301 research outputs found

    Integrative methods for analysing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Fuse: Multiple Network Alignment via Data Fusion

    Get PDF

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Relation Prediction over Biomedical Knowledge Bases for Drug Repositioning

    Get PDF
    Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying other essential relations (e.g., causation, prevention) between biomedical entities is also critical to understand biomedical processes. Hence, it is crucial to develop automated relation prediction systems that can yield plausible biomedical relations to expedite the discovery process. In this dissertation, we demonstrate three approaches to predict treatment relations between biomedical entities for the drug repositioning task using existing biomedical knowledge bases. Our approaches can be broadly labeled as link prediction or knowledge base completion in computer science literature. Specifically, first we investigate the predictive power of graph paths connecting entities in the publicly available biomedical knowledge base, SemMedDB (the entities and relations constitute a large knowledge graph as a whole). To that end, we build logistic regression models utilizing semantic graph pattern features extracted from the SemMedDB to predict treatment and causative relations in Unified Medical Language System (UMLS) Metathesaurus. Second, we study matrix and tensor factorization algorithms for predicting drug repositioning pairs in repoDB, a general purpose gold standard database of approved and failed drug–disease indications. The idea here is to predict repoDB pairs by approximating the given input matrix/tensor structure where the value of a cell represents the existence of a relation coming from SemMedDB and UMLS knowledge bases. The essential goal is to predict the test pairs that have a blank cell in the input matrix/tensor based on the shared biomedical context among existing non-blank cells. Our final approach involves graph convolutional neural networks where entities and relation types are embedded in a vector space involving neighborhood information. Basically, we minimize an objective function to guide our model to concept/relation embeddings such that distance scores for positive relation pairs are lower than those for the negative ones. Overall, our results demonstrate that recent link prediction methods applied to automatically curated, and hence imprecise, knowledge bases can nevertheless result in high accuracy drug candidate prediction with appropriate configuration of both the methods and datasets used

    Machine Learning Applications for Drug Repurposing

    Full text link
    The cost of bringing a drug to market is astounding and the failure rate is intimidating. Drug discovery has been of limited success under the conventional reductionist model of one-drug-one-gene-one-disease paradigm, where a single disease-associated gene is identified and a molecular binder to the specific target is subsequently designed. Under the simplistic paradigm of drug discovery, a drug molecule is assumed to interact only with the intended on-target. However, small molecular drugs often interact with multiple targets, and those off-target interactions are not considered under the conventional paradigm. As a result, drug-induced side effects and adverse reactions are often neglected until a very late stage of the drug discovery, where the discovery of drug-induced side effects and potential drug resistance can decrease the value of the drug and even completely invalidate the use of the drug. Thus, a new paradigm in drug discovery is needed. Structural systems pharmacology is a new paradigm in drug discovery that the drug activities are studied by data-driven large-scale models with considerations of the structures and drugs. Structural systems pharmacology will model, on a genome scale, the energetic and dynamic modifications of protein targets by drug molecules as well as the subsequent collective effects of drug-target interactions on the phenotypic drug responses. To date, however, few experimental and computational methods can determine genome-wide protein-ligand interaction networks and the clinical outcomes mediated by them. As a result, the majority of proteins have not been charted for their small molecular ligands; we have a limited understanding of drug actions. To address the challenge, this dissertation seeks to develop and experimentally validate innovative computational methods to infer genome-wide protein-ligand interactions and multi-scale drug-phenotype associations, including drug-induced side effects. The hypothesis is that the integration of data-driven bioinformatics tools with structure-and-mechanism-based molecular modeling methods will lead to an optimal tool for accurately predicting drug actions and drug associated phenotypic responses, such as side effects. This dissertation starts by reviewing the current status of computational drug discovery for complex diseases in Chapter 1. In Chapter 2, we present REMAP, a one-class collaborative filtering method to predict off-target interactions from protein-ligand interaction network. In our later work, REMAP was integrated with structural genomics and statistical machine learning methods to design a dual-indication polypharmacological anticancer therapy. In Chapter 3, we extend REMAP, the core method in Chapter 2, into a multi-ranked collaborative filtering algorithm, WINTF, and present relevant mathematical justifications. Chapter 4 is an application of WINTF to repurpose an FDA-approved drug diazoxide as a potential treatment for triple negative breast cancer, a deadly subtype of breast cancer. In Chapter 5, we present a multilayer extension of REMAP, applied to predict drug-induced side effects and the associated biological pathways. In Chapter 6, we close this dissertation by presenting a deep learning application to learn biochemical features from protein sequence representation using a natural language processing method

    Graph embedding and geometric deep learning relevance to network biology and structural chemistry

    Get PDF
    Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing efficient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In this mini review, we give a comprehensive summary of the main graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning
    corecore