, notably template-based and template free. We also discuss the
way in which structural predictions are validated within the global com-
munity, and elaborate on the extent to which predicted structures may be
trusted and used in practice. Finally we discuss whether the concept of a sin-
gle fold pertaining to a protein structure is sustainable given recent insights.
In short, we conclude that the general protein three-dimensional structure
prediction problem remains unsolved, especially if we desire quantitative
predictions. However, if a homologous structural template is available in
the PDB model or reasonable to high accuracy may be generated.

Structural Bioinformatics c© Abeln & Feenstra, 2014-2017
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7.1 What is the protein structure prediction problem?

7.1.1 Predicting the structure for a protein sequence

This chapter revolves around a simple question: “given an amino acid se-
quence, what is the folded structure of the protein?” (Figure 7.1) Even
though this seems like a simple question, the answer is far from straight-
forward. In fact, whether we can give an answer at all depends heavily on
the sequence in question and available protein structures that can be used
as modelling templates. While the number of structures deposited in the
Protein Data Bank (PDB) (Berman et al., 2000) continues to rise rapidly 1,
the number of sequenced genes rises much faster. The large and widening
gap between protein structures and sequences makes structure prediction an
important problem to solve. Fortunately, recently developed methods can
use these large resources of sequence data to increase the quality of some
predictions. Here, we will give an overview of current structure prediction
methods, and describe some tools that provide insight into how reliable the
structure predicted will be.

Figure 7.1: Structure prediction methods try to answer the question: given an
amino acid sequence, what is the folded protein structure?

The typical problem is that we want to generate a structural model
for a protein with a sequence, but without an experimentally determined
structure. In this chapter, we will build up a workflow for tackling this
problem, starting from the easy options that, if applicable, are likely to
generate a good structural model, and gradually working up to the more
hypothetical options whose results are much more uncertain.

Another very important remark is in place here: the modelling strategy
should depend heavily on what we want to do with the structure. Do we

1https://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total&

seqid=100

c© Abeln & Feenstra, 2014-2017 Structural Bioinformatics
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Figure 7.2: Protein structure more conserved than sequence. Here the output of a
structural alignment is shown on the left, created using Chimera 2 (Pettersen et al.,
2004). The structural alignment shows both proteins are highly similar; the RMSD
is 2.3 over 144 aligned residues. Furthermore, the function of the two proteins, one
from cattle (PDB:1L9H, light brown) and one from a archaeon (PDB:1GUE, light
blue), is similar: both are light sensitive rhodopsins, used for vision and phototaxis,
respectively. However, as can be seen in the sequence alignment on the right, the
sequence identity is only 7%. This is lower than would be expected for any two
random sequences. The alignment shown is based on the structural alignment on
the left, and visualised using JalView (Waterhouse et al., 2009).

want to predict where the functional site of the protein is, whether a specific
substrate binds, or if a certain residue may be exposed to the surface? These
different questions imply a different degree of accuracy in the answer, and
may lead to choices regarding technology and methods to carry out these
predictions. It is important to keep in mind that one of the most important
aspects of any scientific model is whether a research question may be an-
swered with the model produced or not. Even if we do have an experimental
structure available, some of these questions may not be straightforward to
answer; we will come back to this issue later in the chapter.

Structural Bioinformatics c© Abeln & Feenstra, 2014-2017
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7.1. What is the protein structure prediction problem? 9

7.1.2 Structure is more conserved than sequence

Almost all structure prediction relies on the fact that, for two homologous
proteins, structure is more conserved than sequence (see Figure 7.2). The
real power of this observation manifests itself when we turn this statement
around: if two protein sequences are similar, these two proteins are likely
to have a very similar structure. The latter statement has very important
consequences. It means that if our sequence of interest is similar to a protein
sequence with a known structure, we have a good starting point for a struc-
tural model. In such a scenario we use sequence similarity, suggesting an
homologous relation between the proteins, to predict the structure. The vast
majority of accurate structure prediction methods use structure conservation
as an underlying principle; while methods that have been developed to deal
with the more difficult modelling questions, exploit the sequence-structure-
conservation relation in an advanced manner, as discussed towards the end
of this chapter.

7.1.3 Terminology in structure prediction

Firstly, we should take care to lay down a good problem definition. Here
we will generously borrow the nomenclature from the Critical Assessment of
Protein Structures (CASP). CASP is a scientific competition, in which struc-
ture prediction groups and structure prediction servers compete to predict
the structure for an unknown sequence, that has been running since 1995
(Moult et al., 1995). The sequence for which we will predict a structure is
called the target sequence. If there is a suitable structure to build a model
for our query sequence we call this structure a template, see also Figure
7.3. Using the structure of the template and using the sequence alignment
between the template and the target sequence, we can create one or more
structural models: the predicted structure, for a target sequence. In CASP
structural models from different prediction methods, are compared to the
experimentally determined solution or target structure.

7.1.4 Different classes of structure prediction methods

We can classify structure prediction strategies into two categories of diffi-
culty: template-based modelling, and template-free modelling (see Figure
7.4). In the first case, it is possible to find a suitable template for the target
sequence in the PDB, as a basis for the model, whereas for template-free
modelling no such experimental structure is available. Note that it may not
be trivial at all to find out in which of these two categories a structure predic-
tion problem falls. Only if we can find a close homolog – based on sequence

2Molecular graphics and analyses were performed with the UCSF Chimera package.
Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics
at the University of California, San Francisco (supported by NIGMS P41-GM103311).

c© Abeln & Feenstra, 2014-2017 Structural Bioinformatics
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Figure 7.3: Terminology used in protein structure prediction. We start from our
protein of interest (with no known structure): the target sequence. First step is
find a matching protein: a template sequence with known structure; the template
structure. We then create a template-target sequence alignment, and from this
alignment create the structural model which is the solution structure for our target
protein.

similarity – in the PDB we can be sure that a template based modelling
strategy will suffice; this is also referred to as homology modelling. With
a template, the constraints from the alignment between the model and the
template sequence, in addition to the template structure, will give sufficient
constraints to build a structural model for the target sequence. Even in this
case, small missing substructures in the alignment, e.g. loops, may require
a template-free modelling strategy.

If no close homologs are available in the PDB, we may need to use more
advanced template finding strategies, such as remote homology detection or
fold recognition methods.

If no suitable template is available, we will need to resort to a template-

Structural Bioinformatics c© Abeln & Feenstra, 2014-2017
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Figure 7.4: Overview of Structure Prediction. Template-based modelling: a tem-
plate is found on the basis of homology between the template and the target. Fold
recognition: no obvious homologous structure can be found in the PDB, we need
fold recognition methods to find a suitable template. Template-free modelling: no
suitable template for protein domains can be found. Without template, we need to
use a combination of coarse constraints from experiment or co-evolution analysis,
and ab initio prediction. Ab initio methods typically work with taking fragment
templates from various proteins, and assemble these into a model or decoy structure.
Expected model accuracy declines from left to right: good accuracy is expected if
based on homology; in contrast, ab initio modelling should only be considered if no
other options remain.

c© Abeln & Feenstra, 2014-2017 Structural Bioinformatics



12 Chapter 7. Introduction to Protein Structure Prediction

free modelling strategy. In the “ab initio” approach knowledge-based energy
terms are used to generate structural models based on the sequence of the
template alone. Small, suitable fragments, from various PDB structures are
assembled to generate possible structural models. In some cases, we can
find additional constraints, for example from experiments, such as NMR or
cryoEM, or from contact prediction methods; in that case we have a much
better chance of building a suitable model (Moult et al., 2016). In fact, we
could consider such constraints an alternative for the constraints provided
by homology.

Lastly, several steps may be taken to refine the model, and to select
the most likely model, from several model building attempts. Note that
some structure prediction methods, may also include variations of model
refinement and model selection steps higher up in the modelling workflow.

7.1.5 Domains

So far we have implied that we may follow the above strategy for an entire
protein, however, this generally is not the case. In fact many proteins consist
of multiple domains. If this is the case, it is wise to also run one or multiple
disorder prediction methods on the target sequence; Any large regions (> 25
residues) predicted to be disordered should be left out for further structure
prediction and template finding.

Most structure prediction methods only work well at the domain level.
This means that a sequence first needs to be split in multiple domains, before
we can start to make models. However, domain splitting is often ambiguous
both given the sequence and the structure, while combining models built
from various domains is far from trivial. In practice, this means that multiple
templates might be necessary for a single target sequence and that it is
difficult to resolve the orientation of the modelled domains with respect to
each other.

Predicting the orientation for several domains is currently an unsolved
problem, unless there is a suitable, homologous, template available – with
the domains in the same orientation. In some cases, coarse constraints on the
domain orientations such as data from small-angle scattering experiments,
or distance restraints from NMR, chemical cross-links or co-evolution may
help to put different homology models in the correct orientation.

Typically, it only makes sense to generate a model, be it template-based
or template-free, for a single domain. In fact, in CASP model predictions
are assessed per structural domain, separately. Therefore, it is essential to
split the target sequence into its constituent domains – which is a non-trivial
task, particularly if no homologous templates are available for each of the
domains.

Structural Bioinformatics c© Abeln & Feenstra, 2014-2017
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7.2 Assessing the quality of structure prediction meth-
ods

Generally, as with any prediction problem, we can assess the quality of a
prediction if we have a true answer to the question. Here, truth will be repre-
sented by an experimentally determined protein structure (of high quality).
Fortunately, there are now (November 2017) over 120,000 deposited protein
structures in the PDB3. However, simply assessing how well a method per-
forms over this set is problematic. The methods have been trained on this
data set; that means that there may be a strong bias in these methods, to
predict good models for sequences that are within their dataset, and there-
fore homologs of those. In order to truly assess a method, a completely
independent data set is required.

7.2.1 Critical Assessment of protein Structure Prediction

Every other year CASP, a Critical Assessment of Protein Structure Predic-
tion, provides such an independent validation benchmark. CASP is a blind
test or competition: experimentalists provide sequences for which they know
the structures will be solved imminently; modelling groups and servers try
to predict the structure (Moult et al., 1995). Once the structure is solved,
the models can be evaluated using the solution structure of the target (see
also Figure 7.5).

CASP was started because the protein structure prediction problem was
claimed to have been solved several times. The problem was, that algorithms
were trained on databases that contained the structures that were evaluated
in benchmarking tests. CASP overcomes this problem.

Note that the very first step in any practical structure prediction ap-
proach, should be to inspect the results from the latest CASP round (Moult
et al., 2016) via the CASP website4 to see what the state of the art methods
are, and what their expected performance is.

7.2.2 Root-Mean-Square Deviation (RMSD):

If we want to asses the quality of a method, we need to measure the quality of
the predictions made by the method. Hence, one would like to structurally
compare atomic coordinates of the model and of the solution structure, and
quantify the (dis)similarity.

The problem of comparing a model to to a solution structure, is less
difficult than the comparison between two homologous protein structures.
This is because the alignment is trivial: the model has the same sequence as

3structures in the PDB: https://www.rcsb.org/pdb/statistics/holdings.do
4CASP website: http://predictioncenter.org/

c© Abeln & Feenstra, 2014-2017 Structural Bioinformatics
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the solution structure; we know which residues, and atoms should correspond
in the two structures.

The easiest way to compare structures, is the calculate the Root-Mean-
Square Deviation (RMSD) after a structural superpositioning (Marti-Renom
et al., 2009). The superpositioning is required, because two arbitrary struc-
tures will typically not be positioned at coordinates suitable for comparison;
first a translation and rotation needs to be applied to one of the two struc-
tures, to minimise the RMSD; the resulting RMSD after superpositioning
can be used as a dissimilarity measure.

The Root-Mean-Square Deviation (RMSD) calculates the squared dif-
ference between two sets of atoms, and can be defined as follows:

RMSD(v, w) =

√√√√ 1

n

n∑
i=1

‖vi − wi‖2

=

√√√√ 1

n

n∑
i=1

(vix − wix)2 + (viz − wiz)
2 + (viz − wiz)

2

Here, vi is the position vector of ith atom of structure v; wi is the position
vector of ith atom of structure w; and n is the total number of aligned atoms.

The RMSD takes the average over all aligned pairs. In protein structures
typically one representative atom per residue is chosen, such as Cα or Cβ.

7.2.3 GDT – Global Distance Test

If a model gets a loop very wrong, it tends to stick out and can be positioned
very distant from the true structure, even though the remaining structure
may be reasonably accurate. This partial outlier weighs heavily on the
average distance calculated. Hence the RMSD is over sensitive to such
outliers.

The global distance test total score (GDT TS) is a more robust struc-
tural similarity measure that is well defined given an alignment between two
structures. The key idea is to count the number of residues that can max-
imally be fitted within a certain distance cutoff, see also Figure 7.5. The
GDT score will therefore produce a percentage. In the formula below, the
final score is the average over four different distance cutoffs (1, 2, 4, 8 Å).

GDT TS =
1

4

∑
v=1,2,4,8Å

G(v)

t
(7.1)

Here, G(v) is the number of aligned residues within given RMSD cutoff
v (in Ångstrom – 10−10m) and t is the total number of aligned residues. A
related score called GDT HA was introduced in CASP some time ago (Read

Structural Bioinformatics c© Abeln & Feenstra, 2014-2017
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Figure 7.5: Example of structural comparison for the target T0886-D2 and two
models submitted to CASP12. The top panel shows individual traces for all models
generated for this target; the distance cutoff (vertical axis, in Å) is plotted against
the fraction of residues (horizontal axis, in %) that can be aligned within this cutoff.
The traces were obtained from predictioncenter.org/casp12. The dotted lines indi-
cate the thresholds used in the GDT TS (1, 2, 4, 8 Å) and GDT HA (0.5, 1, 2, 4 Å)
scores. Two models are highlighted in blue: a bad model (TS236, GDT TS=18.90)
on the left, and a good model (TS173; GDT TS=51.97) on the right. Both model
structures are also shown in the panels below in red, superposed onto the solution
crystal structure in blue (PDB:5FHY). Structural superposition created using LGA
at proteinmodel.org/AS2TS/LGA/ (Zemla, 2003), 3D visualisation using Chimera
1.11.2 (Pettersen et al., 2004).

c© Abeln & Feenstra, 2014-2017 Structural Bioinformatics
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Figure 7.6: Distribution of GDT TS scores for the different model categories in
CASP11 for template-based (Modi et al., 2016), template-free with contact infor-
mation (Kinch et al., 2016a) and template-free (Kinch et al., 2016b). The legend
coloring corresponds to the GDT TS scores, the bars indicate the fraction of models
in each GDT TS range for the six categories (GDT TS scores for (Modi et al., 2016)
were estimated from the reported GDT HA scores using their Figure 4A). “Out-
liers” targets have unusually high GDT TS due to being very short (∼ 50 residue)
with extended structures. Targets selected for server prediction (top bar) were con-
sidered easier than those for human prediction (second from top), average sequence
identity was 26% vs. 20%, respectively. It is clear that overall prediction accuracy
sharply declines going down this list of categories. For template-free modelling,
the quality of contact information used is crucial. Experimental information (from
chemical cross linking or simulated NMR) can give reasonable models. Predicted
contacts do not guarantee that an acceptable model can be obtained, but without
even predicted contacts, more than two-thirds of models are at most 20% correct.

and Chavali, 2007) using stricter distance cutoffs (0.5, 1, 2, 4 Å), to cater for
targets in the template-based modelling category where very high accuracies
can be realized:

For a typical “difficult” CASP target no model even comes close to the
experimentally solved structure; typical results would be similar to the left-
most model in Figure 7.5. If we have a look at the latest CASP results one
will see that a performance of GDT TS< 20% is not an exception. In other
words, the protein structure prediction problem has NOT yet been solved,
especially not if one considers targets without a good template structure.

7.2.4 How difficult is it to predict?

Overall, if one can find a good template, the quality of the predicted model
will be relatively good. CASP results show that for homology modelling

Structural Bioinformatics c© Abeln & Feenstra, 2014-2017



7.2. Assessing the quality of structure prediction methods 17

based on close homologues, it is possible to obtain models similar to the
experimentally determined structure (Moult et al., 2016). The modelled
structure will typically have a good accuracy for the regions that can be
well aligned between the target and template (using the sequences). The
top two bars in Figure 7.6 shows that one may expect the majority of such
models to be accurate for > 50% of their residues. Gaps in an alignment will
typically lie in loop regions of a structure and are more difficult to model.
So, if we are interested in a large loop region that is not present in our
template, we still may not be able to answer our scientific question with the
resulting model structure (Moult et al., 2016).

If no acceptable template can be found, the chances of successfully an-
swering our scientific question will become very low. As a last resort, ab
initio modelling can provide us with structural models. Typically, ab initio
methods use very small templates from various proteins (see Figure 7.4).
The state of the art is that on average one may expect to find one structure
that looks somewhat like the solution structure for the target among the
top five or ten models (Moult et al., 2016). However, be aware that the
best model is typically not recognised as being the best through the scores
of the prediction program. In Figure 7.6 one sees that very clearly in the
bottom few bars: without template, even with predicted contacts, one may
have less than 20% of the structure correct in the majority of models; even
in the best cases at most 40% of the residues are modelled accurately.

7.2.5 For which gene sequences can we predict a three-dimensional
structure?

If and only if there is a structure of a homologous protein present in the
PDB, it is possible to generate a structural model of reasonable accuracy.
Based on this notion, we can estimate for which (fraction of) gene sequences
it is possible to predict a structure. This way it has been estimated that for
a about 44% of residues in Eukaryotic gene sequences, we cannot yet make
a homology model, and 15% of these residues lie within a gene for which
we can not make a homology model for a single domain (Perdigão et al.,
2015). Especially membrane proteins are underrepresented in the PDB, due
to the experimental difficulty of determining these structures. Note that
these residues, may also lie in natively disordered regions (see also Section
7.3).

Similarly, it is possible to predict the range of protein structures present
in an organism, based on the gene sequences their completed genome. This
reveals that there is a subset of protein structures, that is present in nearly all
organisms, for example TIM-barrels or Rossmann-folds (Abeln and Deane,
2005; Edwards et al., 2013). Nevertheless, there is also a group of structures
that is extremely lineage specific. It is to be expected that for this type of
protein structures, many new structures remain to be discovered. This also

c© Abeln & Feenstra, 2014-2017 Structural Bioinformatics
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implies that it will remain difficult to find suitable templates for homology
modelling for these lineage specific protein families.

7.2.6 How accurate do we need to be?

We already mentioned that we may approach the modelling of a protein
structure of interest differently, depending on the biological question we
want to ask,e.g. which residues are likely to be crucial for the functioning
of the protein. Sometimes an answer to the research question may be pos-
sible in a simpler way, without full-scale prediction of the protein structure,
e.g. by direct prediction of the impact of certain mutations or of protein-
protein interaction sites. Examples of fully-automated webservers that do
just that, are HOPE – (Venselaar et al., 2010) and SeRenDIP (Hou et al.,
2017). In some cases, a rough homology model inspires the understanding
of experimental results, spurring forward the project and eventually end-
ing with crystal structures highlighting the protein function (in this case,
protein-protein interactions) of interest (e.g., De Vries-van Leeuwen et al.,
2013). Also, specifically for enzymes, such as for example cytochromes P450,
modelling of the protein structure should be done combination with that of
the ligand (de Graaf et al., 2005).

In CASP11, three functional aspects were explictly scored, selected on
being able to qualitatively evaluate them: multimeric state, (small) ligand
binding, and mutation impact. Targets were selected that in solved crystal
structure were dimeric, or had a ligand bound, or where from the crystallog-
raphers or in literature interest was expressed for evaluating mutants (Huwe
et al., 2016).

For prediction of dimer structures, only in two cases out of ten a dimer
model with reasonable accuracy could be generated for the majority of
monomer model structures (Huwe et al., 2016). In the critical assessment of
prediction of protein interaction (CAPRI) between 30-80% of models were
of ‘acceptable’ or ‘medium’ quality for easy dimer targets, while for harder
targets (difficult dimers, multimers and heteromers), this fraction dropped
to below 10% (Lensink et al., 2016). Encouragingly, it was seen that also
structure models of lower quality could sometimes lead to acceptable or even
medium quality models of the bound proteins (Lensink et al., 2016).

For ligand binding, it was found that the accuracy of even the best mod-
els (∼ 2Å) are not good enough for accurate ligand docking; the best ligands
were around 5Å RMSD (Huwe et al., 2016). Something similar was found
for mutation impact prediction; for most targets, model accuracy did not
correlate with accuracy of impact prediction (Huwe et al., 2016). Appar-
ently, either homology models are not yet accurate enough for this purpose,
or methods are tuned to particular characteristics of crystal structures.

Structural Bioinformatics c© Abeln & Feenstra, 2014-2017
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7.3 Is there such a concept as a single native fold?

Before we conclude, we should consider a more physical description of pro-
tein structure. In fact, protein folding from a physical point of view is a
very interesting process: given a sequence, a protein tends to fold always,
and exactly into the same functional structure. In material design, it is ex-
tremely difficult to mimic such high specificity. The apparent observation
of folding specificity also leads to the question, is there such a concept as a
single native fold? Or, more pragmatically, is sequence-to-structure truly a
one-to-one relation?

In fact, if one wants to start making quantitative predictions, such as
the stability of a protein fold, or the binding strength between two proteins
in terms of free energy, it is much more helpful to think in ensembles of
structural configurations for a protein sequence (e.g. May et al., 2014; Pucci
et al., 2017). The probability to find a protein in a specific ensemble of
structural configurations will depend on conditions such as the presence or
absence of binding partners, the pressure, the pH or the temperature (e.g.
van Dijk et al., 2015, 2016). There are a few specific cases, common cases,
for which even the functional or biologically relevant structural ensembles
do not resemble a single globular folded structure.

7.3.1 Disordered proteins

Not all proteins fold into single configurations, some proteins stay natively
unfolded, i.e. they can take up a a large variety of more extended, and very
different configurations (Uversky et al., 2000; Mészáros et al., 2007). Some
disordered regions contain elements that do form stable structures upon
binding. The regions that remain disordered are thought to be important
to prevent aggregation within the cell (Abeln and Frenkel, 2008). Missing
residues in X-ray structures are typically removed for crystallization; for
this reason disorder prediction methods have been developed. Disordered
regions are relatively easy to predict in protein sequences just like secondary
structures; broadly speaking, prediction can be based on the large amount of
charged/polar (hydrophilic) amino acids in combination with the presence
of amino acids that disrupt the secondary structure (proline and glycine) in
these regions (Oldfield et al., 2005; Wang et al., 2016). We know sequences
of many proteins contain large disordered segments (33% of eukaryotic, 2%
archaeal, and 4% bacterial proteins).

7.3.2 Allostery and functional structural ensembles

It is important to realize that one protein, typically, does not correspond to
one defined three-dimensional structure. Disordered regions or proteins are
one particularly salient case, but also proteins which fold into specific three-

c© Abeln & Feenstra, 2014-2017 Structural Bioinformatics



20 Chapter 7. Introduction to Protein Structure Prediction

dimensional configurations, may exist in multiple functional states each with
a specific structure. The biological question of interest dictates which state
is relevant. Most proteins have only been crystallized in one particular
state, and often it is not known to which biological condition this crystal
structure may correspond. One may have cases where a homology model of
the relevant state may be preferred over a crystal structure of a different or
unknown state (e.g., de Graaf et al., 2005).

7.3.3 Amyloid fibrils

Lastly, we should consider a competing state of folded proteins: the aggre-
gated state, where multiple peptide chains clog together in fibrillar structures
or amorphous aggregates. Amyloid fibres are formed by β-strands formed
between different protein or peptide (small protein) chains. Fibril formation
is associated with various neurodegenerative diseases, such as Alzheimer’s,
Creutzfeldt-Jakob and Parkinson’s (Chiti and Dobson, 2006). In fact, the
fibrillar state is more favorable than the state of separately folded struc-
tures for several protein types. The general cellular toxicity of such aggre-
gates, puts evolutionary pressure on avoiding structural characteristics on
the surface of proteins; hence it is extremely rare to observe solvent acces-
sible β-strand edges or large hydrophobic surface patches (Richardson and
Richardson, 2002; Abeln and Frenkel, 2011). The propensity proteins have
to form Amyloid fibrils is relatively easy to predict (Graña-Montes et al.,
2017). However, reference databases are still small so it is difficult to verify
such methods.
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