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ABSTRACT

Motivation: Discovering patterns in networks of protein-protein interactions
(PPIs) is a central problem in systems biology. Alignments between these
networks aid functional understanding as they uncover important information,
such as evolutionary conserved pathways, protein complexes and functional
orthologs. However, the complexity of the multiple network alignment
problem grows exponentially with the number of networks being aligned, and
designing a multiple network aligner that is both scalable and that produces
biologically relevant alignments is a challenging task that has not been fully
addressed. The objective of multiple network alignment is to create clusters of
nodes that are evolutionarily and functionally conserved across all networks.
Unfortunately, the alignment methods proposed thus far do not meet this
objective as they are guided by pairwise scores that do not utilize the entire
functional and evolutionary information across all networks.

Results: To overcome this weakness, we propose Fuse, a new multiple
network alignment algorithm that works in two steps. First, it computes our
novel protein functional similarity scores by fusing information from wiring
patterns of all aligned PPI networks and sequence similarities between their
proteins. This is in contrast with the previous tools that are all based on
protein similarities in pairs of networks being aligned. Our comprehensive
new protein similarity scores are computed by Non-negative Matrix Tri-
Factorization (NMTF) method that predicts associations between proteins
whose homology (from sequences) and functioning similarity (from wiring
patterns) are supported by all networks. Using the five largest and most
complete PPI networks from BioGRID, we show that NMTF predicts a
large number protein pairs that are biologically consistent. Second, to
identify clusters of aligned proteins over all networks, Fuse uses our novel
maximum weight k-partite matching approximation algorithm. We compare
Fuse with the state of the art multiple network aligners and show that: (1)
by using only sequence alignment scores, Fuse already outperforms other
aligners and produces a larger number of biologically consistent clusters that
cover all aligned PPl networks, and (2) using both sequence alignments
and topological NMTF-predicted scores leads to the best multiple network
alignments thus far.

Availability: Our dataset and software are freely available from the web site:
http://bio-nets.doc.ic.ac.uk/Fuse/

Contact: natasha@imperial.ac.uk

1 INTRODUCTION

Understanding the patterns in molecular interaction networks is of
foremost importance in systems biology, as it is instrumental to
understanding the functioning of the cell (Ryan et al, 2013). A
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large number of studies focused on understanding the topology
of these networks (Przulj, 2011; Mitra et al., 2013). Network
alignment started as a pairwise problem: given two networks,
aligning them means finding a node-to-node mapping (called an
alignment) between the networks that groups together evolutionarily
or functionally related proteins between the networks. These
methods uncovered valuable information, such as evolutionarily
conserved pathways and protein complexes (Kelley et al., 2003;
Kuchaiev et al., 2010), and functional orthologs (Bandyopadhyay
et al., 2006). Finding these allows transfer of information across
species, such as performing Herpes viral experiments in yeast
or fly and then applying the insights towards understanding the
mechanisms of human diseases (Uetz et al., 2006).

The pairwise network alignment problem is computationally
intractable due to NP-completeness of the underlying sub-graph
isomorphism problem (Cook, 1971). Hence, several pairwise
network alignment heuristics have been proposed. Early methods,
called local network aligners, search for small, but highly conserved
sub-networks (Kelley et al., 2004; Koyutiirk ez al., 2006; Flannick
et al.,2006). As such sub-networks can be duplicated, local network
aligners often produce one-to-many or many-to-many mappings,
in which a node from a given network can be mapped to several
nodes of the other network. While these multiple mappings can
indicate gene duplications, they are often biologically implausible
(Singh et al., 2007). Hence, global network aligners, which perform
an overall comparison of the input networks and produce one-
to-one mappings between the nodes of the two networks have
been introduced (see (Clark and Kalita, 2014) for the most recent
comparison of pairwise network aligners).

The number of known protein-protein interactions (PPIs)
increased dramatically over the last two decades thanks to the
technological advances in high-throughput interaction detection
techniques, such as yeast two-hybrid (Ito et al., 2000; Uetz et al.,
2000) and affinity purification coupled to mass spectrometry (Ho
et al., 2002). With the availability of PPI networks of multiple
species came the multiple network alignment problem, where
given k networks, aligning them means to group together the
proteins that are evolutionarily or functionally conserved between
the networks. Similar to pairwise network alignment, multiple
network alignment can be local or global, with node mappings
one-to-one or many-to-many. As the complexity of the problem
grows exponentially with the number of networks to be aligned,
the proposed multiple network alignment algorithms use simple
and scalable alignment schemes. The pioneering multiple network
alignment algorithm is NetworkBLAST (Sharan et al., 2005; Kalaev
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et al., 2008), which greedily searches for highly conserved local
regions in the alignment graph constructed from the pairwise protein
sequence similarities. Graemlin (Flannick et al., 2006) produces
local multiple network alignments using a progressive alignment
scheme, by successively performing pairwise alignments of the
closest network pairs. IsoRank (Singh et al., 2008) and its successor
IsoRankN (Liao et al., 2009) are the first multiple network aligners
that do not only use pairwise sequence similarity to guide their
alignment processes, but they also take into account the topology
(i.e., wiring patterns) around the two nodes in their corresponding
networks to build up global many-to-many multiple network
alignments, using a derivative of Google’s PageRank algorithm.
Smetana (Sahraeian and Yoon, 2013) also produces global many-
to-many multiple network alignments using both pairwise sequence
scores and pairwise topological scores, which are derived from a
semi-Markov random walk model. While NetCoffee (Hu et al.,
2013) does not use topological information to build its global
one-to-one alignment, it is the first multiple network aligner in
which the score for mapping two nodes does not only depend on
the scores in pairs of networks, but also on their conservation
across all PPI networks being aligned, by using a triplet approach
similar to the multiple sequence aligner, T-Coffee (Notredame
et al., 2000). Beams (Alkan and Erten, 2014) is a fast heuristics
that constructs global many-to-many multiple network alignments
from the pairwise sequence similarities of the nodes by using
a backbone (seed) extraction and merge strategy. CSRW (Jeong
and Yoon, 2015) follows the Smetana methodology, but uses a
context-sensitive random walk model. Finally, Node-Handprinting
(NH) (Radu and Charleston, 2015) produces global many-to-many
multiple network alignments from topological information only, by
using a progressive alignment heuristic. In the above mentioned
aligners, most of the node mapping scores are local, in the sense
that they only consider the sequence similarity or the topological
similarity of the nodes. The only exception is NetCoffee, but its
global scores are only based on sequence similarity and do not take
into account the topology of the networks.

To overcome these limitations, we propose Fuse, a novel multiple
network alignment method that consists of two parts. In the first part,
we compute novel similarity (association) scores between proteins
by fusing sequence similarities and network wiring patterns over
all proteins in all PPI networks being aligned. Our objective is
to link together proteins whose homology (from their sequence
similarity) and functioning similarity (from their wiring patterns
in PPI networks) are supported by all networks. We do this by
using Non-negative Matrix Tri-Factorization (NMTF) technique
(Wang et al., 2011), initially used for co-clustering heterogeneous
data, but recently proposed as a data fusion technique as well.
NMTF has demonstrated a great potential in addressing various
biological problems, such as drug-induced liver injuries prediction
(Zitnik and Zupan, 2014a), disease association prediction (Zitnik
et al., 2013), protein-protein interaction prediction (Wang et al.,
2013) and gene function prediction (Gligorijevié et al., 2014; Zitnik
and Zupan, 2014b). We apply NMTF on the PPI networks of the
five species that have the largest and the most complete sets of
PPIs in BioGRID database (Chatr-Aryamontri et al., 2013). On
this dataset, the fusion process changes the values of sequence
similarities between proteins based on network topologies, so that
some of the sequence similarities that existed before the fusion
disappear (about 40% in our experiments), while a large set of

new ones is created by the matrix completion property of NMTF
(Koren et al., 2009). This new set of similar protein pairs is 13
times larger than the set of sequence-similar protein pairs due to
fusion of sequence information with network topology. Moreover,
the new set of protein pairs has a higher functional consistency (i.e.,
shared GO terms across the pairs) than the set of protein pairs found
to be similar by sequence alignment. To control the contribution of
topology versus sequence, our final functional similarity score for
a pair of proteins is a weighted sum of their sequence similarity
and their similarity predicted by NMTF based on their wiring and
sequence similarity with proteins in all networks being aligned.

In the second part of Fuse, to construct a global one-to-one
multiple network alignment, first we construct an edge-weighted
k-partite graph, with the proteins of each of the k PPI networks
being partitions of its node set and the above described functional
similarity scores being edge weights. To construct a multiple
network alignment, we find a maximum weight k-partite matching
in this graph. As finding a maximum weight k-partite matching is
NP-hard (Karp., 1972), and because NMTF predicts a large number
of similarities in the Fuse’s k-partite graph, we propose a novel
k-partite matching heuristic algorithm.

We evaluate the performance of Fuse against other state of
the art multiple network aligners and show that Fuse produces
the largest number of functionally consistent clusters that map
proteins over all aligned networks. Unlike other aligners, Fuse
is able to predict functional associations between proteins that
are not sequence related (i.e., whose sequence similarity is not
significant). These associations can contribute to the identification
of functionally consistent clusters that cannot be identified by the
previous aligners, as the previous aligners cannot predict new
protein associations that are not sequence-based. Furthermore, these
predicted clusters could be used for transfer of annotations across
proteins of different species that are not sequence-related. Moreover,
we show that Fuse is scalable and computationally more efficient
than all of the previous aligners except Smetana (but Smetana’s
aligned proteins are not as functionally consistent as Fuse’s; detailed
below). Specifically, the data-fusion step is the most time consuming
in Fuse with the time complexity of O(n?), where n is the total
number of proteins in all PPI networks being aligned, while the
alignment step has a smaller time complexity of O(kn?logn + kne),
where k is the number of networks and e is the number of functional
associations (similarity scores) between the proteins in them.

2 APPROACH

The PPI of each species i is represented by a graph (network), N; =
(Vi,E;), where the nodes in V; represent proteins, and where two
proteins are connected by an edge in E; if they interact. Our multiple
network alignment strategy consists of two steps. In the next two
paragraphs, we give a short overview of these steps, before giving
the full details of the methodology.

First, we use all PPI networks to be aligned and all the protein
sequence similarities between them, as inputs into the NMTF-based
data fusion technique to compute new protein similarity scores
between the proteins of the networks. Considering the obtained
normal distribution of similarity scores for aligning the 5 PPI
networks described above, we define as significant the scores that
are in top 5%. We combine significant scores with the original
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1d #Nodes | BP Ann. (%) | MF Ann. (%) | CC Ann. (%) # Edges
HS 14,164 37.2 232 9.6 127,907
SC 6,004 65.0 41.7 17.4 223,008
DM 8,125 36.1 134 6.3 38,892
MM 5,100 53.3 239 10.6 11,061
CE 3,841 35.0 7.3 42 7,726

Table 1. The five PPI networks considered in this study. For each PPI
network (row), the table presents its Id (column 1), its number of nodes
(column 2), its percentage of nodes that are annotated with at least one
GO term from either biological process category (BP, column 3), molecular
function category (MF, column 4), or cellular component (CC, column 5),
and finally, its number of edges (column 6).

sequence similarities to derive the final functional scores between
pairs of proteins for the reasons explained is section 4.1. We
construct an edge-weighted k-partite graph G = (Ui-;l Vi,E,W),
where the node set is the union of the nodes sets (proteins) V; of the
input PPI networks; two nodes u € V;, v € V;, i # j, are connected by
an edge (u,v) in E if their functional score is greater than zero; the
corresponding edge weight in W is their functional score. No edge
exists between nodes coming from the same subset V; by definition
of a k-partite graph.

Second, we construct a one-to-one global multiple network
alignment by using an approximate maximum weight k-partite
matching solver on G.

2.1 Datasets

From BioGRID (v3.2.111, April 25th, 2014) (Chatr-Aryamontri
et al., 2013), we obtained the PPI networks of the 5 organisms
having the largest and the most complete sets of physical PPIs:
Homo sapiens (HS), Saccharomyces cerevisiae (SC), Drosophila
melanogaster (DM), Mus musculus (MM), and Caenorhabditis
elegans (CE). We retrieved the corresponding protein sequences
from NCBI’s Entrez Gene database (Maglott et al., 2005) and
computed their pairwise similarities using BLAST (Altschul er al.,
1990). We also retrieved from NCBI’s Entrez Gene database the
Gene Ontology (GO) annotations of the proteins. Note that we
only used experimentally validated GO annotations (i.e, excluding
the annotations from computational analysis evidence such as
sequence similarity) and that we additionally excluded annotations
derived from protein-protein interaction experiments (code IPI). To
standardize the GO annotations of proteins, similar to the evaluation
methods of Singh er al. (2008); Liao et al. (2009); Alkan and Erten
(2014), we restrict the protein annotations to the fifth level of the
GO directed acyclic graph by ignoring the higher-level annotations
and replacing the deeper-level annotations with their ancestors at the
restricted level. The network statistics are detailed in Table 1.

3 METHODS

3.1 Non-negative matrix tri-factorization

NMTF is a machine learning technique initially designed for co-clustering
of multi-type relational data (Wang et al., 2008, 2011). In this paper, we
consider proteins belonging to different species as different data types. In
the case of two species, i and j, the sequence similarity scores between their
proteins are recorded in the high-dimensional relation matrix, R;; € R™*nj |

where, n; is the number of proteins in the species i and n; is the number
of proteins in the species j. Entries in the relation matrix are e-values of
the protein sequence alignments computed by using BLAST. Specifically,
we use 1 —eval (for eval < 1) as a measure of association between protein
pairs. NMTF estimates the high-dimensional matrix, R;; as a product of
low-dimensional non-negative matrix factors: R;; ~ G;S; jG]T-, where, G; €

R’i"Xk" and G; € RTij correspond to the cluster indicator matrices of
proteins in the first and the second species respectively, and S;; € RKixKj
is a low-dimensional, compressed version of R; j» where the choice of rank
parameters, k;,k; < min{n;,n;}, provides dimensionality reduction. The
close connection between non-negative matrix factorization problem and the
clustering problem is well established (Wang et al., 2011; Ding et al., 2006,
2005).

In addition to co-clustering, NMTF technique can also be used for matrix
completion. Namely, some entries in the initial relation matrix R;; are zero
(due to lack of sequence similarities between the corresponding proteins)
and they can be recovered from the obtained low-dimensional matrix factors
using the reconstructed relation matrix: ﬁ,- i = G;S;i;jG; (detailed below).
Here we use this property to predict new and recover the existing association
between proteins. To obtain the low-dimensional matrix factors, G;,S;;, G,
we solve the following optimization problem:

G!Zrai(;ll/zof =| R;; - GiS;;G |7 ()]

‘We incorporate PPI network topology as constraints into our optimization
problem; violation of these constraints causes penalties to our objective
function. This is motivated by the co-clustering problem which uses
networks as prior information to cluster proteins. Namely, the aim is to
allow proteins interacting within a PPI network to belong to the same cluster.
Interactions between proteins in PPI network, i, are represented by a graph
Laplacian matrix, L; = D; — A;, where A; is the adjacency matrix of network
i and D; is the diagonal degree matrix of i (i.e., diagonal entries in D; are row
sums of A;). For all five of our PPI networks we construct a Laplacian matrix,
resulting in the set: {Ly,...,Ls}.

We use a block-based representation of relation (R) and Laplacian (L)
matrices and matrix factors (S and G) for our 5 PPI networks as follows:

0 Rp ... Ry L, 0 ... 0

R, 0 ... Ry 0 L, ... 0
R=| . . . .|, L=|. . . s

R, R, ... 0 0 0 .. Ls

0 Sp ... Sis G 0 ... 0

S, 0 ... S 0 G ... 0
S=| . L .|, 6=

s, s, ... 0 0 0 .. Gs

To simultaneously factorize all relation matrices, R;; =~ G;S; /-GJT-, 0<
i, j <5, under the constraints of PPI networks, we minimize the following
objective function:

min/ = [ | R=GSG" | +4Tr(G'LG)] @

where Tr denotes the trace of a matrix and 7y is a regularization parameter
which balances the influence of network topologies in reconstruction of the
relation matrix. The second term of equation 2 is the penalization term.
It takes into account protein connections within the PPI network in the
following way: connected pairs of proteins are represented with negative
entries in the Laplacian matrix of the corresponding PPI network, and these
entries act as rewards that reduce the value of the objective function, J,
forcing the proteins to belong to the same cluster. Note that when y = 0,
the topology is ignored and thus Eq. 2 is equivalent to Eq. 1.

The optimization problem (Equation 2) is solved by applying the
algorithm following multiplicative update rules used to compute matrices
G and S and under which the objective function, J, is non-increasing
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(Wang et al., 2008). These update rules are derived by minimizing the
Langragian function, L, constructed from the objective function and all
additional constraints, including positivity of matrix factors G, as in paper
by Wang et al. (2008). The update rule for S is obtained by fixing the
other matrix factor, G, and finding the roots of the equation: 0£/dS =0. A
similar procedure is followed for obtaining the update rule for matrix factor
G. The multiplicative update rules, their derivation and the proof of their
convergence can be found in (Wang et al., 2008).

The central idea of the NMTF-based data fusion approach lies in the
fact that the relation matrices are not factorized separately, but instead, are
coupled by the same low-dimensional matrix factors, G;, which participate
in their simultaneous decomposition (Zitnik ez al., 2013) (see Figure 1 for
an illustration). This corresponds to the intermediate data fusion approach
(which keeps the structure of the data while inferring a model), that has been
shown to be the most accurate from all data fusion approaches (Lanckriet
et al., 2004; Gevaert et al., 2006; Zitnik et al., 2013).

H.Sapiens

R12

D.Melanogaster

= G;51,G";
= G;S13G";
= G1514(5T4

....... J = G;S:5G's

M.Musculus C.Elegans

Fig. 1. An illustration of the basic principle of NMTF-based data fusion
of 5 PPI networks. Low-dimensional matrix factor G|, shown in red, is
shared in the decompositions of data sets represented by relation matrices:
Ri2,Ri3,R14,Ry5. Therefore, the decomposition of Riy depends on the
other relation matrices through the shared matrix Gi.

In our study, we use the the following values of parameters for NMTF:
(a) factorization ranks, k; = 80, k» = 90, k3 = 80, k4 = 70 and k5 =
50, which we estimated by computing principal components of relation
matrices by using Principal Component Analysis (PCA) (Jolliffe, 2005);
(b) we chose the regularization parameter, Y= 0.7, since it gives the best
biological quality of the predicted associations. Namely, for each value of y&
{0.,0.001,0.01,0.1,0.5,0.7,0.9}, we compute the functional consistency of
the NMTF-predicted protein similarities. We find that the highest number
of highly associated and biologically consistent protein pairs is obtained
when Y= 0.7, which highlights the importance of incorporating the network
topology in the factorization scheme (see Section 1 in the Supplementary
Materials for details).

After the convergence of NMTF, we compute the reconstructed relation
matrices over all pairs of networks, i and j: ﬁi i = GiS;;G;. Further, we
threshold the matrices by keeping only the top 5% of all associations of
each protein of each species. This thresholding strategy leads to better
biological results than sampling strategies based on statistical significance
(see Supplementary Materials Section 4).

Since a large number of initial associations is not recovered after the
NMTF procedure (see Section 4.1 for details), to balance between the
contribution to protein similarity from sequence and from NMTE, we
compute the final protein functional score w,,,, between proteins u € n; and

v € nj in the k-partite network, as a linear combination of their sequence
similarity seq(u,v) and their NMTF-predicted score R;;[u][v]:

Wuy = o x seq(u,v) + (1 — o) x Ry;[u] [v], 3)
where o is a balancing parameter in [0, 1] to either favour the sequence
similarities (when o = 1, only sequence similarities are used) or the novel

predicted associations (when o = 0, only NMTF scores are used). These are
the weights in the k-partite network.

3.2 Approximate maximum weight k-partite matching

Using the weighted k-partite graph representation described above, we
globally align multiple networks by finding a maximum weight k-partite
matching in G (defined above). The maximum weight k-partite matching
problem is known to be NP-hard for k£ > 3 (Karp., 1972; Papadimitriou,
1994). Given the large number of links between the proteins across the
networks produced by NMTF, we must use a heuristic for finding an
approximate solution.

To handle this large number of link and to achieve a better approximation
of the maximum weight k-partite matching problem, we propose a novel
maximum weight k-partite matching heuristic, which we base on the clique
clustering algorithm proposed by He et al. (2000) that has a low time-
complexity. To this aim, we define the following graph merge operation.
Let G = (U, Vi,E,W) be an edge-weighted k-partite graph, and G[V;,Vj]
be the edge-weighted bi-partite subgraph of G that is induced by the two
subsets of nodes V; and V;. Let F; j = {u1 <> vi,up <> va,...,u; <> v;} be a
matching of G[V;,V;], where uy <> v; means that node u; € V; is matched
with node v € V;. We merge V; with V; into V;; by identifying the mapped
nodes u; <> v¢ and by creating a corresponding merged node wyvy € Vj.
These merged nodes inherit the edges from their parent nodes, and multiple
edges are replaced by a single edge with the sum of weights of the multiple
edges as the new weight of the edge. We also move into V;; the nodes of V;
and V; that are not matched. The new weighted graph G;; is called the merge
of Vj to V; from G along F; ;. We note that G;; is an edge-weighted (k — 1)
partite graph.

Our approximated maximum weight k-partite matching algorithm can be
seen as a progressive aligner which first maps and merges the two first
networks, and then successively adds into the “merge graph” the remaining
networks (see Algorithm 1).

The performance of our algorithm depends on the order in which the
networks (i.e., the partitions in the k-partite graph) are merged. We tested two
different ordering strategies: merging starting from the smaller towards the
larger networks, and merging networks according to the phylogenetic-tree
constructed from the weights of the maximum weight bi-partite matchings
between the networks (i.e., merging the most similar networks first). In the
rest of this paper, we only report the alignments obtained by merging from
the smaller network to the larger one, as it leads to the best multiple network
alignment results (the comparison of the multiple network alignments that
are obtained using each strategy is presented in Supplementary Figure 5).

Algorithm 1 Approximate maximum weight k-partite matching.

Input G = (U, Vi, E,W)

fori={2,...,k} do
Find maximum weight bipartite matching F; ; of G[V},V;]
Construct Gy;, the merge of V| and V; from G along Fi ;
Set G = Gy;, and relabel Vy; as V)

c={0}

for each merged node u in V| do
Cluster C,, is the set of nodes that are merged into u
AddC,toC

Output C

The main operation in Algorithm 1 is finding a maximum weight
matching in an induced bi-partite graph, which takes O(n?logn + ne) time
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Fig. 2. Functional consistency of NMTF associations. For both NMTF
associations and sequence similarity of protein pairs, we plot the cumulative
number of protein pairs with both proteins annotated (x-axis) against the
percentages of them sharing GO terms (y-axis). Biological process (BP) and
molecular function (MF) annotations are considered separately.

(Bondy and Murty, 1976; Lovéasz and Plummer, 1986), when the k-partite
graph has n nodes and e edges. There are k — 1 such operations, hence
Algorithm 1 computes an approximate solution for the maximum weight
k-partite matching problem in O(kn? logn + kne) time.

4 RESULTS AND DISCUSSION

4.1 Biological assessment of NMTF predicted protein
similarities

The input data consist of 1,477,372 sequence similarities between
all proteins in the PPI networks of the 5 species. Using these
similarities as input along with topologies of the five PPI networks,
NMTF outputs 19,175,378 significant similarities (i.e., those
obtained by keeping the top 5% of the associations of each
protein that are obtained from the reconstructed relation matrices).
These associations, resulting from NMTF, cover 60% of the
input sequence similarities (reconstructed), while the remaining
associations resulting from NMTF are predicted.

To estimate the impact of PPI network topology on prediction
of protein associations and to understand why 40% of the initial
sequence similarities are not reconstructed through factorization
process, we perform the following experiment: for each
reconstructed, predicted and non-reconstructed protein pair, we
count the number of sequence similarities between their neighbours
in the corresponding PPI networks. For the protein pairs with
reconstructed sequence similarities, we find that their neighbours
share the highest number of sequence similarities, 20.4 on average.
We also find that protein pairs with predicted associations share 12.1
sequence similarities between neighbouring proteins on average. In
contrast, a much smaller number of sequence similar neighbours,
8.6 on average, is observed for the protein pairs with non-
reconstructed similarities. This means that NMTF induces new and
reconstructs existing associations between proteins that have many
sequence similar neighbours in the corresponding PPI networks.
Hence, the sequence similarity of protein pairs without many
sequence similar neighbours in their PPI networks will be lost in
NMTF process.

To assess the functional consistency of NMTF’s protein
associations, we compute the cumulative number of associations

between annotated proteins and the percentage of them sharing GO
term (we considered BP and MF annotations separately). Compared
with input sequence similar annotated proteins, NMTF achieve
both larger numbers of functionally consistent paired proteins and
higher functional consistency for the top-scoring pairs (Figure 2).
This higher functional consistency is very important in the context
of clustering and alignment, where the highest associations are
considered first. Also, the best NMTF scores are obtained with
Y = 0.7. This means that topologies of PPI networks contribute
to functional coherence of protein pairs predicted to be similar by
NMTFE.

To illustrate the cases where NMTF predicts functionally
consistent proteins that cannot be identified by using only sequence
similarity, we extracted from the NMTF’s predictions the pairs of
proteins such that: (1) their sequence similarity is not significant
(i.e., e-value > 1), and (2) that share at least one level 5 molecular
function GO annotation. We investigated the top scoring such pairs
and fond that these new associations are relevant. E.g., the five
highest scoring pairs are: CTK1 (yeast) and MAP3K7 (mouse),
SGV1 (yeast) and MAP3K7 (mouse), MEK1 (yeast) and MEK2
(worm), MAP3K7 (human) and CTK1 (yeast), and SVGI1 (yeast)
and MAP3K?7 (human). All these proteins are kinases that catalyse
phosphorylation reactions.

4.2 Fuse-ing PPI networks

We Fuse the five PPI networks and assess its results against state-of-
the-art multiple network aligners; Beams (Alkan and Erten, 2014),
Smetana (Sahraeian and Yoon, 2013), CSRW (Jeong and Yoon,
2015) and NH (Radu and Charleston, 2015). We tried to obtained
alignments from IsorankN (Liao et al., 2009) and NetCoffee (Hu
et al., 2013), but the computations did not finish after more than
one week. We use BLAST e-values as input sequence scores for
all methods, using 1 — evalue as the similarity measure. Both Fuse
and Beams use parameter o € [0, 1] to balance the amount of input
protein sequence similarity versus network topology. For these
methods, we sample o from O to 1, in increments of 0.1. We left
the other parameters of Beams and all the parameters of Smetana,
CSRW and NH at their default values.

Evaluation based on coverage. First, we compare the network
alignment methods on their ability to form protein clusters that cover
all five of the input PPI networks. We refer to these clusters as
“good” clusters, as opposed to “bad” clusters that cover proteins
from fewer than 5 PPI networks. The k-coverage is the number of
clusters containing proteins from k different PPI networks. Because
the number of proteins per cluster may vary, the k-coverage is
also expressed in terms of the number of proteins that are in
these clusters. The tofal coverage considers all clusters containing
proteins from at least two networks. The coverage statistics of the
alignments are summarised in Figure 3.

Fuse produces a larger number of good clusters (i.e., containing
proteins from all five species; in dark blue in Figure 3), producing
3,841 of such clusters. Beams achieves the highest total coverage
(with up to 11,302 clusters containing proteins from two to five
species), but it does so by producing the largest number of bad
clusters (i.e., containing proteins from only two species; in red in
Figure 3), producing up to 6,046 of such clusters, and the smallest
number of good ones (937 clusters containing 4,803 proteins).
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Fig. 3. Coverage analysis. Left: for each alignment produced by the
compared alignment methods (for a specific value of & for Fuse and Beams),
the bar chart shows the number of clusters containing proteins from k species
(see the colour coding on the top). Right: the figure shows the same, but in
terms of the number of proteins in these clusters.

When the coverage is expressed in terms of number of protein
in the clusters (right panel of Figure 3), the total coverages of all
methods are similar. However, Fuse outperforms all other methods
by putting the largest number of proteins (19,205) in good clusters.

Interestingly, when Fuse uses sequence information only (i.e.,
when o = 1), it already outperforms all the other approaches, which
demonstrates the superiority of our alignment heuristic (see Fig.
3). Moreover, Fuse achieves the best coverage for o ~ 0.8, when
the functional similarity between the proteins is a combination of
their sequence similarity and of their NMTF predicted similarity,
which shows the complementarity of network topology and protein
sequence as sources of biological information.

Evaluation based on functional consistency. We assess functional
homogeneity of the clusters obtained by each method. We say that
a cluster is annotated if at least two of its proteins are annotated by
a GO term. We say that an annotated cluster is consistent if all of
its annotated proteins have at least one common GO term. The ratio
of all consistent clusters to all annotated clusters we call specificity.
Another consistency measure that is used in previous studies (Liao
et al., 2009; Sahraeian and Yoon, 2013; Alkan and Erten, 2014) is
the mean normalized entropy (MNE). The normalized entropy of

1 4
an annotated cluster c is defined as NE(c) = “iogd Z pi x log pi,
i=1

where p; is the fraction of proteins in ¢ with the annotation GO;, and
d represents the number of different GO annotations in ¢. MNE is
the average of the normalized entropy of all annotated clusters. We
compare Fuse, Beams, Smetana, CSRW and NH on their ability to
uncover functionally conserved proteins across all input networks,
by measuring the consistency, specificity and MNE of their clusters
that contain proteins from all five networks (see Figure 4 and Table
2). We consider GO annotations from biological process (BP) and
molecular function (MF) separately and do not consider cellular
component (CC) annotations, as CC only annotate 9.7% of the
proteins in the five networks.

When using sequence information only (i.e., o = 1), Fuse
already outperforms other aligners, by creating a larger number
of functionally consistent clusters that consist of a larger number
of proteins than previous methods (see Fig. 4). Fuse creates
418 clusters that are functionally consistent with respect to GO

|:| BP consistent - MF consistent
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Fig. 4. Functional consistency analysis. Left: for each alignment produced
by the compared alignment methods (for a specific value of a for Fuse and
Beams), the bar chart shows the number of clusters that contain proteins
from all five species and that are BP consistent (in green) or MF consistent
(in blue). Right: the figure shows the same, but in terms of the number of
proteins in these clusters.

Biological Process (BP) (containing jointly 2,090 proteins), while
the best competing method, Smetana, produces only 188 BP
consistent clusters (containing jointly 1,086 proteins). Fuse also
creates 564 functionally consistent clusters with respect to GO
Molecular Function (MF) (containing jointly 2,820 proteins), while
the best competing method, CSRW, produces only 308 MF
consistent clusters (containing jointly 2,205 proteins).

Fuse obtains the best results when it uses a combination of
sequence similarities and NMTF predicted similarities. Including
predicted similarities (o = 0.8) allows for finding up to 9% more
of BP consistent clusters and for up to 4% more of MF consistent
clusters than when using sequence similarity alone (a0 = 1). Also,
we note that these larger numbers of consistent clusters and proteins
in them are not obtained at the cost of specificity, or of mean
normalized entropy (see Table 2).

Because Fuse produces almost twice as many consistent clusters
as the competing approaches, comparing methods’ outputs directly
may not be fair. To this end, first we score each cluster produced by
Fuse with the sum of its proteins’ pairwise similarity scores. Then,
we sort Fuse’s clusters by decreasing scores (i.e., from the cluster
whose proteins are the most similar to the cluster whose proteins
are the least similar) and consider the number of consistent clusters
in that ordering. To compare Fuse against other methods, but on
the same number of clusters that other methods produce, we take
from Fuse’s output the same number of clusters as produced by other
methods, that are top scoring in Fuse. E.g., Smetana outputs 1,279
BP annotated clusters out of which 188 are functionally consistent
(note that Fuse outputs 3,080 BP annotated clusters out of which 459
are functionally consistent). When we take from Fuse’s output the
1,279 BP highest scoring annotated clusters, we get 247 that are BP
functionally consistent (in contrast to the 188 that are BP consistent
by Smetana). Similarly, Fuse outperforms Smetana, CSRW and
NH in both BP and MF consistent clusters (Suppl. Fig. 3) and
it outperforms Beams in BP consistent clusters. For MF, Beams
achieves a slightly larger number of MF consistent clusters, 312 of
them out of 457 MF annotated clusters, as opposed to Fuse’s 299
clusters that are MF consistent (out of the 457 top scoring Fuse’s MF
annotated clusters, Suppl. Fig. 3). However, the number of proteins
in the 312 of Beam’s MF consistent clusters is only 1,628, while
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Fuse Beams Smetana | CSRW | NH
a=0 0.4 0.6 0.8 1 a=0 0.2 0.3 0.7 1
BP: #C 159 439 452 459 418 147 158 159 154 149 188 185 108
#P 795 2,195 2,260 2,295 2,090 751 809 815 790 762 1,086 1,103 540
Spec. | 6.7% 143% 148% 149% 142% | 183% 192% 19.4% 18.8% 18.2% 14.7% 153% | 6.3%
MNE | 1.97 2.05 2.05 2.05 2.07 1.97 2.19 2.22 2.22 1.97 2.16 2.06 2.04
MF: #C 189 575 586 588 564 303 308 312 312 309 300 308 17
#P 945 2,875 2,930 2,940 2,820 1573 1,601 1,619 1,628 1610 2,262 2,205 85
Spec. | 21.0% 40.7% 41.1% 413% 41.8% | 66.4% 65.8% 66.0% 683% 68.2% | 42.1% 45.8% | 2.4%
MNE | 091 0.85 0.83 0.84 0.84 0.73 0.72 0.75 0.73 0.73 0.80 0.79 0.95

Table 2. Functional consistency analysis. Each column represents one of the compared alignment methods (for a specific value of a for Fuse and Beams).
Numbers in cell report (from top to bottom): the number of consistent clusters (#C), the number of proteins in consistent clusters (#P), the specificity (Spec.),
and the mean normalized entropy (MNE). In each row, the highest value is shown in bold.

Fuse produces in total 588 MF consistent clusters that contain in
total 2,940 proteins.

Another advantage of Fuse over other aligners is that in the
NMTF step, it can predict new associations between proteins whose
sequence similarity is not significant (i.e., e-value > 1). These
associations can contribute to the identification of functionally
consistent clusters that cannot be identified by other aligners. For
example, Fuse can identify a cluster of 5 proteins (across 5 species)
where only a subset of them have similar sequences (e-value <
1), while others are predicted to be related based on the NMTF
scores. In this case, the other aligners cannot identify 5-protein
clusters because their performance is based only on sequence
similarity scores, and they cannot predict new protein associations.
We identify 18 clusters covering all 5 species (see Supplementary
Materials Section 5). One of them includes proteins: HPS6 (human),
HPS6 (mouse), SEC72 (yeast), ABU-1 (worm) and NIMC2 (fly);
since the first three and the last two proteins have similar sequences,
if the alignment was based only on sequence similarity, it would
have resulted in two clusters covering three and two species,
respectively. However, because of the predicted association between
HPS6 (mouse) and ABU-1 (worm), Fuse was able to identify a
cluster of related proteins in all 5 species. These proteins are all
involved in the immune response and also the first four proteins are
located in the endoplasmic reticulum (details are in Supplementary
Materials Section 5).

Fuse is also computationally efficient and scalable. The matrix
factorization step is an O(n?) time operation, where 7 is the total
number of proteins in all PPI networks. On our dataset, the matrix
factorization step is the most time consuming and requires =~ 10
hours to complete. The alignment step has a smaller time complexity
of O(kn*logn + kne), where n is the number nodes in Fuse’s k-
partite graph (i.e., the total number of proteins in all PPI networks),
and e is the total number of edges in Fuse’s k-partite graph, and on
our dataset the alignment process requires less than 15 minutes. The
time complexity of Beams is O(nd**!), where d is the maximum
degree of a node in Beams’ k-partite graph. Beams complexity
becomes larger than Fuse’s one when its k-partite graph becomes
denser (i.e., when d tends to n). Aligning our PPI networks with
Beams requires ~ 78 hours. NH also has a large time complexity,
O(kn*), although on our dataset it takes a short running times of
=~ 1 hour. Finally, Smetana and CSRW have the smallest time
complexities of O(k*ne) and on our dataset their computations
require = 1 hour for Smetana and ~ 3 hours for CSRW.

5 CONCLUSIONS

In this paper we propose Fuse, a novel global multiple network
alignment algorithm which can efficiently align even the largest
currently available PPI networks. Fuse computes novel similarity
scores between the proteins in PPI networks by fusing all PPI
network topologies and their protein sequence similarities by
using non-negative matrix tri-factorization. We show that these
new similarities complement solely sequence-based ones: NMTF
predicts as similar 13 times more protein pairs than sequence
alone does and these predicted protein pairs are functionally
consistent. This demonstrates the power of data integration and
contribution of network topology to sequence-based methods for
finding functionally consistent proteins in different species.

We define new functional similarity scores between the proteins
by combining the similarity scores obtained by NMTF with the
sequence-based ones using a user-defined balancing parameter o to
either favour one or the other. Fuse uses these functional scores to
construct global one-to-one multiple network alignment by using a
novel maximum weight k-partite matching heuristic algorithm.

We compare the alignments of Fuse to the ones of the state-
of-the art aligners, Beams, Smetana, CSRW and NH. We find
that even when using solely protein sequence similarity, Fuse
already outperforms all other network aligners by producing a
larger number of functionally homogeneous clusters that cover
all aligned networks. This shows the superiority of our k-partite
matching heuristic to produce biologically meaningful multiple
network alignments. Additionally, we find that the results of Fuse
are even better when functional similarity scores are created from
both sequence and NMTF scores (when o = 0.8) rather than
when using sequence information only (when o = 1). This again
demonstrates complementarity of sequence and network topology
in carrying biological information.
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