6,534 research outputs found

    Impact of Data Normalization on Deep Neural Network for Time Series Forecasting

    Full text link
    For the last few years it has been observed that the Deep Neural Networks (DNNs) has achieved an excellent success in image classification, speech recognition. But DNNs are suffer great deal of challenges for time series forecasting because most of the time series data are nonlinear in nature and highly dynamic in behaviour. The time series forecasting has a great impact on our socio-economic environment. Hence, to deal with these challenges its need to be redefined the DNN model and keeping this in mind, data pre-processing, network architecture and network parameters are need to be consider before feeding the data into DNN models. Data normalization is the basic data pre-processing technique form which learning is to be done. The effectiveness of time series forecasting is heavily depend on the data normalization technique. In this paper, different normalization methods are used on time series data before feeding the data into the DNN model and we try to find out the impact of each normalization technique on DNN to forecast the time series. Here the Deep Recurrent Neural Network (DRNN) is used to predict the closing index of Bombay Stock Exchange (BSE) and New York Stock Exchange (NYSE) by using BSE and NYSE time series data

    Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction

    Full text link
    Stock trend prediction plays a critical role in seeking maximized profit from stock investment. However, precise trend prediction is very difficult since the highly volatile and non-stationary nature of stock market. Exploding information on Internet together with advancing development of natural language processing and text mining techniques have enable investors to unveil market trends and volatility from online content. Unfortunately, the quality, trustworthiness and comprehensiveness of online content related to stock market varies drastically, and a large portion consists of the low-quality news, comments, or even rumors. To address this challenge, we imitate the learning process of human beings facing such chaotic online news, driven by three principles: sequential content dependency, diverse influence, and effective and efficient learning. In this paper, to capture the first two principles, we designed a Hybrid Attention Networks to predict the stock trend based on the sequence of recent related news. Moreover, we apply the self-paced learning mechanism to imitate the third principle. Extensive experiments on real-world stock market data demonstrate the effectiveness of our approach

    Improving Factor-Based Quantitative Investing by Forecasting Company Fundamentals

    Full text link
    On a periodic basis, publicly traded companies are required to report fundamentals: financial data such as revenue, operating income, debt, among others. These data points provide some insight into the financial health of a company. Academic research has identified some factors, i.e. computed features of the reported data, that are known through retrospective analysis to outperform the market average. Two popular factors are the book value normalized by market capitalization (book-to-market) and the operating income normalized by the enterprise value (EBIT/EV). In this paper: we first show through simulation that if we could (clairvoyantly) select stocks using factors calculated on future fundamentals (via oracle), then our portfolios would far outperform a standard factor approach. Motivated by this analysis, we train deep neural networks to forecast future fundamentals based on a trailing 5-years window. Quantitative analysis demonstrates a significant improvement in MSE over a naive strategy. Moreover, in retrospective analysis using an industry-grade stock portfolio simulator (backtester), we show an improvement in compounded annual return to 17.1% (MLP) vs 14.4% for a standard factor model

    Using Deep Learning for price prediction by exploiting stationary limit order book features

    Full text link
    The recent surge in Deep Learning (DL) research of the past decade has successfully provided solutions to many difficult problems. The field of quantitative analysis has been slowly adapting the new methods to its problems, but due to problems such as the non-stationary nature of financial data, significant challenges must be overcome before DL is fully utilized. In this work a new method to construct stationary features, that allows DL models to be applied effectively, is proposed. These features are thoroughly tested on the task of predicting mid price movements of the Limit Order Book. Several DL models are evaluated, such as recurrent Long Short Term Memory (LSTM) networks and Convolutional Neural Networks (CNN). Finally a novel model that combines the ability of CNNs to extract useful features and the ability of LSTMs' to analyze time series, is proposed and evaluated. The combined model is able to outperform the individual LSTM and CNN models in the prediction horizons that are tested

    Decision support from financial disclosures with deep neural networks and transfer learning

    Full text link
    Company disclosures greatly aid in the process of financial decision-making; therefore, they are consulted by financial investors and automated traders before exercising ownership in stocks. While humans are usually able to correctly interpret the content, the same is rarely true of computerized decision support systems, which struggle with the complexity and ambiguity of natural language. A possible remedy is represented by deep learning, which overcomes several shortcomings of traditional methods of text mining. For instance, recurrent neural networks, such as long short-term memories, employ hierarchical structures, together with a large number of hidden layers, to automatically extract features from ordered sequences of words and capture highly non-linear relationships such as context-dependent meanings. However, deep learning has only recently started to receive traction, possibly because its performance is largely untested. Hence, this paper studies the use of deep neural networks for financial decision support. We additionally experiment with transfer learning, in which we pre-train the network on a different corpus with a length of 139.1 million words. Our results reveal a higher directional accuracy as compared to traditional machine learning when predicting stock price movements in response to financial disclosures. Our work thereby helps to highlight the business value of deep learning and provides recommendations to practitioners and executives

    Deep Learning Stock Volatility with Google Domestic Trends

    Full text link
    We have applied a Long Short-Term Memory neural network to model S&P 500 volatility, incorporating Google domestic trends as indicators of the public mood and macroeconomic factors. In a held-out test set, our Long Short-Term Memory model gives a mean absolute percentage error of 24.2%, outperforming linear Ridge/Lasso and autoregressive GARCH benchmarks by at least 31%. This evaluation is based on an optimal observation and normalization scheme which maximizes the mutual information between domestic trends and daily volatility in the training set. Our preliminary investigation shows strong promise for better predicting stock behavior via deep learning and neural network models

    Temporal Relational Ranking for Stock Prediction

    Full text link
    Stock prediction aims to predict the future trends of a stock in order to help investors to make good investment decisions. Traditional solutions for stock prediction are based on time-series models. With the recent success of deep neural networks in modeling sequential data, deep learning has become a promising choice for stock prediction. However, most existing deep learning solutions are not optimized towards the target of investment, i.e., selecting the best stock with the highest expected revenue. Specifically, they typically formulate stock prediction as a classification (to predict stock trend) or a regression problem (to predict stock price). More importantly, they largely treat the stocks as independent of each other. The valuable signal in the rich relations between stocks (or companies), such as two stocks are in the same sector and two companies have a supplier-customer relation, is not considered. In this work, we contribute a new deep learning solution, named Relational Stock Ranking (RSR), for stock prediction. Our RSR method advances existing solutions in two major aspects: 1) tailoring the deep learning models for stock ranking, and 2) capturing the stock relations in a time-sensitive manner. The key novelty of our work is the proposal of a new component in neural network modeling, named Temporal Graph Convolution, which jointly models the temporal evolution and relation network of stocks. To validate our method, we perform back-testing on the historical data of two stock markets, NYSE and NASDAQ. Extensive experiments demonstrate the superiority of our RSR method. It outperforms state-of-the-art stock prediction solutions achieving an average return ratio of 98% and 71% on NYSE and NASDAQ, respectively.Comment: Transactions on Information Systems (TOIS

    A Tensor-Based Sub-Mode Coordinate Algorithm for Stock Prediction

    Full text link
    The investment on the stock market is prone to be affected by the Internet. For the purpose of improving the prediction accuracy, we propose a multi-task stock prediction model that not only considers the stock correlations but also supports multi-source data fusion. Our proposed model first utilizes tensor to integrate the multi-sourced data, including financial Web news, investors' sentiments extracted from the social network and some quantitative data on stocks. In this way, the intrinsic relationships among different information sources can be captured, and meanwhile, multi-sourced information can be complemented to solve the data sparsity problem. Secondly, we propose an improved sub-mode coordinate algorithm (SMC). SMC is based on the stock similarity, aiming to reduce the variance of their subspace in each dimension produced by the tensor decomposition. The algorithm is able to improve the quality of the input features, and thus improves the prediction accuracy. And the paper utilizes the Long Short-Term Memory (LSTM) neural network model to predict the stock fluctuation trends. Finally, the experiments on 78 A-share stocks in CSI 100 and thirteen popular HK stocks in the year 2015 and 2016 are conducted. The results demonstrate the improvement on the prediction accuracy and the effectiveness of the proposed model

    Visual Attention Model for Cross-sectional Stock Return Prediction and End-to-End Multimodal Market Representation Learning

    Full text link
    Technical and fundamental analysis are traditional tools used to analyze individual stocks; however, the finance literature has shown that the price movement of each individual stock correlates heavily with other stocks, especially those within the same sector. In this paper we propose a general purpose market representation that incorporates fundamental and technical indicators and relationships between individual stocks. We treat the daily stock market as a "market image" where rows (grouped by market sector) represent individual stocks and columns represent indicators. We apply a convolutional neural network over this market image to build market features in a hierarchical way. We use a recurrent neural network, with an attention mechanism over the market feature maps, to model temporal dynamics in the market. We show that our proposed model outperforms strong baselines in both short-term and long-term stock return prediction tasks. We also show another use for our market image: to construct concise and dense market embeddings suitable for downstream prediction tasks.Comment: Accepted as full paper in the 32nd International FLAIRS Conferenc

    Combining time-series and textual data for taxi demand prediction in event areas: a deep learning approach

    Full text link
    Accurate time-series forecasting is vital for numerous areas of application such as transportation, energy, finance, economics, etc. However, while modern techniques are able to explore large sets of temporal data to build forecasting models, they typically neglect valuable information that is often available under the form of unstructured text. Although this data is in a radically different format, it often contains contextual explanations for many of the patterns that are observed in the temporal data. In this paper, we propose two deep learning architectures that leverage word embeddings, convolutional layers and attention mechanisms for combining text information with time-series data. We apply these approaches for the problem of taxi demand forecasting in event areas. Using publicly available taxi data from New York, we empirically show that by fusing these two complementary cross-modal sources of information, the proposed models are able to significantly reduce the error in the forecasts.Comment: 20 pages, 6 figure
    • …
    corecore