4,007 research outputs found

    A Trio Neural Model for Dynamic Entity Relatedness Ranking

    Full text link
    Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in static settings and an unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity-relations are very dynamic over time. In this work, we propose a neural networkbased approach for dynamic entity relatedness, leveraging the collective attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.Comment: In Proceedings of CoNLL 201

    Retrieving Multi-Entity Associations: An Evaluation of Combination Modes for Word Embeddings

    Full text link
    Word embeddings have gained significant attention as learnable representations of semantic relations between words, and have been shown to improve upon the results of traditional word representations. However, little effort has been devoted to using embeddings for the retrieval of entity associations beyond pairwise relations. In this paper, we use popular embedding methods to train vector representations of an entity-annotated news corpus, and evaluate their performance for the task of predicting entity participation in news events versus a traditional word cooccurrence network as a baseline. To support queries for events with multiple participating entities, we test a number of combination modes for the embedding vectors. While we find that even the best combination modes for word embeddings do not quite reach the performance of the full cooccurrence network, especially for rare entities, we observe that different embedding methods model different types of relations, thereby indicating the potential for ensemble methods.Comment: 4 pages; Accepted at SIGIR'1

    Tracking the History and Evolution of Entities: Entity-centric Temporal Analysis of Large Social Media Archives

    Get PDF
    How did the popularity of the Greek Prime Minister evolve in 2015? How did the predominant sentiment about him vary during that period? Were there any controversial sub-periods? What other entities were related to him during these periods? To answer these questions, one needs to analyze archived documents and data about the query entities, such as old news articles or social media archives. In particular, user-generated content posted in social networks, like Twitter and Facebook, can be seen as a comprehensive documentation of our society, and thus meaningful analysis methods over such archived data are of immense value for sociologists, historians and other interested parties who want to study the history and evolution of entities and events. To this end, in this paper we propose an entity-centric approach to analyze social media archives and we define measures that allow studying how entities were reflected in social media in different time periods and under different aspects, like popularity, attitude, controversiality, and connectedness with other entities. A case study using a large Twitter archive of four years illustrates the insights that can be gained by such an entity-centric and multi-aspect analysis.Comment: This is a preprint of an article accepted for publication in the International Journal on Digital Libraries (2018

    Uncovering Hidden Semantics of Set Information in Knowledge Bases

    No full text
    Knowledge Bases (KBs) contain a wealth of structured information about entities and predicates. This paper focuses on set-valued predicates, i.e., the relationship between an entity and a set of entities. In KBs, this information is often represented in two formats: (i) via counting predicates such as numberOfChildren and staffSize, that store aggregated integers, and (ii) via enumerating predicates such as parentOf and worksFor, that store individual set memberships. Both formats are typically complementary: unlike enumerating predicates, counting predicates do not give away individuals, but are more likely informative towards the true set size, thus this coexistence could enable interesting applications in question answering and KB curation. In this paper we aim at uncovering this hidden knowledge. We proceed in two steps. (i) We identify set-valued predicates from a given KB predicates via statistical and embedding-based features. (ii) We link counting predicates and enumerating predicates by a combination of co-occurrence, correlation and textual relatedness metrics. We analyze the prevalence of count information in four prominent knowledge bases, and show that our linking method achieves up to 0.55 F1 score in set predicate identification versus 0.40 F1 score of a random selection, and normalized discounted gains of up to 0.84 at position 1 and 0.75 at position 3 in relevant predicate alignments. Our predicate alignments are showcased in a demonstration system available at https://counqer.mpi-inf.mpg.de/spo

    Multiple Models for Recommending Temporal Aspects of Entities

    Full text link
    Entity aspect recommendation is an emerging task in semantic search that helps users discover serendipitous and prominent information with respect to an entity, of which salience (e.g., popularity) is the most important factor in previous work. However, entity aspects are temporally dynamic and often driven by events happening over time. For such cases, aspect suggestion based solely on salience features can give unsatisfactory results, for two reasons. First, salience is often accumulated over a long time period and does not account for recency. Second, many aspects related to an event entity are strongly time-dependent. In this paper, we study the task of temporal aspect recommendation for a given entity, which aims at recommending the most relevant aspects and takes into account time in order to improve search experience. We propose a novel event-centric ensemble ranking method that learns from multiple time and type-dependent models and dynamically trades off salience and recency characteristics. Through extensive experiments on real-world query logs, we demonstrate that our method is robust and achieves better effectiveness than competitive baselines.Comment: In proceedings of the 15th Extended Semantic Web Conference (ESWC 2018

    Temporal models for mining, ranking and recommendation in the Web

    Get PDF
    Due to their first-hand, diverse and evolution-aware reflection of nearly all areas of life, heterogeneous temporal datasets i.e., the Web, collaborative knowledge bases and social networks have been emerged as gold-mines for content analytics of many sorts. In those collections, time plays an essential role in many crucial information retrieval and data mining tasks, such as from user intent understanding, document ranking to advanced recommendations. There are two semantically closed and important constituents when modeling along the time dimension, i.e., entity and event. Time is crucially served as the context for changes driven by happenings and phenomena (events) that related to people, organizations or places (so-called entities) in our social lives. Thus, determining what users expect, or in other words, resolving the uncertainty confounded by temporal changes is a compelling task to support consistent user satisfaction. In this thesis, we address the aforementioned issues and propose temporal models that capture the temporal dynamics of such entities and events to serve for the end tasks. Specifically, we make the following contributions in this thesis: (1) Query recommendation and document ranking in the Web - we address the issues for suggesting entity-centric queries and ranking effectiveness surrounding the happening time period of an associated event. In particular, we propose a multi-criteria optimization framework that facilitates the combination of multiple temporal models to smooth out the abrupt changes when transitioning between event phases for the former and a probabilistic approach for search result diversification of temporally ambiguous queries for the latter. (2) Entity relatedness in Wikipedia - we study the long-term dynamics of Wikipedia as a global memory place for high-impact events, specifically the reviving memories of past events. Additionally, we propose a neural network-based approach to measure the temporal relatedness of entities and events. The model engages different latent representations of an entity (i.e., from time, link-based graph and content) and use the collective attention from user navigation as the supervision. (3) Graph-based ranking and temporal anchor-text mining inWeb Archives - we tackle the problem of discovering important documents along the time-span ofWeb Archives, leveraging the link graph. Specifically, we combine the problems of relevance, temporal authority, diversity and time in a unified framework. The model accounts for the incomplete link structure and natural time lagging in Web Archives in mining the temporal authority. (4) Methods for enhancing predictive models at early-stage in social media and clinical domain - we investigate several methods to control model instability and enrich contexts of predictive models at the “cold-start” period. We demonstrate their effectiveness for the rumor detection and blood glucose prediction cases respectively. Overall, the findings presented in this thesis demonstrate the importance of tracking these temporal dynamics surround salient events and entities for IR applications. We show that determining such changes in time-based patterns and trends in prevalent temporal collections can better satisfy user expectations, and boost ranking and recommendation effectiveness over time
    • …
    corecore