9,970 research outputs found

    Hybrid hidden Markov LSTM for short-term traffic flow prediction

    Full text link
    Deep learning (DL) methods have outperformed parametric models such as historical average, ARIMA and variants in predicting traffic variables into short and near-short future, that are critical for traffic management. Specifically, recurrent neural network (RNN) and its variants (e.g. long short-term memory) are designed to retain long-term temporal correlations and therefore are suitable for modeling sequences. However, multi-regime models assume the traffic system to evolve through multiple states (say, free-flow, congestion in traffic) with distinct characteristics, and hence, separate models are trained to characterize the traffic dynamics within each regime. For instance, Markov-switching models with a hidden Markov model (HMM) for regime identification is capable of capturing complex dynamic patterns and non-stationarity. Interestingly, both HMM and LSTM can be used for modeling an observation sequence from a set of latent or, hidden state variables. In LSTM, the latent variable is computed in a deterministic manner from the current observation and the previous latent variable, while, in HMM, the set of latent variables is a Markov chain. Inspired by research in natural language processing, a hybrid hidden Markov-LSTM model that is capable of learning complementary features in traffic data is proposed for traffic flow prediction. Results indicate significant performance gains in using hybrid architecture compared to conventional methods such as Markov switching ARIMA and LSTM

    The Prediction and Mitigation of Road Traffic Congestion Based on Machine Learning

    Get PDF
    Traffic congestion is a major issue for all developed countries. In most urbanised areas space is a scarce commodity. Therefore, better management of the existing roads to increase or maintain their capacity level is the only viable solution. Research in the last two decades has focused on Intelligent Transport Systems (ITS) development. Predicting traffic flow in real time can be used to prevent or alleviate future congestion. The key to an effective proactive method is a model that produces timely and accurate predictions. However, despite extensive research in this area, a reliable method is still not available. Therefore, in this thesis, we developed an accurate online road traffic flow prediction model, with a particular focus on heterogeneous traffic flow, for urbanised road networks. The contributions of this work include: Firstly, we conducted a comprehensive literature review and benchmark evaluation of existing machine learning models using a real dataset obtained from Transport for Greater Manchester. We investigated their prediction accuracy, time horizon sensitivity, and input feature settings (different classes of vehicles), to understand how they can affect their prediction accuracy. The experimental results show that the artificial neural network was the most successful at predicting short-term road traffic flow. Additionally, it was found that different classes of vehicles can improve prediction accuracy. Secondly, we examined three recurrent neural networks (a standard recurrent, a long short-term memory, and a gated recurrent unit). We compared their accuracy, training time, and sensitivity to architectural change using a new performance metric we developed to standardise the accuracy and training time into a comparable score (STATS). The experimental results show that the gated recurrent unit performed the best and was most stable against architectural changes. Conversely, the long short-term memory was the least stable model. Thirdly, we investigated different magnitudes of temporal patterns in the dataset, both short and long-term, to understand how contextual temporal data can improve prediction accuracy. We also developed a novel online dynamic temporal context neural network framework. The framework dynamically determines how useful a temporal data segment is for prediction, and weights it accordingly for use in the regression model. The experimental results show that short and long-term temporal patterns improved prediction accuracy. In addition, the proposed online dynamical framework improved prediction results by 10.8% when compared with a deep gated recurrent model. Finally, we investigated the dynamic nature of road traffic flow’s input features by examining their spatial and temporal relationships. We also developed a novel dynamic exogenous feature filter mechanism. The feature filter mechanism uses ’local windows’ to filter input features in real-time to improve prediction accuracy. The results show that a global correlation was insufficient to describe the complex and dynamic relationships between the input features. The local correlations (local windows) were able to identify additional geospatial and temporal relationships. Furthermore, the proposed feature filter mechanism was compared to a state-of-the-art method, a dynamic rolling window feature filter model. The experimental results showed that the proposed model was the most accurate, with an RMSE of 10.06%, closely followed by the dynamic rolling window feature filter model, with an RMSE of 10.98%. However, the proposed model was computationally much lighter than the rolling windows model

    A Long Short-Term Memory Recurrent Neural Network Framework for Network Traffic Matrix Prediction

    Full text link
    Network Traffic Matrix (TM) prediction is defined as the problem of estimating future network traffic from the previous and achieved network traffic data. It is widely used in network planning, resource management and network security. Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that is well-suited to learn from experience to classify, process and predict time series with time lags of unknown size. LSTMs have been shown to model temporal sequences and their long-range dependencies more accurately than conventional RNNs. In this paper, we propose a LSTM RNN framework for predicting short and long term Traffic Matrix (TM) in large networks. By validating our framework on real-world data from GEANT network, we show that our LSTM models converge quickly and give state of the art TM prediction performance for relatively small sized models.Comment: Submitted for peer review. arXiv admin note: text overlap with arXiv:1402.1128 by other author

    Short-term Demand Forecasting for Online Car-hailing Services using Recurrent Neural Networks

    Full text link
    Short-term traffic flow prediction is one of the crucial issues in intelligent transportation system, which is an important part of smart cities. Accurate predictions can enable both the drivers and the passengers to make better decisions about their travel route, departure time and travel origin selection, which can be helpful in traffic management. Multiple models and algorithms based on time series prediction and machine learning were applied to this issue and achieved acceptable results. Recently, the availability of sufficient data and computational power, motivates us to improve the prediction accuracy via deep-learning approaches. Recurrent neural networks have become one of the most popular methods for time series forecasting, however, due to the variety of these networks, the question that which type is the most appropriate one for this task remains unsolved. In this paper, we use three kinds of recurrent neural networks including simple RNN units, GRU and LSTM neural network to predict short-term traffic flow. The dataset from TAP30 Corporation is used for building the models and comparing RNNs with several well-known models, such as DEMA, LASSO and XGBoost. The results show that all three types of RNNs outperform the others, however, more simple RNNs such as simple recurrent units and GRU perform work better than LSTM in terms of accuracy and training time.Comment: arXiv admin note: text overlap with arXiv:1706.06279, arXiv:1804.04176 by other author

    NeuTM: A Neural Network-based Framework for Traffic Matrix Prediction in SDN

    Full text link
    This paper presents NeuTM, a framework for network Traffic Matrix (TM) prediction based on Long Short-Term Memory Recurrent Neural Networks (LSTM RNNs). TM prediction is defined as the problem of estimating future network traffic matrix from the previous and achieved network traffic data. It is widely used in network planning, resource management and network security. Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that is well-suited to learn from data and classify or predict time series with time lags of unknown size. LSTMs have been shown to model long-range dependencies more accurately than conventional RNNs. NeuTM is a LSTM RNN-based framework for predicting TM in large networks. By validating our framework on real-world data from GEEANT network, we show that our model converges quickly and gives state of the art TM prediction performance.Comment: Submitted to NOMS18. arXiv admin note: substantial text overlap with arXiv:1705.0569

    Scalable Deep Traffic Flow Neural Networks for Urban Traffic Congestion Prediction

    Full text link
    Tracking congestion throughout the network road is a critical component of Intelligent transportation network management systems. Understanding how the traffic flows and short-term prediction of congestion occurrence due to rush-hour or incidents can be beneficial to such systems to effectively manage and direct the traffic to the most appropriate detours. Many of the current traffic flow prediction systems are designed by utilizing a central processing component where the prediction is carried out through aggregation of the information gathered from all measuring stations. However, centralized systems are not scalable and fail provide real-time feedback to the system whereas in a decentralized scheme, each node is responsible to predict its own short-term congestion based on the local current measurements in neighboring nodes. We propose a decentralized deep learning-based method where each node accurately predicts its own congestion state in real-time based on the congestion state of the neighboring stations. Moreover, historical data from the deployment site is not required, which makes the proposed method more suitable for newly installed stations. In order to achieve higher performance, we introduce a regularized Euclidean loss function that favors high congestion samples over low congestion samples to avoid the impact of the unbalanced training dataset. A novel dataset for this purpose is designed based on the traffic data obtained from traffic control stations in northern California. Extensive experiments conducted on the designed benchmark reflect a successful congestion prediction

    Traffic Prediction Based on Random Connectivity in Deep Learning with Long Short-Term Memory

    Full text link
    Traffic prediction plays an important role in evaluating the performance of telecommunication networks and attracts intense research interests. A significant number of algorithms and models have been put forward to analyse traffic data and make prediction. In the recent big data era, deep learning has been exploited to mine the profound information hidden in the data. In particular, Long Short-Term Memory (LSTM), one kind of Recurrent Neural Network (RNN) schemes, has attracted a lot of attentions due to its capability of processing the long-range dependency embedded in the sequential traffic data. However, LSTM has considerable computational cost, which can not be tolerated in tasks with stringent latency requirement. In this paper, we propose a deep learning model based on LSTM, called Random Connectivity LSTM (RCLSTM). Compared to the conventional LSTM, RCLSTM makes a notable breakthrough in the formation of neural network, which is that the neurons are connected in a stochastic manner rather than full connected. So, the RCLSTM, with certain intrinsic sparsity, have many neural connections absent (distinguished from the full connectivity) and which leads to the reduction of the parameters to be trained and the computational cost. We apply the RCLSTM to predict traffic and validate that the RCLSTM with even 35% neural connectivity still shows a satisfactory performance. When we gradually add training samples, the performance of RCLSTM becomes increasingly closer to the baseline LSTM. Moreover, for the input traffic sequences of enough length, the RCLSTM exhibits even superior prediction accuracy than the baseline LSTM.Comment: 6 pages, 9 figure
    • 

    corecore