182 research outputs found

    Convolutional Neural Networks - Generalizability and Interpretations

    Get PDF

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Forecasting localized weather impacts on vegetation as seen from space with meteo-guided video prediction

    Full text link
    We present a novel approach for modeling vegetation response to weather in Europe as measured by the Sentinel 2 satellite. Existing satellite imagery forecasting approaches focus on photorealistic quality of the multispectral images, while derived vegetation dynamics have not yet received as much attention. We leverage both spatial and temporal context by extending state-of-the-art video prediction methods with weather guidance. We extend the EarthNet2021 dataset to be suitable for vegetation modeling by introducing a learned cloud mask and an appropriate evaluation scheme. Qualitative and quantitative experiments demonstrate superior performance of our approach over a wide variety of baseline methods, including leading approaches to satellite imagery forecasting. Additionally, we show how our modeled vegetation dynamics can be leveraged in a downstream task: inferring gross primary productivity for carbon monitoring. To the best of our knowledge, this work presents the first models for continental-scale vegetation modeling at fine resolution able to capture anomalies beyond the seasonal cycle, thereby paving the way for predictive assessments of vegetation status.Comment: Source code available at https://github.com/earthnet2021/earthnet-models-pytorc

    Intent prediction of vulnerable road users for trusted autonomous vehicles

    Full text link
    This study investigated how future autonomous vehicles could be further trusted by vulnerable road users (such as pedestrians and cyclists) that they would be interacting with in urban traffic environments. It focused on understanding the behaviours of such road users on a deeper level by predicting their future intentions based solely on vehicle-based sensors and AI techniques. The findings showed that personal/body language attributes of vulnerable road users besides their past motion trajectories and physics attributes in the environment led to more accurate predictions about their intended actions

    A multibranch, multitarget neural network for rapid point-source inversion in a microseismic environment: examples from the Hengill Geothermal Field, Iceland

    Get PDF
    Despite advanced seismological techniques, automatic source characterization for microseismic earthquakes remains difficult and challenging since current inversion and modelling of high-frequency signals are complex and time consuming. For real-time applications such as induced seismicity monitoring, the application of standard methods is often not fast enough for true complete real-time information on seismic sources. In this paper, we present an alternative approach based on recent advances in deep learning for rapid source-parameter estimation of microseismic earthquakes. The seismic inversion is represented in compact form by two convolutional neural networks, with individual feature extraction, and a fully connected neural network, for feature aggregation, to simultaneously obtain full moment tensor and spatial location of microseismic sources. Specifically, a multibranch neural network algorithm is trained to encapsulate the information about the relationship between seismic waveforms and underlying point-source mechanisms and locations. The learning-based model allows rapid inversion (within a fraction of second) once input data are available. A key advantage of the algorithm is that it can be trained using synthetic seismic data only, so it is directly applicable to scenarios where there are insufficient real data for training. Moreover, we find that the method is robust with respect to perturbations such as observational noise and data incompleteness (missing stations). We apply the new approach on synthesized and example recorded small magnitude (M <= 1.6) earthquakes at the Hellisheioi geothermal field in the Hengill area, Iceland. For the examined events, the model achieves excellent performance and shows very good agreement with the inverted solutions determined through standard methodology. In this study, we seek to demonstrate that this approach is viable for microseismicity real-time estimation of source parameters and can be integrated into advanced decision-support tools for controlling induced seismicity
    • …
    corecore