4 research outputs found

    Asset Management in Grid Companies Using Integrated Diagnostic Devices

    Full text link
    The digitization of power grids envisages a transition to new models of fault diagnosis, repair and maintenance of electric power grid equipment. The most promising tools for implementing advanced production asset management strategies are integrated technologies that are based on robotic diagnostic platforms, various hardware–software instruments and smart data analysis systems. The article analyzes other countries’ experience of developing robotic methods of fault diagnosis and maintenance of overhead power transmission lines, which present a major challenge in terms of monitoring, failure prediction and localized repairs. The Cablewalker robotic system was used as an example for identifying the advantages of integrated diagnostic hardware systems as opposed to traditional methods of power grid equipment maintenance and overhaul. Recommendations are given for adopting the technology in grid companies. During trials of the technology on a 2.34-km section of a power transmission line 112 defects were detected versus three that were identified by means of ‘manual’ inspection. A digital twin of the transmission line was created to manage its technical condition with regard to various risks.The work was supported by Act 211 of the Government of the Russian Federation, contract № 02.A03.21.0006

    An application of deep learning for lightning prediction in East Coast Malaysia

    Get PDF
    This paper presents the application of deep learning (DL) approach namely Feed-Forward Neural Networks (FFNN) in predicting the location of lightning occurrences within 100 km radius from Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA) Pekan, Pahang Malaysia. The recorded data were obtained from Malaysia Meteorology Department (MET Malaysia), where the inputs of the DL are the intensity of the lightning in kilo Ampere, direction in degrees, distance and major axis that measures in km, while the output is the latitude and longitude of the lightning occurrences. The data are divided into training, validation and testing to measure the performance of the developed DL model. The findings of the study demonstrated the promising results of FFNN in terms of obtaining the minimum error which significantly increasing the accuracy of the predictions. To show the effectiveness of FFNN, the comparison study has been conducted with Long Short-Term Memory (LSTM) networks. From the simulation, it can be seen that FFNN can be used as an effective tool for predicting the location of lightning occurred better than the LSTM

    Predicting lightning outages of transmission lines using generalized regression neural network

    No full text
    Lightning is the major cause of transmission line outages, which can result in large area blackouts of power systems. One effective method to prevent catastrophic consequences is to predict lightning outages before they occur. The abundance of recorded lightning and lightning outage data in power system makes it possible to predict lightning outages of transmission lines. This paper proposes an artificially intelligent algorithm using general regression neural networks (GRNN) to predict lightning outages of transmission lines. First, the data that can be obtained from the operation and management system of a power company are analyzed, and the features that can be used as input parameters of GRNN are extracted. The prediction model based on GRNN is then built to perform lightning outage prediction. Finally, the effectiveness of the proposed method is validated by comparing it with (Back Propagation) BP and (Radial Basis Function) RBF neural networks using actual lightning data and lightning outage data. The simulation results show that the proposed method provides much better prediction performance

    Modeling and identification of power electronic converters

    Get PDF
    Nowadays, many industries are moving towards more electrical systems and components. This is done with the purpose of enhancing the efficiency of their systems while being environmentally friendlier and sustainable. Therefore, the development of power electronic systems is one of the most important points of this transition. Many manufacturers have improved their equipment and processes in order to satisfy the new necessities of the industries (aircraft, automotive, aerospace, telecommunication, etc.). For the particular case of the More Electric Aircraft (MEA), there are several power converters, inverters and filters that are usually acquired from different manufacturers. These are switched mode power converters that feed multiple loads, being a critical element in the transmission systems. In some cases, these manufacturers do not provide the sufficient information regarding the functionality of the devices such as DC/DC power converters, rectifiers, inverters or filters. Consequently, there is the need to model and identify the performance of these components to allow the aforementioned industries to develop models for the design stage, for predictive maintenance, for detecting possible failures modes, and to have a better control over the electrical system. Thus, the main objective of this thesis is to develop models that are able to describe the behavior of power electronic converters, whose parameters and/or topology are unknown. The algorithms must be replicable and they should work in other types of converters that are used in the power electronics field. The thesis is divided in two main cores, which are the parameter identification for white-box models and the black-box modeling of power electronics devices. The proposed approaches are based on optimization algorithms and deep learning techniques that use non-intrusive measurements to obtain a set of parameters or generate a model, respectively. In both cases, the algorithms are trained and tested using real data gathered from converters used in aircrafts and electric vehicles. This thesis also presents how the proposed methodologies can be applied to more complex power systems and for prognostics tasks. Concluding, this thesis aims to provide algorithms that allow industries to obtain realistic and accurate models of the components that they are using in their electrical systems.En la actualidad, el uso de sistemas y componentes eléctricos complejos se extiende a múltiples sectores industriales. Esto se hace con el propósito de mejorar su eficiencia y, en consecuencia, ser más sostenibles y amigables con el medio ambiente. Por tanto, el desarrollo de sistemas electrónicos de potencia es uno de los puntos más importantes de esta transición. Muchos fabricantes han mejorado sus equipos y procesos para satisfacer las nuevas necesidades de las industrias (aeronáutica, automotriz, aeroespacial, telecomunicaciones, etc.). Para el caso particular de los aviones más eléctricos (MEA, por sus siglas en inglés), existen varios convertidores de potencia, inversores y filtros que suelen adquirirse a diferentes fabricantes. Se trata de convertidores de potencia de modo conmutado que alimentan múltiples cargas, siendo un elemento crítico en los sistemas de transmisión. En algunos casos, estos fabricantes no proporcionan la información suficiente sobre la funcionalidad de los dispositivos como convertidores de potencia DC-DC, rectificadores, inversores o filtros. En consecuencia, existe la necesidad de modelar e identificar el desempeño de estos componentes para permitir que las industrias mencionadas desarrollan modelos para la etapa de diseño, para el mantenimiento predictivo, para la detección de posibles modos de fallas y para tener un mejor control del sistema eléctrico. Así, el principal objetivo de esta tesis es desarrollar modelos que sean capaces de describir el comportamiento de un convertidor de potencia, cuyos parámetros y/o topología se desconocen. Los algoritmos deben ser replicables y deben funcionar en otro tipo de convertidores que se utilizan en el campo de la electrónica de potencia. La tesis se divide en dos núcleos principales, que son la identificación de parámetros de los convertidores y el modelado de caja negra (black-box) de dispositivos electrónicos de potencia. Los enfoques propuestos se basan en algoritmos de optimización y técnicas de aprendizaje profundo que utilizan mediciones no intrusivas de las tensiones y corrientes de los convertidores para obtener un conjunto de parámetros o generar un modelo, respectivamente. En ambos casos, los algoritmos se entrenan y prueban utilizando datos reales recopilados de convertidores utilizados en aviones y vehículos eléctricos. Esta tesis también presenta cómo las metodologías propuestas se pueden aplicar a sistemas eléctricos más complejos y para tareas de diagnóstico. En conclusión, esta tesis tiene como objetivo proporcionar algoritmos que permitan a las industrias obtener modelos realistas y precisos de los componentes que están utilizando en sus sistemas eléctricos.Postprint (published version
    corecore