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Abstract

Traffic congestion is a major issue for all developed countries. In most urbanised ar-

eas space is a scarce commodity. Therefore, better management of the existing roads

to increase or maintain their capacity level is the only viable solution. Research in

the last two decades has focused on Intelligent Transport Systems (ITS) develop-

ment. Predicting traffic flow in real time can be used to prevent or alleviate future

congestion. The key to an effective proactive method is a model that produces timely

and accurate predictions. However, despite extensive research in this area, a reliable

method is still not available. Therefore, in this thesis, we developed an accurate

online road traffic flow prediction model, with a particular focus on heterogeneous

traffic flow, for urbanised road networks. The contributions of this work include:

Firstly, we conducted a comprehensive literature review and benchmark evalu-

ation of existing machine learning models using a real dataset obtained from Trans-

port for Greater Manchester. We investigated their prediction accuracy, time horizon

sensitivity, and input feature settings (different classes of vehicles), to understand

how they can affect their prediction accuracy. The experimental results show that

the artificial neural network was the most successful at predicting short-term road

traffic flow. Additionally, it was found that different classes of vehicles can improve

prediction accuracy.

Secondly, we examined three recurrent neural networks (a standard recurrent,

a long short-term memory, and a gated recurrent unit). We compared their accu-

racy, training time, and sensitivity to architectural change using a new performance

metric we developed to standardise the accuracy and training time into a compa-

rable score (STATS). The experimental results show that the gated recurrent unit

performed the best and was most stable against architectural changes. Conversely,

the long short-term memory was the least stable model.

Thirdly, we investigated different magnitudes of temporal patterns in the dataset,

both short and long-term, to understand how contextual temporal data can improve

prediction accuracy. We also developed a novel online dynamic temporal context

neural network framework. The framework dynamically determines how useful a

temporal data segment is for prediction, and weights it accordingly for use in the
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regression model. The experimental results show that short and long-term temporal

patterns improved prediction accuracy. In addition, the proposed online dynamical

framework improved prediction results by 10.8% when compared with a deep gated

recurrent model.

Finally, we investigated the dynamic nature of road traffic flow’s input features

by examining their spatial and temporal relationships. We also developed a novel

dynamic exogenous feature filter mechanism. The feature filter mechanism uses

’local windows’ to filter input features in real-time to improve prediction accuracy.

The results show that a global correlation was insufficient to describe the complex

and dynamic relationships between the input features. The local correlations (local

windows) were able to identify additional geospatial and temporal relationships.

Furthermore, the proposed feature filter mechanism was compared to a state-of-the-

art method, a dynamic rolling window feature filter model. The experimental results

showed that the proposed model was the most accurate, with an RMSE of 10.06%,

closely followed by the dynamic rolling window feature filter model, with an RMSE

of 10.98%. However, the proposed model was computationally much lighter than

the rolling windows model.
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Chapter 1

Introduction

1.1 Motivation and Background

Traffic congestion is a critical issue for all developed countries. In 2019 traffic con-

gestion costs the UK economy an estimated £6.9 billion, and is predicted to rise [1].

The long-term motor vehicle traffic trends show that this rise is mainly due to huge

growth in the use of cars and taxis, as illustrated in Fig. 1.1.

 

FIGURE 1.1: The long-term trends in motor vehicle traffic [2].

Congestion occurs when traffic demand exceeds the capacity of the road network

(saturation point) [3]. A simplistic solution would be to build more or widen existing

roads. However, space is a scarce commodity in most urbanised areas. Therefore,

traffic managers have been given the arduous task of managing existing roads and

networks to maintain or increase their capacity level.

Research in the last two decades has focused on Intelligent Transport Systems

(ITS) development for the prediction and management of road traffic flow through
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advancements in data processing, mining, and computer hardware [4]. The main

objective of these advancements is to move away from reactive methods of traffic

management. These methods, such as CCTV monitoring and responding to reported

incidents, can be costly in terms of operational and technical costs [5] as well as

ineffective. Instead, proactive methods, which predict traffic congestion in real-time,

can be used to prevent or alleviate future congestion through the use of congestion

mitigation techniques [6].

Proactive methods for traffic management, such as short-term prediction mod-

els, can aid not only traffic controllers to make more informed decisions but also

drivers by providing an early warning system. The key to an effective proactive

method is a model that produces timely and accurate predictions. However, despite

extensive research, an accurate and reliable proactive method is still not available

[7]. Therefore, continued research into short-term traffic prediction models is vital.

Road traffic flow prediction methods can be broadly split into two categories; 1)

traditional statistical methods, and 2) machine learning methods. Although, overlap

between the categories does exist.

Traditional statistical methods, such as, but are not limited to, Auto-Regressive

Integrated Moving Average model (ARIMA) [8], Seasonal Auto-Regressive Inte-

grated Moving Average model (SARIMA) [8], Autoregressive Conditional Heteroskedas-

ticity (ARCH) [9], and Generalised Autoregressive Conditional Heteroskedasticity

(GARCH) [10] have all been used for road traffic prediction.

ARIMA, has produced promising results [11] [12][13][14], along with its sea-

sonal variation SARIMA [15][16][17]. However, the model’s simplistic nature means

it is badly affected by outliers, and therefore, unable to cope with abnormal/non-

recurrent (volatile) road traffic flow data. Some researchers have tried to overcome

this limitation by creating hybrid models [18][19][20]. However, the model still suf-

fers from a critical flaw, it assumes that traffic flow data is homoscedastic when it

is generally accepted that road traffic flow is heteroscedastic. ARCH and GARCH

models improve upon ARIMA and SARIMA models by assuming that road traf-

fic flow data is heteroscedastic. Therefore, it can capture the volatility present in the

road traffic flow data. The limited researchers that have used ARCH [9] and GARCH

models [10] to predict road traffic flow [21] have produced good results, however,

there is still room for improvement. ARCH and GARCH models, and their multiple

variations, assume implied deterministic volatility based on historical road traffic
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flow and conditional variances. In reality, this is not true.

Machine learning methods that have been used for road traffic flow prediction

include, but are not limited to, K-Nearest Neighbours (KNN) [22], Support Vector

Regression (SVR) [23], and Artificial Neural Networks (ANNs) [24]. KNN models

[22] are able to cope with volatile road traffic data [7][5], and therefore, many re-

searchers have adapted KNN models for road traffic prediction [25][6]. However,

the KNN model is not without issues, it requires large memory for storing the en-

tire training dataset. Therefore, not suitable for the prediction of road traffic flow

on a road network. SVR [23], is an extension of a classifier model, Support Vector

Machine (SVM) [26]. Despite efforts to improve the time taken during the learning

process [27][28][29], ultimately the SVR model does not work well with large high-

dimensional datasets. Calculating the distances between each data point would be

computationally very heavy, and this is only complicated further for high dimen-

sional data. Therefore, SVR is not suitable for road traffic flow on a road network.

The use of ANNs [24] for road traffic flow prediction has flourished in the last

two decades due to their ability to handle and predict non-linear volatile data and

advancements in computing power. Various architectures have been explored [30],

and predominately recurrent neural network (RNN) structures have been used [31].

These architectures include a Jordan Sequential Neural Network (JSNN) [32], a long

short-term memory (LSTM) [33], and notably, a gated recurrent unit [34]. One main

limitation of RNN models is they tend to focus on a small temporal dataset from one

geographical site, ignoring spatial relationships within a road network. One direc-

tion that researchers are exploring to overcome this is convolutional neural networks

(CNNs) [35]. A CNN is an ANN that uses the geographical proximity of its input

data points to add a geospatial dimension, making them ideal for adaptation for the

prediction of road traffic flow on a road network. Despite some promising research

in [36][37], the application of CNNs for road traffic is limited and still in its infancy.

Therefore, there are still many challenges remaining for the short-term predic-

tion of road traffic flow on a road network. The main issue with the ANN models

mentioned above is there was no consensus on what architectural structure was su-

perior for road traffic flow prediction. Furthermore, it identified one main flaw in

the literature, the datasets used to test the models were inadequate. Most research

focuses on a temporally small training and testing dataset, ranging from a few days

to a few weeks [33][38], from one geographical location, and one data source/input
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features, that had been pre-cleaned to remove outliers for ease and speed of compu-

tation [38][39]. However, a prediction model can only be as good as its input data

[40]. The magnitude of the temporal, spatial, and input features’ diversity within the

training data will determine and restrict what temporal, spatial, and input feature

cycles and patterns can be learnt. Therefore, more research into the development

of road traffic flow prediction models that can incorporate larger temporal datasets,

from multiple locations on a road network, with diverse input features is needed.

This challenge is not without its issues. Input features on a road network are dy-

namic, they change over time and space, and are highly correlated. Selecting the

most discriminative input features for prediction is a difficult task. Therefore, more

research in this area is also needed.

1.2 Aims and Objectives

This thesis aims to develop an accurate novel road traffic flow prediction model,

with a particular focus on the short-term prediction of heterogeneous road traffic

flow on an urbanised road network.

Objectives

1. To carry out a comprehensive literature review on road traffic flow prediction

models (statistical, machine learning, and process-based) with applications to

recurrent and non-recurrent road traffic flow.

2. Based on objective one, perform a benchmark evaluation of existing machine

learning and deep learning prediction models for heterogeneous road traffic

flow, with particular attention to the prediction model’s stability to architec-

tural change.

3. Based on objective two, develop an accurate prediction model that incorpo-

rates the historical temporal patterns of the heterogeneous road traffic flow to

improve prediction accuracy.

4. To investigate input feature importance and develop a feature filter to improve

the prediction accuracy.

5. To test and evaluate the models using real datasets from Transport for Greater

Manchester.
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1.3 Contributions

1. We have carried out a benchmark evaluation of existing machine learning

models using a real dataset obtained from Transport for Greater Manchester.

We investigated their prediction accuracy, time horizon sensitivity, and differ-

ent input feature settings (different classes of vehicles) to understand how they

can affect their prediction accuracy.

2. We have examined and compared existing deep recurrent neural networks (a

basic recurrent, a long short-term memory, and a gated recurrent unit), using

a novel performance metric we developed, based on a real dataset obtained

from Transport for Greater Manchester to determine which is most suitable for

the prediction of heterogeneous road traffic flow.

3. We have developed a novel online dynamic temporal context neural network

framework that can dynamically determine how useful different temporal data

segments are, and weights them accordingly for use in the regression model to

improve prediction accuracy.

4. We have developed a novel dynamic exogenous feature filter that uses ’local

windows’ to filter input features in real-time to improve prediction accuracy.

1.4 The Structure of this Thesis

The rest of this paper is organised as follows: Chapter 2 presents a Literature Re-

view for Road Traffic Flow Prediction; Chapter 3 is a comparative analysis of Ma-

chine Learning Based Approach for the Prediction of Road Traffic Flow; Chapter 4 is

Evaluating the Performance of Deep Recurrent Neural Networks for the Prediction

of Road Traffic Flow; Chapter 5 presents a Novel Online Dynamic Temporal Context

Neural Network Framework for the Prediction of Road Traffic Flow; Chapter 6 in-

troduces a Novel Dynamic Exogenous Feature Filter using Local Windows for Deep

Learning-based Prediction of Road Traffic Flow; Chapter 7 provides a Conclusion.
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Chapter 2

Literature Review of Road Traffic

Flow Prediction

Chapter Summary

In the previous chapter we outlined the current issues surrounding road traffic flow

prediction. In this chapter we move on to define, in detail, the scope of the mathe-

matical problem and its components. Section 2.1 presents the components, including

time parameter, input features, seasonality, traffic data and data sources, and perfor-

mance metrics.

We then review and discuss various prediction modelling approaches for their

suitability for the prediction road traffic flow. In Section 2.2.1 we present and assess

three different statistical prediction models and their common variations, Section

2.2.2 evaluates four different machine learning models, and lastly, Section 2.2.3 ex-

amines process-based models. All the prediction models are appraised on their ac-

curacy, time horizon, timestep, prediction scale, road structure, and input data used,

and a conclusion is produced in Section 2.3.

2.1 The Mathematical Problem of Road Traffic Flow Predic-

tion

Prior to performing a literature review first we define in general the mathemati-

cal problem of road traffic flow prediction. Equation 2.1 expresses the simplified

problem and its components, when the conditions of the road network have been

predefined.
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The Mathematical Problem of Road Traffic Flow Prediction

x̂t+1 = f (xt, pt, xt−1, pt−1, xt−2, pt−2, ..., xt−n, pt−n) (2.1)

Where x is the traffic state, at current time t, p is the parameters affecting the traffic

state, n is the size of the sample, x̂ is the prediction of the traffic state, and f (x)

is the model applied to the historic traffic state data and its parameters to produce

a prediction. Each component is now defined in more detail before exploring the

different prediction models.

2.1.1 Time Parameters

A timestep (δt) is the interval of time between one point to the next (δt = t1 − t0)

in the historical data and prediction. Past researchers have used a number of differ-

ent timesteps in their predictions, however, most papers only predict one timestep

ahead [6][41][42][28]; very few use multiple timestep prediction [25]. This is due

to prediction accuracy becoming more volatile the more timesteps a model tries to

predict.

A time horizon is the magnitude of the interval in time from one point to the next

(∆t = t1 − t0) in the historical data and prediction. There is currently no universal

definition of what magnitude time horizon is classed as short or long-term for the

prediction of road traffic flow. Consequently, research papers have used a variety

of different time horizons with varying success, ranging from 1 to 90 minutes [43],

which have been labelled as short-term. However, a review of past papers (includ-

ing, but not limited to those referenced in Table 2.3) appears to show that the most

common time horizon used for short-term road traffic prediction is five minutes.

Therefore, when referring to short-term traffic prediction in this research, it will be a

time horizon of five minutes unless specified otherwise.

2.1.2 Input Features

Numerous input features (p) have been used in prediction models to improve pre-

diction accuracy. These include, but are not limited to, speed, volume, density,

state, occupancy, traffic flow, OD matrices, weather, truck flow, headway, and holi-

day/incident. A summary of the input features along with a count of the published

papers they appear in can be seen in Figure 2.1, where the X axis represents the
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number of publications and the Y axis represents the input feature used in the pub-

lications. Figure 2.1 also shows the most commonly used input features are traffic

speed, volume and flow. An explicit definition of volume, density, state, occupancy,

traffic flow, and headway can be found in the Glossary.

 

 

 

FIGURE 2.1: A count of the input features (p) used in published pa-
pers up to 2017 [44]

2.1.3 Seasonality

Equation 2.1 defines the general mathematical problem of road traffic flow predic-

tion. One special case variation would be the inclusion of seasonality, as shown in

equation 2.2.

x̂t+1 = f1(Bx) + . . . + fl(Blx) + fs(Bsix) (2.2)

where Bax = xt − a, l is a non-seasonal term, s is a seasonal term, l < s < ∞, and

i = 1, 2, 3, . . . n.

Seasonality is a regular and predictable time series pattern within the historical

road traffic flow data (x) that affects the two main constraints affecting traffic flow;

1) traffic demand, and 2) road capacity.

Road traffic flow exhibits strong seasonality patterns, such as short-term hourly

and daily patterns [45][33][38] as well as weekly patterns connected to the working

week [16]. Research has even demonstrated the importance of long-term seasonality
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patterns such as monthly and yearly [46]. Therefore, seasonality is a significant and

well-studied factor that can aid road traffic flow prediction [45][47][48][49].

2.1.4 Traffic Data and Data Sources

Traffic data is classed as non-linear and complex [50] and is a fundamental part of

any prediction model. It must be accurate, reliable, and complete to obtain a success-

ful prediction [51]. Therefore, data can be pre-cleaned to remove outliers. Outliers

in historical data, such as traffic jams or road closures, can skew data thus, nega-

tively influencing prediction values for numerous iterations. Many researchers have

devised methods to pre-clean noisy traffic data [52][53][54]. Reactive methods, such

as the Box-Cox Transformations (TBATS) [52] where the geometric mean and the

lambda (a key parameter of the transformations) that produces the lowest sum of

squared error is used to determine how best to transform the data into homoscedas-

tic data, can be used. Other more simplistic pre-cleaning methods can be used to

insert values where data is missing, such as the average of the neighbouring values.

Some models are labelled as robust [55][56] denoting that they can predict and

handle normal and abnormal traffic data. Based on existing work and research, traf-

fic data that contains non-recurring traffic congestion or outliers is classified as atyp-

ical and thus, abnormal. Therefore, traffic data which does not contain non-recurring

traffic congestion is classified as normal.

It should also be noted that the prediction of non-recurrent traffic events is im-

possible, except in special cases like planned public events or roadworks. However,

some models can handle the dynamic data better during its occurrence and make

reasonable predictions, hence, they are classed as robust.

Traffic Data Sources

Input feature data is obtained through three different sources; private, public, or

simulated if no data is available. Suhas, Kalyan, Katti, et al. [44] analysed publica-

tions on road traffic predictions, through web scraping, to determine the most com-

monly used. The results can be found in Table 2.1 which shows that the majority of

publications used privately sourced data.
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Data Source Examples Percentage
Private Regional Traffic Management Centres [28] 66.2
Public PeMS, MIDAS [57], Bing[58] , and Twitter [59] 27.2

Simulated SUMO [60] and AIMSUN [61] 6.6

TABLE 2.1: Sources of data used in road traffic prediction models up
to 2017 [44]

2.1.5 Performance Metrics

To assess the accuracy of the prediction model, a performance metric must be em-

ployed. There is no standard performance metric used in road traffic prediction,

thus, making the comparison of different papers and models difficult. A summary

of the performance metrics, along with a count of the published papers they appear

in can be seen in Figure 2.2. The X axis represents the number of publications the

performance metric was found in, and the Y axis represents the performance metric

used in the publications.

 

FIGURE 2.2: A count of performance metrics used in published road
traffic prediction models up to 2017 [44]

The most commonly used performance metric is the root mean square error (RMSE),

as shown in Equation 2.3. The RMSE measures the average deviation between the

predicted value and the actual value. It only evaluates the accuracy of a model. No

consideration is given to the training time, or the trade-off between accuracy and

training time.
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RMSE =

√
∑n

t=1(Ft − At)2

n
(2.3)

Ft is the predicted value and A is the actual value at time t, and n is the number

of timesteps predicted. During this research, the RMSE will be used to assess the

prediction models’ accuracy for ease of comparison with other research.

2.2 Traffic Prediction Models

Existing research into road traffic prediction can be broadly split into three differ-

ent approaches; data-driven models (consisting of statistical and machine learning

models) and process-based models, as shown in Figure 5.1, although hybrids do

exist. Therefore, each approach is considered in turn.

 

FIGURE 2.3: Different approaches used for road traffic modelling

Within each approach there are numerous models. Thus, to determine which

models should be explored, we perform a review of the most popular models . A

review of published papers on traffic prediction models by Suhas, Kalyan, Katti, et

al., stating the percentage of papers that contained them, can be seen in Table 2.2.

We explore the six most popular models, Artificial Neural Networks (ANNS) [24],
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deep learning, statistical, hybrid, Support Vector Machine/Support Vector Regres-

sion (SVM/SVR) [23], and K-Nearest Neighbours [62] Furthermore, we also review

unpopular models, such as Grey Systems Forecasting (GSF) [63] and Kalman Filters

(KF) [64], to access their suitability. The literature review assesses papers on their

time horizon, timestep (presumed single if not otherwise stated), prediction scale

(presumed single location point unless otherwise stated) and accuracy of results.

The literature review begins with statistical models, the most popular class of all.

 

TABLE 2.2: A comparison of the percentage of studies carried out
using predictive techniques for Intelligent Transport Systems [44]

2.2.1 Traffic Prediction Models Based on Statistical Approaches

Statistical models are the predominately used method for short-term prediction (see

Table 2.2). This is due to their simplistic structure and ability to produce results

within an acceptable tolerable error level [5]. However, as they do not represent the

road network and merely analyse the historical road traffic data, they can only pre-

dict congestion based on previous ‘trends’. Thus, they are limited by the data avail-

able. Their performance depends on how closely the data represents the scenario

under consideration. Below we discuss in more detail the most common statistical

models used for prediction, Autoregressive Integrated Moving Average/Seasonal

Autoregressive Integrated Moving Average, Autoregressive Conditional Heteroskedas-

ticity/Generalised Autoregressive Conditional Heteroskedasticity, and Grey Series

Forecasting.
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1. ARIMA and SARIMA Based Traffic Prediction Modelling

In time series analysis, the most commonly used model for road traffic prediction is

Auto-Regressive Integrated Moving Average model (ARIMA) [8][17]. It is a stochas-

tic statistical parametric model that attempts to identify, linear and non-linear, traffic

patterns in historic traffic time series data at a forecast location (arterial road or free-

way) to predict future short-term traffic values.

Given time series xt, the ARIMA model (p, d, q) is given as

Θp(B)(1 − B)d(Xt − µ) = θq(B)et (2.4)

where B is the back-shift operator given by BXt = Xt−1, Θp(B) is the auto-

regressive operator of order p, µ is the mean of series data, θq(B) is the moving

average operator of order q, et is the random error (also known as white noise), and

p, d, and q are the non-integer order of differencing [65].

ARIMA is used due to its simplicity and ability to produce computationally ef-

ficient predictions [11]. However, the model is limited by its reliance on historical

data. It can not predict non-reoccurring traffic congestion and any outliers (such as

traffic accidents or debris on the road) in historical data will also skew numerous

successive future predictions. Therefore, it is not suitable for volatile or dynamic

data. Furthermore, the model assumes that traffic data is homoscedastic. This means

that it assumes the variance of the data is the same at any given time. This is not

true since some periods during the day or week will be riskier and therefore, more

volatile than others. Thus, the standard deviation from the mean during these pe-

riods will be higher than during the rest of the data. ARIMA does not and can not

take this into account. Therefore, it is also unable to predict or cope with abnormal

traffic conditions such as road traffic accidents. Nevertheless, ARIMA is suitable for

locations where traffic flow is consistent and does not suffer from dynamic changes.

Two well-cited studies include Levin and Tsao [66] and Hamed, Al-Masaeid, and

Said [67]. Levin and Tsao [66]. They determined that the ARIMA model (0, 1, 1) was

most statistically significant at forecasting both volume and occupancy when com-

pared to other ARIMA model variations and a 60 second time interval was most ef-

fective. Furthermore, Hamed, Al-Masaeid, and Said [67] also improved upon Levin

and Tsao [66] research by making the model more computationally ‘tractable’. The
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calculations only needed to store the last forecast error and current data point mak-

ing it computationally more efficient. However, the studies both only considered a

small sample so it is questionable that generalisations can be made.

Despite some researchers successfully producing predictions within a tolerable

error level [65][19], research has concentrated on improving the ARIMA model fur-

ther to allow for abnormal traffic data. Hybrid models, combine the rigidity of the

time series model with a non-parametric model, to improve its ability to cope with

complex non-linear traffic flow data [11][49][19][16] and adding stochastic param-

eters such as accident and weather data [68][69] can improve the accuracy of the

prediction.

Seasonal Auto-Regressive Integrated Moving Averages Model

Traffic data contains seasonality [70], in particular, urban areas tend to display a

weekly pattern which is linked to the working week [16]. Therefore, it is advanta-

geous to use a (SARIMA) model [8] to include the seasonal periodicity embedded in

the time series data as a multiplicative model [15][21]. See Equation 2.5.

Given time series xt, the SARIMA model (p, d, q)(P, D, Q)s is given as

Θp(B)ΘP(Bs)(1 − B)d(1 − B)D
s (Xt) = θq(B)θQ(Bs)et (2.5)

where B is the backshift operator given by BXt = Xt−1, Θp(B) is the auto-regressive

operator of order p, µ is the mean of series data, θq(B) is the moving average operator

of order q, et is the random error (also known as white noise), and p, d, and q are the

non-seasonal order of differencing, P, D and Q is the seasonal order of differencing,

and s is the seasonal factor, the timespan of the repeating seasonal pattern[16].

Lippi, Bertini, and Frasconi [71] used 4 months traffic flow data with 15 minutes

time intervals from 16 traffic loop detectors using a daily seasonal factor, S of 96.

They compared various SARIMA models and hybrids including Kalman filters and

Artificial Neural Networks (ANN) and concluded that a seasonal factor is a key

feature to achieving accurate predictions, although ultimately they concluded that

hybrid models were more effective.

This is due to the SARIMA model suffering from the same issues as the ARIMA

model. It too assumes the traffic input data is homoscedastic. However, despite

the obvious flaws, it is generally accepted that it is the most precise and widely
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used prediction model in its field for the prediction of road traffic flow [72]. Nev-

ertheless, some researchers have argued that taking into account seasonal effects do

not significantly impact the prediction when compared with simpler models [73].

Furthermore, their research has been criticised for using abnormal traffic data [16],

which the ARIMA model is not suitable for. A model that assumes the traffic data is

heteroskedastic is now assessed.

2. ARCH and GARCH Model

Auto-Regressive Conditional Heteroskedasticity (ARCH) [9] model is an improve-

ment upon ARIMA and SARIMA models as it assumes that the input traffic data is

heteroscedastic and therefore, can handle volatile traffic data. It can do this through

the addition of a prediction for each error term by measuring the volatility in a time

series and predicting future volatilities through the addition of weights (manually

weighted). The next data point’s variance is modelled as a function of the previ-

ous independent and dependent variables, a weighted average of the previous data

points’ variances (see Equation 2.6).

Given time series yt the ARCH model is given as

yt|ψt−1 ∼ N(xtβ, ht) (2.6)

variance, ht, is given as

ht = h(ψt−1, α) (2.7)

the error term, εt is given as

εt = c + ut +
r

∑
n=1

αnε2
t−i (2.8)

Where x and α are a vector of unknown parameters, xtβ is the mean of yt which

is assumed to be a linear combination of the lagged independent and dependent

variables, α is the positive efficient of the lagged sample variance, ψ is the dataset, ut

is the white noise, c is a constant, and t is time [9].

To overcome the subjective nature of the weights and simplify the model further

an adaptation of the ARCH model, the Model (GARCH) [21], has been used in road

traffic prediction.
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Generalised Autoregressive Conditional Heteroskedasticity

The model [21] uses a weighted average of the past squared residuals. It has declin-

ing weight, which tends to zero although, never reaching zero (See Equation 2.9). It

is simplistic and easy to predict the conditional variances. Given that the conditional

variance, ht, is given as

ht = c +
q

∑
n=1

αnε2
t−n (2.9)

future predicted values for time series xt are given as

ht =
s

∑
m=1

δmht − m +
r

∑
n=1

αnϵ2
t−n (2.10)

where p is the order of the auto-regressive element of the equation and p ≥ 0, q

is the order of the moving average element of the equation and q ≥ 0, α0 is the

positive coefficient, αi is the positive coefficient of the lagged sample variance ε2
t−i,

and βi is the non-negative coefficient of the lagged conditional variance ht−i [21].

When traffic flow data is suddenly volatile due to an accident or debris on the road

it would seem logical that the next prediction should be volatile too; accidents and

debris can not clear instantaneously. It will take time, thus, a series of data points

for the road issue to be resolved and to return to normal driving conditions. Due

to the weighting, the model can handle volatility by showing a preference for the

most recent variances. Furthermore, due to the weighting of the past data variances

tending to zero, any volatility in the data such as accidents or major events will

not skew future predictions. The model predictions normalise themselves while the

road traffic flow returns to normal driving conditions.

Research using ARCH and GARCH models for road traffic congestion is limited

[74]. However, Gavirangaswamy, Gupta, Gupta, et al. [21] used 3.5 years of traf-

fic flow and volume data at one hour intervals to compare ARIMA, SARIMA, and

ARIMA-GARCH model (see Equation 2.11).

xt =
p

∑
i=1

αixt−i +
q

∑
j=1

djϵt−j + k +
s

∑
m=1

δmht − m +
r

∑
n=1

αnϵ2
t−n (2.11)

Note that the first 2 terms in Equation 2.11 refer to the ARIMA model and the last 2

terms refer to the GARCH model.

Gavirangaswamy, Gupta, Gupta, et al. [21] concluded that the ARIMA-GARCH
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model was the most stable and gave the most accurate results in a one-step pre-

diction. This was due to the GARCH model’s ability to encompass the short and

long-range dependencies of the historical data [21]. This has practical application

for ITS. A model that can make predictions within a reasonably tolerable level on

various road types and can predict normal and abnormal traffic congestion would

be of great interest. However, the data used was one-hour intervals. This does not

appear to be the standard time interval for short-term traffic prediction. Would the

GARCH model produce such stable results if the time intervals were much smaller?

Using larger time intervals has a ‘smoothing’ effect on the data. Thus, making the

data less volatile and easier to work with. Reproducing the experiment using smaller

time intervals would also have more practical benefits for traffic planners. As traffic

data is so volatile, traffic states can rapidly deteriorate. Therefore, Traffic Planners

need to know the future traffic state in the next five to ten minutes to be able to

successfully mitigate future traffic congestion.

All previous models mentioned (ARIMA, SARIMA, ARCH and GARCH) can be

classed as time series and regressive analysis. We will now explore a non-functional

model.

3. Grey Series Forecasting Model

Grey Series Forecasting (GSF) [63] is a non-functional and non-linear model which

does not rely on the classic statistical method of regression analysis and is based on

the principles of Grey System Theory (GST) [75] developed by Deng. GSF models

can be used to analyse latent and complex patterns in traffic networks using only

a small amount of data [76], due to a key aspect of GSF is its assumption that la-

tent patterns can be identified using limited data (at least 4 data points are needed),

dependent on the model’s predictor window size. Thus, negating the need to store

large volumes of data [63]. Instead, the model can dynamically update the parame-

ters of the model with the traffic flow data [7], thus, reducing its reliance on histori-

cal patterns. This characteristic is advantageous in traffic modelling as it enables the

model to predict road traffic congestion under abnormal traffic conditions and does

not allow historic outliers to skew future predictions.

The GSF model works in three steps. See Figure 2.4.
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FIGURE 2.4: A Grey Series forecasting model [63]

Simplistically this can represented as

AGO · GM · IAGO : x(0) → x̂(0)(ξ) (2.12)

where the superscript 0 denotes the original raw data, x̂(0)(ξ) denotes the calculated

prediction value at time point ξ. More formally, given time series x(0)(k) (where

k = 1, 2, ..., n:n ≥ 4) a GM(n, m) (where n is the order of the differential equation

and m is the number of variables) can be defined as

x(1)(k) =
k

∑
i=0

x(0)(i) (2.13)

where superscript 1 indicates the data transformed by the AGO. Therefore, GM(n, 1)

can be defined as

x(0)(k) + az(1)(k) = b (2.14)

where a is the developing coefficient and b is the Grey input. Both a and b are found

by a

b

 = â = (BTB)−1BTy (2.15)

In 2.15, z(1) represents the mean value of the transformed data, c is a coefficient

subject to 0 ≤ c ≤ 1 but typically fixed at 0.5 [63], B is given as

B =


−z(1)

(1)(2) x(1)
(2)(2) x(1)

(3)(2) · · · x(1)
(n)(2)

· · · · · · · · · · · · · · ·

−z(1)
(1)(n) x(1)

(2)(n) x(1)
(3)(n) · · · x(1)

(n)(n)

 (2.16)
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and y is given as

y =


x(0)
(1)(2)

x(0)
(1)(3)

· · ·

x(0)
(1)(n)

 (2.17)

Therefore, the Grey differential equation is defined as

dx(1)(t)
dt

+ ax(1)(t) = b (2.18)

which can be solved for time k using

x̂(1)(k + 1) =
(

x(0)(1)− b
a

)
e−ak(1 − ea) (2.19)

[63]

Guo [7] compared a grey model (GM(1,1)) to a SARIMA(1, 0, 1)(0, 1, 1)96 using traffic

flow data of unspecified amount and concluded that the GM(1,1) model performed

better than the SARIMA for both normal and abnormal traffic conditions. Particu-

larly abnormal traffic where the mean absolute percentage error (MAPE) fell from

37.47% to 22.97% [7]. Guo attributed this to the model’s ability to detect and react

to traffic incidents [7] due to its small prediction window (the limited historical data

used) and its dynamically changing parameters. However, Guo failed to investigate

the model further. Investigating how the GM(1,1) compares with other variations

and adaptations of the GSF would be of interest. Kayacana, Ulutas, and Kaynaka

[42] used GSF and its adaptations on two years of noisy financial data. The adap-

tations used were EFGM (a GM with Fourier Series), TFGM (a GM with triangular

fuzzy-number), GVM (a Grey Verhulst Model), EFGVM (a GVM with Fourier Se-

ries), and TFGVM (a GVM with triangular fuzzy-number). He concluded that the

adaptations performed better, than the standard GM(1,1). Specifically, the GM(1,1)

adapted to use Fourier series was the best model in terms of fitting and forecasting

the data. To the best of our knowledge, road traffic prediction has not been explored

with GM adaptations. Although this is not explicitly stated in Guo research, it may

be due to one of the model’s biggest flaws; its need for faultless data. In real-life

traffic data collection, this is not always possible. This may be a key reason why

research into road traffic prediction using GSF is very limited.
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2.2.2 Traffic Prediction Models Based on Machine Learning

Machine learning models are popular for road traffic prediction due to their ability

to learn without being explicitly programmed and make predictions based on vast

amounts of data. We now explore the most popular machine learning models (see

Table 2.2).

1. K-Nearest Neighbour Based Traffic Prediction Models

K-Nearest Neighbour (KNN) [22][62] is a non-linear, non-parametric, lazy learning

pattern recognition model used predominantly for classification as well as regres-

sion. It does not attempt to learn the complex latent relationships between the vari-

ables, instead, it predicts future traffic volumes by working on the assumption that

observations that are near each other in the feature space are from the same class.

Thus, classifying the current traffic state by the number of k neighbours and their

weightings. The KNN prediction model works in four main steps. Firstly, historical

data which is representative of the road network and large enough to deal with vari-

ous scenarios is located. Secondly, a suitable distance matrix is determined. Thirdly,

a suitable value of k is determined and the historical data is searched for k nearest

neighbours using the distance function. Lastly, a prediction algorithm (weighting) is

determined and based on the k nearest neighbours a prediction is made for the next

time horizon [77]. See Figure 2.5.

An advantage of the model is it does not rely on periodicity in historical data,

therefore, the model can adapt to dynamic changes [16][62]. It can handle and pre-

dict volatile traffic flow such as road traffic accidents or debris on the road. Fur-

thermore, the model’s simplicity allows it to be a computationally efficient model.

However, the model’s accuracy is determined by how closely the training data rep-

resents the road’s volatility. The model is unable to predict previously unseen traffic

congestion.

The three parameters of the model that can be changed to improve prediction

are the distance function, the choice of ‘k’, and the prediction function. The first

KNN model used in road traffic prediction was Davis and Nihan [62] who exper-

imented with the choice of k. They used a small highway dataset to compare the

three different KNN models (using different values of k) against an ARIMA model.

It was concluded that the model was comparable but not significantly better than
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FIGURE 2.5: A K-Nearest Neighbours model

the ARIMA model. However, Davis and Nihan determined this was most probably

due to the small amount of historical data used for the KNN search. Many other

researchers have had more success implementing a KNN model for road traffic pre-

diction [77][50][78].

More recently, one parameter research has focused on is the distance function. It

can be calculated in many ways, for example, the Chebychev, Hamming, or Spear-

man distance function. The most common are shown in Equations 2.20 to 2.22.
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Euclidean √√√√ k

∑
i=1

(xt − yt)2 (2.20)

Cityblock/Manhattan
k

∑
i=1

|xt − yt| (2.21)

Minikowski (
k

∑
i=1

(|xt − yt|)q

) 1
q

(2.22)

The most suitable distance function will depend on the type of data used in the

model. For example, Euclidean Distance (see Equation 2.20) is used when all vari-

ables are the same type (all measurements in meters etc.). Whereas, for traffic data

which includes different types of variables (speed, density, precipitation, etc.) the

Manhattan Distance, also known as City Block Distance, is considered the most suit-

able (see Equation 2.21). Nevertheless, many researchers have sought to improve

upon the standard distance function.

Cai, Wang, Lu, et al. [25] used a small dataset of 4 weeks (weekdays only) of

speed and flow data (15 days of training and 5 days of testing) with a time horizon

of 5 minutes to develop a spatiotemporal correlation KNN model. In a traditional

time series KNN model, the data is marked by time. Alternatively, Cai, Wang, Lu, et

al. also used the physical distance of the road segments in a spatiotemporal matrix

in the calculation of the distance function which used a Euclidean distance function.

The results showed that the addition of a spatial parameter improved the accuracy of

the prediction not only for a single timestep but for multi-timesteps. However, tak-

ing the data into a spatiotemporal matrix increases its dimension and thus, increases

its computational time and complexity. The model also used the Euclidean distance

function stating that this was traditionally the most used. This may be true, due to

most studies using a single input parameter such as traffic flow or volume, never-

theless, for traffic data which contains different types of variables (speed, distance,

flow, etc) Cityblock/Manhattan Distance (Equation 2.21) would be most suitable.

The most commonly used weights in the KNN model are the inverse distance

(Equation 3.1) and the attributes weights, though, many researchers have sort to

improve upon these simplistic methods [27][79]. Sun, Cheng, Goswami, et al. [6]

proposed a model that weighted the k nearest neighbours dynamically based on
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the traffic flow rate known as the weighted parameter tuples (WPT). The research

used one year of highway data from Kunshi, Bejing (split 80% for training and 20%

for testing) at five minute time horizons. The study concluded that dynamically

weighted k values outperformed statically weighted k values. However, the model

was never compared to other machine learning models such as Artificial Neural Net-

works. In conclusion, KNN is a well established non-parametric prediction model

that requires no fitting to the road network and can cope with and predict recurrent

and non-recurrent traffic congestion.

2. Kalman Filter Model Based Traffic Prediction Models

(KF) [64] was first developed by Kalman [64]. It is a stochastic parametric recur-

sive model used for the prediction of linear dynamic data that is discrete in its time

domain and contains uncertain parameters. However, the Extended Kalman Filter

(EKF) is a common adaptation for non-linear data. Therefore, the model can cope

with and predict volatile (unseen) traffic data [51] such as road traffic accidents and

planned public events.

Kalman Gain

Kt =
P′

t HT

HP′
t HT + R t

(2.23)

Estimation Update

X̂t = X̄t + Kt(yt − HtX̄t) (2.24)

Covariance Update

Pt = I − KtHtPt (2.25)

Prediction

X̂t+1 = AX̂t (2.26)

Pt+1 = APt AT + Q (2.27)

It is modelled on Markov chains and linear operators. The model makes predic-

tions using the estimated ‘state’. It has 2 main steps. First, is the prediction step; in

this step, the time is updated and the most recent state and error covariance (from

the previous timestep) are projected forward to produce a predicted (priori) estimate

for the current state. Next, is the update step; the measurements are updated and
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FIGURE 2.6: A Kalman model

the estimated predicted state from step one is corrected using the newly observed

data. This continues in a cycle. See Figure 2.6.

Therefore, the KF successively estimates the variables and their uncertainties. At

each new data point, the current variables and their uncertainties (random noise er-

rors) are updated using the newly observed data and weighted averages to estimate

the future variables. This is achieved through two equations, the state equation and

the observation equation.

Given time series xt, the state equation can be defined as

xt = Ft−1xt−1 + Btut + wt−1 (2.28)

F is transition/motion matrix which determines the transition from state t − 1 to

state t, B is a control input matrix for the parameters in vector u, u is a vector that
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contains any control inputs, and w is white noise process which is assumed to be

Gaussian.

Given observations from the road traffic sensor site (RTSS), yt, the observation

equation can be given as

yt = HtXt + Nt (2.29)

where H is a matrix that maps the input state into the process state and N is the

white noise measurement which is assumed to be Gaussian.

KF was first used in road traffic prediction by Gazis and Knapp [80]. Traffic

speed and flow measurements were used at two RTSSs (an entrance and exit point)

and it was found that the KF was able to predict the road traffic with great accuracy

[81]. However, no explicit details on the traffic data are given and no comparisons

to other models were made.

More recently, Xu, Wang, Jia, et al. [14] used four days of speed and volume mea-

surement data three days for training and one day for testing) with a time horizon

of two minutes from four different road segments in Beijing to compare ARIMA,

KF, particle filter and a hybrid of the KF and ARIMA model. It concluded that the

hybrid of the KF and ARIMA model was the most successful model for predicting

the traffic state. However, the study failed to explore spatial-temporal correlations.

These correlations have been shown to improve accuracy in other studies. Also, one

criticism of the study that Xu, Wang, Jia, et al. acknowledge is the lack of updating

in the optimal parameters. The optimal parameters are determined by the historical

data, yet the current optimal parameters may be different to the historical ones.

Mir and Filali [41] improved the optimal parameters through the estimation of

the process noise. One month of speed measurement data with five minute time

horizon was used to develop a scalar adaptive KF model. The model attempts to

minimise the difference between the actual speed measurement and its estimation.

This is done by dynamically adjusting the process noise (Q in Equation 2.27) based

on the current speed. The work compared the adaptive process noise model to a

model with no process noise estimation, and KF models with and without measure-

ment noise (N in Equation 2.29). It was concluded that due to ‘on the spot’ speed

does not fluctuate greatly, the model was able to make reasonable predictions. How-

ever, the model was only tested on normal data. No abnormal traffic conditions such
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as sudden severe congestion.

In conclusion, the KF model has been proven to provide successful road traffic

predictions [82]. It is computationally efficient due to only needing the previous

data point to calculate the current estimate, therefore, it is suitable for calculations

in real-time. However, the model assumes that all noise is Gaussian. Non-linear

models may be more suitable.

3. Support Vector Regression Based Traffic Prediction Models

SVM [26] is a well known non-parametric supervised learning classifier used to pre-

dict discrete categorical labels. A well known adaptation of this model is Support

Vector Regression (SVR) [23], developed by Scholkopf, Simard, Smola, et al. [23].

Through the inclusion of an extra slack variable for each training point, the model

can predict continuous ordered variables.

The SVR model works in two steps, a classifier and a learning step. The clas-

sifier step works by taking the training data ((x1, y1), (x2, y2), ..., (xn, yn)), which is

contained within the input space (X), and mapping it through a mapping function

(Φ) into a higher dimensional feature space (F). This is done so that a non-linear

function ( f (x)) can then be found (see Equation 2.30) with ‘ϵ’ precision. Therefore,

all the training data is no more than ϵ deviations away from the target training data.

This is done because it is assumed that a high dimensional linear regression is the

equivalent to a low dimension non-linear regression [83]. More formally, this can be

denoted as

f (x) = ⟨w + Φx⟩+ b (2.30)

where ⟨w+ x⟩ denotes the dot product of X, w is a weight vector in the feature space

(F), and b is the bias of the regression function.

Next is the learning step. In order to produce an accurate prediction, the optimal

values for b and w must be found. For w, a small value that produces an error less

than Φ deviations away from the actual training data is needed. This can be found

using

1
2
∥ w ∥2 subject to

yi − ⟨w, xi⟩ − b ≥ ϵ

⟨w, xi⟩+ b − yi ≥ ϵ
(2.31)

However, this equation produces a problem for use with road traffic prediction.
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Due to traffic flow containing non-linear and complex characteristics [50] the con-

straints in Equation 2.31 will make the optimisation of w not feasible. Therefore,

slack variables (ζi and ζ∗i ) to create a ‘soft margin’ for the ϵ deviations was devel-

oped so the model is able to handle non-linear data such as traffic flow data. Thus,

the new value of w can be found as

1
2
∥ w ∥2 +C

n

∑
i=1

(ζi + ζ∗i ) subject to

yi − ⟨w, xi⟩ − b ≥ ϵ + ζi

⟨w, xi⟩+ b − yi ≥ ϵ + ζ∗i

ζi, ζ∗i ≥ 0

(2.32)

where C is a constant subject to C > 0 that determines the number of deviations

larger than ϵ will be tolerated, and n is the number of data points.

Another adjustment of the SVR that affects road traffic congestion prediction is

the replacement of the dot product (⟨w, xi⟩) in Equation 2.30. Instead of the dot

product, a kernel function can be used. This negates the need for explicitly using the

mapping function (Φ) to map the dot product into the higher dimensional feature

space. There are various kernel functions used in SVR. The most common kernel

functions are

Linear

k(x, y) = xy (2.33)

Polynomial

k(x, y) = xyt (2.34)

Radial Basis Function

k(x, y) = exp
(
− ∥ x − y ∥2

2σ2

)
(2.35)

For road traffic congestion the most widely used kernel function is the RBF. This

is due to its highly effective mapping of non-linear data [84] as it is a ‘local’ kernel

function. Thus, it has a strong learning ability but a weak generalisation. There-

fore, extreme historical variances in road traffic data will not negatively affect future

predictions.

Hu, Yan, Liu, et al. [28] used three months of motorway data with a time horizon

of 15 minutes to develop a Particle Swarm Optimisation (PSO) and SVR hybrid. The
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research focused on replacing the standard equation 2.32, which calculates the opti-

mal parameters for the SVR, with a PSO. This is done to reduce the time taken in the

learning step to aid real-time prediction. The results were compared to various other

ML algorithms such as KNN and ANN. It was found that the results were compa-

rable but not a significant improvement. However, the study failed to compare the

computation time of the model against other ML models, which appeared to be the

premise of the research. Only times for the PSO-SVR variations were compared.

The study also failed to take into account any spatial parameters. It only considered

traffic speed, flow and journey time.

Ling, Feng, Chen, et al. [29] improved upon the Hu, Yan, Liu, et al.’s work further

by using a PSO that not only took into account historical data but also real-time data

- an adaptive particle swarm optimisation (APSO). It also sought to improve the

mapping function. As road traffic data is both random and non-linear [50], a ‘multi-

kernel’ approach was developed. A hybrid of an RBF and a polynomial kernel was

used. This was deemed more suitable for very dynamic road traffic data as it can

utilise the Gaussian kernel’s ability for local learning and the polynomial kernel’s

ability for global generalization. The results for the RBF, polynomial and hybrid

kernel were MAPEs of 15.76, 16.52, and 10.57 respectively. The study was tested on

both urban and freeway roads. However, although the study did use volatile rush

hour data, no abnormal non-recurrent traffic congestion data was used. In theory,

the use of a polynomial kernel should negatively affect the model’s ability under

these conditions. In conclusion, even though SVR is at its core a linear classifier it

is still able to cope with and predict non-linear data [27], although its choice of the

kernel is key.

4. Artificial Neural Networks Based Traffic Prediction Models

(ANN) [24] are non-parametric flexible prediction models that can model the com-

plex latent non-linear relationships between the input data and the output data [20].

Therefore, ANNs have been applied to road traffic prediction due to their ability to

handle and predict non-linear dynamic data [85]. First proposed by McCulloch and

Pitts [24], the essence of the ANN is quite simplistic. It is made up of three basic

layers, an input layer, a hidden layer, and an output layer. See Figure 2.7.

An ANN takes the training data (x1, x2, ..., xn) and inputs it into the top layer,

the input nodes (nodes are also known as neurons). The input nodes are connected
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FIGURE 2.7: A three-layer feed-forward neural network [86]

through edges to the hidden layer nodes. Each incoming edge has a ‘weight’ (w1, w2, ..., wn)

(also known as biases) associated to it. The incoming data is multiplied by the weight

and if the sum of all the weighted incoming data (as shown in Equation 2.36) meets

a set threshold then the activation function is applied to the sum (Z) as shown in

Equation 2.37 and the data is passed on through the edges to the next layer. At

first, the weights and thresholds are set at random and they are continuously up-

dated until the transformed data reaches the output layer resembling the output of

the training data. An ANN with multiple hidden layers is known as deep learning.

Once the network has been trained with the training data the test data is then passed

through. This is known as a Feed Forward Neural Network (FFNN) as the data only

moves in one direction. However, an ANN that contains some form of learning

rule or rules (a learning assignment) and the data can be passed back to modify the

weights and thresholds is known as a Back Propagation Neural Network (BPNN)

1990ProbabilisticNetworks.

Transfer Function (Sum of the Node)

Z =
n

∑
i=1

wixi (2.36)

Activation Function

Y = φ(Z) (2.37)

Although BPNN can produce good prediction results, the results can be improved

by extending the basic BPNN through different training procedures, different in-

ternal structures or mathematics, preprocessing the input data or including spatial
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and/or temporal patterns in the model [51][87].

More, Mugal, Rajgure, et al. [32] developed a model that improved the internal

structure of standard ANN by using a Jordan Sequential Neural Network (JSNN).

The optimal structure of an ANN is based on variances present in the historical data.

However, the variances present in the historical data may vary from the variances

in the test data, after all, traffic data is complex and stochastic [68], leading to inac-

curacies in the prediction. To overcome this a JSNN adds ‘context’ to the prediction

by allowing it to ‘remember’ the most recent past data (partially recurrent network).

As shown in Figure 2.8, the hidden layer receives input from the current timestep (t)

and context from the context layer from the previous timestep (t − 1).

 

FIGURE 2.8: A Jordan sequential neural network [32]

The JSNN worked with "almost 98% accuracy for most of the datasets" [32].

However, the study failed to provide any standard measures of accuracy, nor was

the model compared to any other ANN models.

Goves, North, Johnston, et al. [57] took a different approach to improving the

ANN. The majority of research considers only one geographical site or RTSS [57],

whereas Goves, North, Johnston, et al. developed an ANN that made predictions

for a network of RTSSs. This was done by improving the preprocessing of the in-

put data. Training data of 102 traffic detectors spread over 20km of roads on the

M60, M62 and M602 near Manchester, the UK with a time horizon of 15 minutes
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was used. The data was compressed in three ways. Firstly, the model only consid-

ered the density parameter ( volume
speed ), thus, making the speed and volume parameters

redundant. Secondly, the data across the three lanes of a road was aggregated into

one average value. Lastly, the dimensions of the data were then reduced through

the use of an auto-encoder. Once the data had been compressed it was standardised

(through zero-centring the data and applying a Gaussian transformation) and put

through a BPNN with both one, two, and three layers. The output (predictions) was

then decompressed using the auto-encoder and compared for each BPNN (one, two,

and three layers). The results showed that there is a trade-off between accuracy and

reducing the dimensions of the data. Nevertheless, the predictions obtained were

within two vehicles/km/lane 90% of the time. However, the study only predicts ve-

hicle density. This is a helpful indicator of the road state but traffic planners would

benefit from also knowing the speed and volume. It will not be known if the density

is made up of a few cars moving very slowly or lots of cars moving very fast. Also,

aggregating the lanes presents a problem. Although an issue can be identified, it will

not be known if it is spread across all lanes or isolated to one. Further investigations

into any issues that arise would be needed.

2.2.3 Process-Based Traffic Prediction Models

The models we describe in Section 2.2.1 and 2.2.2 are all data-driven models. They

are reliant on current and/or historical data to make predictions based on the anal-

ysis of previous trends and categorisations. Another class of models are process-

based models (also known as model-driven models). Process-based models build

a computational representation of the road network and are used to simulate road

traffic systems. Unlike data-driven models, they take into account the road layout

and traffic control measures such as ramp metering (traffic lights), traffic rerouting

and lane closures. Therefore, process-based models can adapt to possible road lay-

out changes and are not limited by the number of RTSSs, although, some models do

use historical traffic data for calibration (introduce local bias) and bring predictions

to a tolerable error level [5].

There are three main types of process-based road traffic prediction models; macro-

scopic, mesoscopic, and microscopic [88] (see Figure 2.9). Macroscopic models can

model large areas and traffic flow. However, they fail to do the detailed traffic plan-

ning needed when issues (such as lane blockages) arise. In contrast, microscopic
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models are much smaller in scale and model individual drivers’ behaviour and de-

cision making. Thus, they can do detailed traffic planning but are unable to model

large-scale route choices. Therefore, the final process-based model is the mesoscopic

model. It is a hybrid of a microscopic and a macroscopic model. It attempts to

encompass both the large-scale macrosimulations and the small-scale microsimula-

tions [88].

 

FIGURE 2.9: A depiction of the three types of process-based models;
1) Macro, 2) Meso, and 3) Micro [88]

2.3 Summary

Based on the literature review a summary table of the key characteristics, recent

studies, advantages and disadvantages were produced. This can be found in Table

5.1. All models have their strengths and weaknesses, therefore, despite extensive

research, several limitations and methodological gaps have been identified.

Most existing models are inaccurate. This is due to focusing too closely on one

single input parameter or geographical location. For example, when considering

weather as an input parameter this is done in only a single geographical location

and with a single timestep. Thus, most existing research predominantly focuses on

single timestep, single geographical location, and single data source or input for

ease and speed of computation. To address these methodological gaps more work

needs to be done exploring multiple input parameters and/or data sources as well

as geographical locations.
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FIGURE 2.10: Questions that should be considered when choosing an
approach for road traffic prediction [5]

Furthermore, there is little work done on complex road structures such as road

networks and/or complex road structures such as urbanised arterial roads using ab-

normal traffic data. Most research is done on a simple single stretch of road or, as

stated above, a single geographical location using precleaned idealistic data. This

may be due to predicting road traffic congestion on such roads using such data is

more complex than on other more simplistic road layouts. Their interconnected na-

ture and composition of vehicles can vary from geographical area to time of day.

Therefore, the ratio of cars to trucks can fluctuate with both vehicle classes contain-

ing their latent seasonal patterns. Research into more complex road structures using

different vehicle classes as a dynamic input parameter could improve prediction ac-

curacy. However, research on such roads and using truck flow is limited (see Figure

2.1). Therefore, this research will focus on the development of a single-step, multi-

source, short-term, traffic prediction model for complex road structures.

Additionally, one aim of the literature review was to determine which model
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would be most suited for the prediction of road traffic flow. When choosing a short-

term prediction model the motivation and context of the problem must be consid-

ered see Figure 2.10 for points that should be considered). To this end, it highlighted

some critical points. Firstly, process-driven models are, in general, not suitable for

short-term traffic prediction, therefore, they will not be researched further. For statis-

tical and machine learning models the literature review highlighted that, in general,

parametric models (such as ARIMA and KF) perform faster, require less data, and

can model incidents previously unseen (not in historical data). However, paramet-

ric models make assumptions about the distribution of the data and are more com-

monly used for discrete data, not continuous. Therefore, they are not suitable for

heterogeneous road traffic flow. Non-parametric models (such as ANN and KNN)

on the other hand, have their structure and parameters derived from historical data.

Consequently, they appear less robust than their counterparts and more data is re-

quired. However, they make no assumptions about the data distribution and com-

plex latent non-linear patterns contained within traffic data can be modelled effi-

ciently. Therefore, they are suitable for the prediction of road traffic flow [89] [89],

thus, non-linear models should also be considered.

Past research does not agree which machine learning model is better for road traf-

fic prediction. Some researchers state that there is no substantial theoretical reason

or interest to investigate high-level non-linear mapping approaches such as ANN.

This is due to the theoretical foundation of models such as the SARIMA model being

adequate for prediction. Nevertheless, some researchers have argued that the use of

statistical models is flawed due to their tendency to converge to the average of the

historical data. Thus, the heuristic method employed by ANN is better. Therefore,

due to the lack of consensus on what model is superior a selection of suitable models

will be tested and compared to decide which model will be researched further.
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Model Description Key Papers Advantages Disadvantages

ARIMA/SARIMA

A stochastic statistical parmetric model that 

assumes the input data is homoscedastic.  Able to 

determine linear and non-linear relationships and 

seasonal variations.

(32), (33),(34), (35), (36), (37), (43), and 

(44)

Simplistic model and therefore computationally 

efficent. Is able to determine seasonal factors.

Assumes data is homoscedastic, thus  not handle 

volitle data.  Outliers can also skew future 

predictions. Reliant on historical data. The model 

needs to be 'fitted' to the road network and thus is 

not transferable.

ARCH/GARCH

A stochastic statistical non-parametric model that 

assumes the tha input data is hetroscedastic. Able to 

determine linear and non-linear relationships.

(41) (42)

Simplistic model and therefore computationally 

efficent. It assumes the data is hetroscedastic and 

thus, is robust and can handle volitile data.

Limited research on the model in traffic congestion 

prediction.  The model must be fitted to the road 

network and thus, is not transferable.

GFS
A non-linear, non-function model which is able to 

dynamically update parameters.
(2)

Able to handle volitile traffic inout data.  No fitting 

to the network required.

Limited research on the model in traffic congestion 

prediction. Due to the small 'prediction window' it 

requires accuate and complete traffic input data.

KNN

A non-linear, non-parametric lazy learning model 

that does not attempt understand the relationship 

between the parameters.

(11), (13), (22), (29), (47) and  (48) 

Simplistic model that requires no fitting to the road 

network so can be transferred. Robust, thus can 

handle volitile data.

Requires large historical dataset to search for 

neighbours.

KF

A non-linear or linear parametric recursive data 

processing model that continously updates its 

parameters. It assumes that the data is Gaussian 

distributed.

 (14), (49), and (51)

Robust, thus, can handle volitile data. Only requires 

the previous data point for calauctions. The model 

allows for multivariable input.

It assumes the data is Gaussian distributed.

SVR
A non-parametric supervised learning model that 

maps input data into a dimensional feature space. 
(55) and (16)

Able to cope with and predict abnormal traffic 

conditions. Simplistic model.
Large historical dataset needed to train the model.

NN

A non-parmetric non-linear flexible multivariate 

model that’s acts as a 'blackbox' to learn complex 

non-linear relationships between input and ouput 

data.

(6) and (17)

Robust, thus, able to cope with and predict 

abnormal traffic conditions. High level of prediction 

accuracy. Is a multivariate model.

The blackbox does show the relationship between 

the input and the output data. It requires extensive 

training.

TABLE 2.3: A comparison of different statistical and machine learning models for road traffic prediction
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Chapter 3

A Machine Learning Based

Approach for the Prediction of

Road Traffic Flow

This chapter is a modified version of ’A Machine Learning Based Approach for the Prediction

of Road Traffic Flow’ published in the 16th International Conference on Smart City, 2018,

IEEE, and has been reproduced here with the permission of the copyright holder.

Chapter Summary

Based on the Literature Review in Section 2.3, in this chapter we have applied three

different statistical/machine learning models, detailed in Section 3.2, to a real dataset

for the prediction of road traffic flow on an urbanised arterial road.

Section 3.3.1 presents the comparative analysis of each model, examining their

prediction accuracy and time horizon sensitivity. In Section 3.3.2 input feature set-

tings (various classes of vehicles such as motorcycles, cars, vans, rigid goods lorries,

articulated heavy goods vehicles (HGVs), and buses) were investigated to determine

how heterogeneous traffic flow can affect the prediction results.

3.1 Introduction

An urbanised arterial road is a major high capacity and large traffic volume road lo-

cated in a built-up area. Urbanised arterial roads have limited entry and exit points

and are used as thoroughfares for travelling substantial distances between major
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geographical locations, such as motorways or city centres. Therefore, they are of-

ten used for commuting and transportation of goods. The importance of keeping

these roads free of congestion is imperative, as severe congestion can result in traffic

delays extending into various other traffic networks. Due to a high volume of het-

erogeneous traffic, arterial roads tend to be consistently busy and contain different

seasonality patterns across different vehicle classes when compared with motorways

or city centres. Additionally, due to operating at close to capacity levels, their traf-

fic flow tends to be more volatile. Therefore, research into traffic prediction models

for this class of road is vital. One key component of arterial roads which could im-

prove the prediction is the latent patterns embedded within the different vehicle

classes. However, there is a lack of research on arterial roads, particularly using ve-

hicle classes as a variable. Machine learning models are a popular option for traffic

prediction [44], which are capable of learning complex and latent patterns embed-

ded in volatile traffic data containing both normal and abnormal traffic congestion.

The contributions of this chapter include:

1. we have examined and compared the traffic flow prediction accuracy and time

horizon sensitivity of existing machine learning models for urbanised arterial

roads, based on a real dataset; and

2. we have investigated different input parameter settings (different classes of

vehicles) to understand how heterogeneous traffic flow affects the machine

learning models’ prediction accuracy for urbanised arterial road

3.2 Methodology

In this section, we are mainly focusing on two goals: 1) comparing the performance

of existing machine learning models to determine which is superior to use for ur-

banised arterial roads between Manchester and Liverpool, and 2) determining if the

use of vehicle classes as separate input parameters can improve the prediction of

road traffic flow on urbanised arterial roads with heterogeneous traffic flow.

To achieve the first goal, two experiments were carried out. Firstly, we have ap-

plied three machine learning models to a real dataset and compared the accuracy of

their predictions. Furthermore, the second experiment compared the models’ sen-

sitivity to time horizon changes. As previously stated in Section 2.1.1, there is no
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standard time horizon for short-term road traffic prediction. Therefore, in the sec-

ond experiment, each model was run with a time horizon of five, ten, fifteen, and

twenty minutes. Their results were analysed and compared to determine how the

magnitude of the time horizon affected the prediction accuracy.

For the second goal, to the best of our knowledge, no research has investigated

the effect of all vehicle classes on the accuracy of road traffic prediction. Therefore,

two experiments were carried out. Firstly, an experiment was performed to compare

the prediction of traffic flow using only the total vehicles and the individual vehicle

class totals. In addition, a second experiment was conducted comparing the predic-

tion accuracy using each vehicle class to determine which class or classes were most

influential for prediction. The details of all experiments conducted using Matlab are

detailed below.

The three machine learning models chosen for experimentation were KNN [22],

SVR [23], and ANN [24]. These models make no assumptions about the distribution

of the data (non-parametric), are suitable for heterogeneous data, and can cope with

volatile data. Therefore, they are suitable for the prediction of road traffic flow [89].

3.2.1 KNN Model

The prediction function used was the inverse distance weighting (IDW) function

(Equation 3.1). This function gives priority to closer neighbours than those further

away, thus, making it more reliable for predicting extreme traffic conditions (if these

conditions have been seen before).

The IDW can be calculated as

x̂ =
∑k

i=1 xi,t+hwi

∑k
i=1 wi

(3.1)

Where x̂ is the predicted value, xi is the neighbour from the training set, t is the time

parameter, h is the time horizon, and w is defined as 1
di

, xi is the neighbour, and d is

the distance function.

During the experiments, the distance function used was the Euclidean distance

function (Equation 2.20). This was due to all input parameters being of the same type

(number of vehicles). The values of k used were between 30 and 90 in increments of 5

and determined through brute force by a grid search to find the optimal value. The

different architecture structures were trained using two months of data and tested
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using one month of data (hold-out cross-validation), as described in Section 3.2.4.

Each variation of the model architecture was trained and the empirical error, based

on the performance metric described in Section 3.2.5, was taken. The architecture

that produced the lowest empirical error was used for comparison.

3.2.2 SVR Model

In the SVR model the dot product in Equation 2.30 was replaced with the RBF kernel

function (Equation 2.35), the most commonly used function for road traffic predic-

tions due to its powerful non-linear learning ability [90] [84]. It has strong learning

ability but weak generalisation, allowing the model to better handle volatile traf-

fic data, as extreme historical variances will not negatively affect future predictions.

Additionally, Cherkassky et al. [91] investigated the selection of hyperparameters

for SVR models. They concluded that the parameter selection of c, which balances

the model’s complexity and estimation error, and ϵ, which is used to fit the training

data, can be derived directly from the training data. Therefore, the values of c and ϵ

used in the experiments can be found using Equations 3.2 and 3.3 [91].

c = max(|ŷ + 3σy|, |ŷ − 3σy|) (3.2)

ϵ ∈ [0, 0.1] (3.3)

The value of ϵ was determined through brute force by a grid search to find the

optimal value. The different architecture structures were trained using two months

of data and tested using one month of data (hold-out cross-validation), as described

in Section 3.2.4. Each variation of the model architecture was trained and the em-

pirical error, based on the performance metric described in Section 3.2.5, was taken.

The architecture that produced the lowest empirical error was used for comparison.

3.2.3 ANN Model

The ANN model [24] used in the experiment was an open loop time series non-linear

autoregressive network with exogenous inputs (NARX). NARX is a popular ANN

model used in time series prediction. It can predict traffic flows efficiently as it bases

its predictions on historical data, feedback (recurrent), and exogenous input (current

and historical data). Therefore, it can ’remember’ the recent past and handle volatile
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data [32]. The transfer function used was a Sigmoid Transfer Function (Equation

3.4). This is a standard transfer function used for time series data commonly used

for road traffic flow prediction.

S(x) =
ex

ex + 1
(3.4)

All weights and biases were randomly initialised and a dropout rate of 50%

was used based on research by Zhao, Chen, Wu, et al. [33] and Srivastava, Hin-

ton, Krizhevsky, et al. [92]. All other hyperparameters, such as the number of layers

and nodes, were determined through brute force by a grid search to find the opti-

mal design. The different architecture structures were trained using two months of

data and tested using one month of data (hold-out cross-validation), as described

in Section 3.2.4. Furthermore, the Adamax optimiser [93] was used to optimise the

model’s learning rate based on the data’s characteristics (a separate step size, known

as the learning rate, for each parameter). Each variation of the model architecture

was trained and tested 10 times and an average empirical error, based on the perfor-

mance metric described in Section 3.2.5, was taken. The architecture that produced

the lowest average empirical error was used for comparison.

3.2.4 Dataset Description

The data used for the experiments was a real-life dataset of an urbanised arterial

road between Manchester and Liverpool, UK. The dataset contained three months of

traffic flow data collected between 1st January to 31st March 2016, broken down into

vehicle classes, as shown in Table 3.1, and contains a time horizon of five minutes

(26,195 data points). Therefore, the input parameter used in the experiments were

the different vehicle classes. This data was used due to being a typical urbanised

arterial road. It has a heterogeneous traffic flow, containing high proportion of trucks

and HGVs typically found on these road types. Furthermore, the data contains both

normal and abnormal traffic data.

For experimental purposes hold-out cross-validation was used to split the data.

Two months of data (18,337 data points) were used to train the models and the

remaining one month (7,858 data points) was used for testing purposes.
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Class No. Vehicle Type
1 Motorcycles
2 Car or Van
3 Car or Van with Trailer
4 Rigid Goods
5 Articulated HGV
6 Bus or Coach

TABLE 3.1: The different categories of vehicle types

3.2.5 Performance Metrics

To compare each model the standard performance metric RMSE, as shown in Equa-

tion 2.3, was used to measure the average deviation between the predicted value

and the actual value.

3.3 Experimental Evaluation

3.3.1 Comparison of Existing Machine Learning Models

To achieve goal one the following two experiments were performed:

• Experiment One: The machine learning models were compared on their em-

pirical prediction accuracy, using the same real dataset, to determine which

model performed the best.

• Experiment Two: The machine learning models were compared on their em-

pirical accuracy, using various time horizons (five to twenty minutes in five-

minute intervals) and the same real dataset, to determine the models’ time

horizon sensitivity.
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Experiment One

Table 3.2 shows the set up parameters used during each run of Experiment One.

It should be noted that the value of k in the KNN model was 65, the value that

produced the lowest empirical root-squared mean error (RSME), in all experiments.

TABLE 3.2: The parameter set up for experiment one

Parameter Details
Time Horizon 5 Minutes
Training Data Size 2 Months
Test Data Size 1 Month
Input Parameters All Vehicle Class Totals
Parameter Changed Model Only

Experiment One Results

In Figures 3.1, 3.3, and 3.5, the red lines represent the predicted and blue lines the

actual traffic flow values. The y axis is total number of vehicles, which is plotted

against the x axis, time. Experiment One’s results (Table 3.3) show that the most suc-

cessful traffic prediction model for the urbanised arterial road between Manchester

and Liverpool was the ANN model, with a RMSE of 16.56% compared to the KNN

and SVR which had a RMSE of 19.35% and 19.79% respectively.

TABLE 3.3: The RMSE of the KNN, SVR, and ANN model

Model RMSE (%)
KNN 19.35
SVR 19.79

ANN 16.56

Experiment Two

Table 3.4 shows the set up parameters used during each run of Experiment Two.

Experiment Two Results

Table 3.5 and Fig 3.7 presents the RMSE (in percentage form) for all models and time

horizons. The results show that the most successful time horizon was the shortest,

five minutes. Although not explicitly stated in publications, this may be the ratio-

nale behind why five minutes is the most commonly used. ANN, again, was the
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FIGURE 3.1: The KNN model’s actual and predicted road traffic flow
plotted against time

TABLE 3.4: Parameter set up for experiment two

Parameter Details
Time Horizon 5 to 20 Minutes
Training Data Size 2 Months
Test Data Size 1 Month
Input Parameters All Vehicle Class Totals
Parameter Changed Model & Time Horizon

most successful prediction, however, it was also the most sensitive to time-horizon

changes, with the RMSE increasing by 4.64%. KNN and SVR in comparison appear

to fluctuate with the general trend, based on the limited data, shows that the predic-

tion accuracy progressively declines.
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FIGURE 3.2: The KNN model’s actual vs predicted road traffic flow

TABLE 3.5: The time horizon sensitivity of the KNN, SVR, and ANN
models measured by their RMSE

Model 5 Minutes 10 Minutes 15 Minutes 20 Minutes
KNN 19.35 18.68 19.60 19.10
SVR 19.79 20.37 21.50 21.42

ANN 16.56 17.25 18.54 21.20
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FIGURE 3.3: The SVR model’s actual and predicted traffic flow plot-
ted against time

 

FIGURE 3.4: The SVR model’s actual vs predicted road traffic flow
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FIGURE 3.5: ANN model’s actual and predicted traffic flow plotted
against time

 

FIGURE 3.6: The ANN model’s actual vs predicted road traffic flow
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FIGURE 3.7: The time horizon sensitivity of the KNN, SVR, and ANN
model shown by their RSME vs the time horizon

3.3.2 The Effect of Heterogeneous Traffic Flow on Prediction Accuracy

To achieve goal two, determine if the use of vehicle classes as separated input pa-

rameters can improve the prediction of road traffic flow on urbanised arterial roads

between Manchester and Liverpool, using real-life data, the following two experi-

ments were performed:

• Experiment Three: The machine learning models were compared using the

same real dataset while changing the input parameters from total traffic flow

to all individual vehicle classes’ total traffic flow. This was done to determine

if the latent patterns of each vehicle class would affect the prediction accuracy.

• Experiment Four: The machine learning models were compared using the

same real dataset while using one vehicle class total as an input parameter.

This was done to determine which vehicle classes were most influential in pre-

dicting traffic flow.

Experiment Three

Table 3.6 shows the set up parameters used during each run of experiment three.

Each model was tested and compared using a different input parameters. The input

parameters used were the total vehicle traffic flow (a singular input parameter) or

the individual vehicles class totals (six input parameters).
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TABLE 3.6: The parameter set up for experiment three

Parameter Details
Time Horizon 5 Minutes
Training Data Size 2 Months
Test Data Size 1 Month
Input Parameters All Vehicle Class and Total Traffic Flow
Parameter Changed Model & Vehicle Classes Total

Experiment Three Results

Table 3.7 shows that, for all models, using the individual vehicle class totals as an in-

put parameter improves traffic flow prediction when compared to predictions based

only on total traffic flow. Therefore, taking into consideration the latent patterns for

each vehicle class does improve prediction accuracy.

TABLE 3.7: The comparison of the KNN, SVR, and ANN models’
RMSE (%) based on the input parameters of total vehicle flow or total

of all classes of vehicles

Model Input of All Vehicle Classes Input of Total No. of Vehicles
KNN 19.35 20.01
SVR 19.79 19.89

ANN 16.56 16.95

Experiment Four

Table 3.8 shows the set up parameters used during each run of experiment four. Each

model was tested and compared using a different singular input parameter. The in-

put parameters used were the total of all classes, Class One, Class Two, Class Three,

Class Four, Class Five, or Class Six of vehicle traffic flow. It should be noted that the

value of k in the KNN model was 65, the value that produced the lowest empirical

root-squared mean error (RSME).

TABLE 3.8: The parameter set up for experiment four

Parameter Detail
Time Horizon 5 Minutes

Training Data Size 2 Months
Test Data Size 1 Month

Input Parameters One Vehicle Class
Variable Changed Model & Individual Vehicle Class
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Experiment Four Results

Based on Experiment Four’s results, Class Two (car or van) is the most influential

vehicle class for road traffic prediction, followed by Class Four (rigid goods) for all

models. It is also worth noting that the results are better when only considering

Class Two vehicle total, as oppose to all vehicle class totals.

TABLE 3.9: The RMSE of the KNN, SVR, and ANN model using dif-
ferent classes of vehicles as input parameters for the prediction of

road traffic flow

Model Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
KNN 19.96 18.60 20.01 19.92 20.01 20.01
SVR 19.94 18.53 19.99 19.90 20.01 20.00

ANN 16.84 16.40 16.92 16.83 16.93 16.85

3.4 Summary

In this chapter, we have conducted a comparative analysis of three machine learning

algorithms (KNN, SVR, and ANN). The three machine learning algorithms were ap-

plied to a real dataset to determine: 1) which machine learning model produced the

most accurate prediction and how time horizon changes affect their accuracy (time

horizon sensitivity); and 2) the impact of vehicle classes as input parameters on pre-

diction accuracy.

The experimental results presented show that the most accurate machine learning

model was the ANN. It consistently produced the most accurate prediction. How-

ever, the ANN model was the most sensitive to time horizon changes, as seen in

Table 3.5, but still produced the most accurate prediction in all time horizons tested.

Therefore, it can be concluded that ANN models are suitable for short-term traffic

flow prediction on urbanised arterial roads. ANN should be explored further for the

prediction of road traffic flow.

The experimental results also show that using the individual vehicle class totals,

as opposed to the total number of vehicles, improves all three machine learning

models’ predictions (as seen in Table 3.7). This is likely due to the models being

able to ascertain latent patterns within the different vehicle class data to improve

prediction accuracy. The composition of vehicles on urbanised arterial roads varies

from geographical area to time of day. The ratio of cars to trucks can fluctuate with
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both classes having their latent seasonal patterns. Therefore, considering each class

as a separate input parameter has improved the prediction accuracy. In addition, the

most influential vehicle classes were Class Two (car or van) and Class Four (Rigid

Goods). This may be due to these particular classes being the main classes in terms of

volume in the data. However, it is worth noting that prediction accuracy improved

when considering only Class Two as an input parameter compared with using all

vehicle class totals. This suggests that the latent seasonal pattern within the main

vehicle class type (Class Two in this research) is key to the prediction of road traffic

flow.

Based on the experimental results the prediction of road traffic flow should fo-

cus on ANNs. Different ANN architectures should be explored and their suitability

for road traffic flow prediction assessed, especially ANNs with deep architecture.

Deeper architectures could allow an ANN to obtain a more complex, non-linear

function and therefore, improve prediction accuracy. Deep neural networks, such as

deep recurrent neural networks, are now being explored for road traffic flow predic-

tion. However, what deep architecture is the most appropriate remains unanswered.

Previous research into deep recurrent neural networks fails to compare them to other

deep models; instead, comparisons are made with simple shallow models. To com-

pound this issue standard performance metrics, such as RMSE, assess a model’s

success solely on its accuracy. No consideration is given to computational cost. A

model must be assessed on both its accuracy and speed. Another issue is the op-

timisation of a neural network’s architecture can be difficult. There is no standard

or analytical method to determine their correct structure. This often leads to sub-

optimal architectures being used. Therefore, deep neural networks (DNNs) should

also be assessed on how sensitive the model is to architectural changes.
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Chapter 4

Evaluating the Performance of

Deep Recurrent Neural Networks

This chapter is a modified version of ’Prediction of Road Traffic Flow Based on Deep Re-

current Neural Networks’ published in the 5th IEEE Smart World Congress, Leicester, UK,

2019, IEEE, and has been reproduced here with the permission of the copyright holder.

Chapter Summary

Based on the experimental results in the previous chapter (see Section 3.3), in this

chapter different deep ANN architectures were explored for their suitability for the

prediction of road traffic flow. Three deep recurrent neural networks, described in

Section 4.3.2, were examined on their accuracy, training time, and sensitivity to ar-

chitectural change. The results of these experiments are presented in Section 4.3.3.

Additionally, a new performance metric was developed, Standardised Accuracy and

Time Score (STATS), shown in Section 4.3.3, which standardises both the accuracy

and computational time into a comparable score, allowing an overall score to be

awarded.

4.1 Introduction

Due to advances in computing power and algorithm development by Hinton et al.

[94] the depth of neural networks is increasing, leading to superior performances.

Deep neural networks (DNNs) [95] are now feasible and more efficient for large

complex data [96]. They are favoured over shallow architectures due to their ability

to efficiently extract complex latent patterns embedded within the data [97] owing to
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their long computational chain of layers [98]. Despite this, neural networks designed

for road traffic prediction are predominately shallow architectures with only one

hidden layer [99]. Therefore, research into exploring deep architectures to improve

prediction accuracy for road traffic flow is now possible and needed.

There is a wealth of neural network architectures and hybrids. The real challenge

in the DNN domain is model selection [100]. Which deep architecture is the most

appropriate for noisy time series data, such as road traffic flow, remains unanswered

[38]. To compound this issue more, there is a lack of research comparing deep learn-

ing models for road traffic flow prediction. Researchers often compare their models

to simple shallow architectures or statistical models which can not compete with the

long computational chain of layers of DNN. Another major flaw of DNN research is

its disregard for the computational cost (training time). It is obvious that the deeper

a neural network, the bigger the computational cost, however, this is often omitted

from evaluations. Traffic flow prediction models assess success solely on prediction

accuracy; predominately the RMSE or mean absolute percentage error (MAPE) is

used to evaluate a model [44]. No evaluation of the training time taken to produce

the prediction is made. Additionally, no trade-off between the accuracy and training

time is investigated. The current standard performance metric is antiquated. Suc-

cessful models should produce tolerably accurate results within a reasonable time

frame set by the specific problem domain. Therefore, a new performance metric is

needed for DNNs.

Furthermore, to fairly compare different DNNs each model should be fully opti-

mised to achieve its best prediction, yet there is no standard procedure or analytical

calculation to determine the optimal architectural structure. Hyperparameters are

optimised using domain knowledge through experience and literature review, or

heuristics through grid search style algorithms. Many model optimisations are diffi-

cult, not consistent, and at times not appropriate for the domain problem. Therefore,

assessing how sensitive a model is to architectural change is important. It should be

established how consistently a model produces an acceptable prediction within a

tolerable time frame set by the domain problem.

The contributions of this chapter include: 1) we have examined and compared

three existing deep recurrent neural networks (a basic recurrent, a long short-term

memory, and a gated recurrent unit), using a novel performance metric, based on

a real dataset to determine which is suitable for road traffic prediction, 2) for a fair
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comparison, a new performance metric, the standardised accuracy and time score

(STATS) was developed to assess the overall performance of the DNNs based on

their prediction accuracy and training time, and 3) we have examined the DNNs’

sensitivity to architectural changes.

4.2 State of the Art Deep Learning Traffic Flow Prediction

Models

In this section, we will review and assess deep recurrent architectures for their suit-

ability for the prediction of road traffic flow.

Lv, Duan, Kang, et al. [99] is, to the best of our knowledge, the first publica-

tion on DNNs for road traffic prediction. Lv, Duan, Kang, et al. stated that shallow

prediction models with limited hidden nodes do not learn an adequate representa-

tion of the relationship between the current and the future traffic flow due to the

data’s stochastic and complex non-linear properties. Instead, a compressed version

is found. Thus, a DNN is needed; however, they do have limitations. Adding un-

needed layers can negatively affect the model’s prediction accuracy and increase

training time.

More, Mugal, Rajgure, et al. [32] used traffic flow data from Dublin, Ireland, with

a five-minute timestep and a Jordan neural network model (JNN) [101] to predict

road traffic flow. A JNN is an adaptation of an RNN, as decribed in Section 2.2.2,

that can be identified by the inclusion of a context unit. The context unit receives the

previous timesteps prediction from the output layer (yt−1) to provide context for the

current prediction (RNNs receive context from the previous timestep’s hidden state

(ht−1)). More, Mugal, Rajgure, et al. concluded that the structure of an ANN deter-

mined how successful a prediction was, and reported "almost 98% accuracy for most

of the datasets" [32]. However, the study failed to compare the model to any other

ANNs. Other variations of RNNs may be more suitable. State-of-the-art research

using RNNs for time series prediction has focused on other adaptions of RNNs due

to the basic structure of RNNs and JNNs being unable to capture the long-term de-

pendencies within time series data [102]. An RNN can not learn dependencies if the

time lag is greater than 5-10 discrete timesteps apart [103]. This severely limits the

range of contextual information of an RNN [104]. Furthermore, the success of an
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RNN is hindered by vanishing gradient problems [105]. Therefore, it is difficult to

find advantages over feed forward neural networks.

Long short-term memory (LSTM) neural networks [106] were initially developed

to solve the vanishing/exploding gradient problem through the introduction of a mem-

ory called the cell and the use of a constant error carousel (CEC). An CEC denotes the

recurrent connection of the cell state (ct), where an error can flow through unchanged,

as depicted in Figure 4.1 by the directed circle encompassing the word ’cell’. There-

fore, in an LSTM an error is reduced when it is backpropagated through the multiple

layers, however, it is not modified in the CEC as it is designed to preserve the error

through time and layers. Preserving the error allows the model to continue to learn

over many timesteps, therefore, linking cause and effects which are many timesteps

apart.

 

FIGURE 4.1: A detailed schematic of a long short-term memory block
(also known as a cell) [107]

Zhao, Chen, Wu, et al. [33] used an LSTM for the prediction of road traffic flow

using temporal-spatial correlations. The traffic data used was 19 days, split into

five-minute timesteps, of 500 observation points on one road segment (although only

three points were used for prediction). The paper pre-processed the traffic data using

an origin-destination cost (ODC) matrix to find the correlations between the temporal

and spatial data. Once the data is preprocessed it passed through a standard LSTM.

The model was compared using four different LSTMs with two, three, five, and six

layers to find its optimal structure. It was also compared to an ARIMA, SVM, RBF,

SAE, and a standard RNN. The paper reported that preprocessing the input data
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improved accuracy and the LSTM was the most accurate. However, the trade-off

between training time and accuracy was not considered. Is the additional computa-

tional time to preprocess the data justified by the increase in accuracy? Furthermore,

it is not explicitly stated if the correlation data was also used in the comparison mod-

els.

Shi, Xu, and Li [108] used an LSTM to predict household loads. Shi, Xu, and

Li stated that the main problem with DNNs is their tendency to overfit to train-

ing data and therefore, results can not be generalised. Furthermore, the input data,

household loads, is noisy due to external factors. To overcome these problems Shi,

Xu, and Li preprocessed the input data in a pooling layer. The pooling layer is de-

signed to compensate for the small amount of temporal data by adding a new input

parameter to the target household. The new parameter added is the neighbour’s

household load. By adding the neighbour’s household load the input data has more

diversity.The training data from 929 households divided into pools of ten were used,

which consisted of 48 hours of house loads with a timestep of 30 minutes. The

pooled training data was passed through LSTM and its predictions were compared

with an ARIMA, SVR, and an RNN. It was reported that the model’s accuracy, in

terms of RMSE, was superior. The main issue with the paper is the problem it seeks

to overcome, the overfitting of DNNs. If a model is overfitting the regularisation

term needs to be adjusted, or other methods, such as dropout rates and early stop-

ping of training, can be used. The paper has failed to mention these methods or ad-

dress their inadequacies and state why they have chosen to develop a new method.

The paper also fails to address the increase in training time due to the addition of a

pooling layer.

In conclusion, although the internal memory of an LSTM has proven it can re-

member data over many time lags it is yet to be demonstrated that they can perform

complex rational reasoning with this information. Many models still adjust their

input data to provide more information to aid the models’ prediction accuracy. Fur-

thermore, due to their complex cell structure, as seen in Figure 4.1, the training of an

LSTM has high computational costs. No paper has addressed the trade-off between

the training time and accuracy.

Cho, Merrienboer, Gulcehre, et al. [34] put forward another adaptation of an

RNN to solve the vanishing gradient problem, a gated recurrent unit (GRU) neu-

ral network. Similar to the LSTM, the GRU can be trained to retain information over
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many time lags through the use of gates. GRUs are still in their infancy, therefore,

there is limited research regarding them, with most papers performing compara-

tive studies. Fu, Zhang, and Li [38] conducted a comparison study of an ARIMA,

LSTM, and an GRU. The study used four weeks of data from 50 RTSSs in Oakland,

USA, with a training and test split of three weeks and one week respectively, and a

timestep of five minutes. Fu, Zhang, and Li reported that the GRU model was, in

terms of mean squared error (MSE), the most accurate for prediction of road traffic

flow. However, no other architectures of DNNs were compared, and the models’

training times were not considered.

Similarly, Zhang and Kabuka [109] also performed a comparison study using the

same data as the paper above but also included weather data such as wind speed,

precipitation, and temperature. The study compared an ARIMA, a SVM, an RNN,

LSTM, and a GRU model. The study reported that, in terms of RMSE, the GRU

model was the most accurate. Furthermore, the model was compared with and

without the weather data and discovered that its inclusion improved the model’s

prediction by 25%. Again, the paper only compares the accuracy of the neural net-

work architectures. No training time was considered. Furthermore, the models’

sensitivity to architectural change was not investigated. The GRU model may have

produced the most accurate prediction, however, it is not known how volatile its

predictions are.

In conclusion, RNNs are designed for time series prediction and have provided

good prediction results. However, there is still a lack of research comparing deep

learning models. Many comparisons are still made with simple shallow architec-

tures which can not compete with DNNs’ long chain of computational layers [108].

Furthermore, common adaptations of RNNs tend to focus on how best to preprocess

and include different input parameters to improve the model’s accuracy. No consid-

eration is given to the trade-off between the accuracy and training time. Therefore,

model selection remains the real challenge [100] for noisy time series data such as

road traffic flow [38].

4.3 Methodology

The main aims of this chapter are to compare three existing deep RNNs to determine

which is most suitable for road traffic prediction, and to examine their sensitivity to
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architectural changes using a performance metric that can assess their overall per-

formance. To achieve these aims we have focused on three research questions: 1)

what is the most suitable deep RNN for road traffic flow prediction based on its ac-

curacy and training time, 2) what is the most appropriate performance metric for

deep neural networks, and 3) which deep RNN is the least sensitive to architectural

change (the model’s range of predictions over various architectural structures)?

To answer all three research questions 36 experiments were conducted utilising

three deep recurrent learning models (12 per model) using different architectural

setups and a real dataset. The prediction accuracy and training time were compared

and analysed.

4.3.1 Data Description

The deep learning models were applied to a real-life dataset from an arterial road

between Manchester and Liverpool, UK. The dataset consisted of three months of

data collected between 1st January to 31st March 2016, with a time horizon of five

minutes (26,195 data points) and input parameters of different vehicle classes as

shown in Table 3.1. Two months of data (18,337 data points) were used for training

and validating the models, and one month of data (7,858 data points) was used for

testing the models.

4.3.2 The Model Architectures

The deep recurrent learning models chosen for comparison and used during exper-

imentation were:

1. An RNN model

2. An LSTM model

3. An GRU model

All weights and biases were randomly initialised and a dropout rate of 50%

was used based on research by Zhao, Chen, Wu, et al. [33] and Srivastava, Hin-

ton, Krizhevsky, et al. [92]. All other hyperparameters, such as the number of layers

and nodes, were determined through brute force by a grid search to find the optimal

design. Specifically, all models were set up using a range of 12 different architecture



60 Chapter 4. Evaluating the Performance of Deep Recurrent Neural Networks

structures consisting of two, three, five, and six layers (excluding any input and out-

put layer) [33] with 12, 16, and 20 nodes in each layer. The different architectural

structures and their variations were trained using two months of data and tested us-

ing one month of data (hold-out cross-validation), as described in Section 4.3.1.Fur-

thermore, the Adamax optimiser [93] was used to optimise the model’s learning rate

based on the data’s characteristics (a separate step size, known as the learning rate,

for each parameter). Each variation of the models’ architectures was trained and

tested 10 times and an average empirical error, based on the performance metric

described in Section 4.3.3, was taken. The architecture that produced the lowest av-

erage empirical error was used for comparison. Below each model is explained in

detail.

RNN Model

A RNN is designed to detect sequences in temporal data by the assuming the input

and output pairs are dependent on each other, meaning the model takes into account

the previous prediction when calculating the current prediction. Therefore, the order

of the sequence is taken into consideration; the temporal element of the input data

adds a new dimension to the prediction function being learned. The model achieves

this through the use of loops. RNNs contain a hidden state node (s) that feeds back the

previous timestep (t − 1) value. This allows the model to find and use correlations

between the temporal data that may be many timesteps apart, as seen in Figure 4.1,

and is often referred to as an internal memory. Therefore, the current hidden state is

a function of current input data (xt) and the previous timestep’s (ht−1) hidden state,

as seen in Equation 4.1, where ht is the hidden state, t relate to the timestep, σ is the

activation function, xt is the input data at time t, and u is the weight matrix.

ht = σh(uhxt + wht−1 + bh) (4.1)

Therefore, the prediction (yt) is calculated as shown in Equation 4.2.

yt = σy(wyht + by) (4.2)
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FIGURE 4.2: A basic RNN with its hidden state unfolded [110].

LSTM Model

A standard LSTM NN cell contains three gates, a forget gate (f), an input gate (i), and

an output gate (o). It contains a hidden state (h) and a memory state (C), as seen in

Figure 4.1.

The memory state is the main concept behind the LSTM NN; it transfers the data

through the cell via a sequence of gates. The gates decide what information in the cell

state should be added or removed. Each gate is a single-layered neural network with

a sigmoid activation function (σ), as shown in Equation 3.4. The sigmoid function

outputs a value between zero and one (see Equation 4.3) to determine how much or

how little should be added or deleted from the cell state.

σ(x) =
ex

ex + 1
(4.3)

The cell state is first computed by calculating the block input (z) based on the pre-

vious hidden state (ht−1) and the current input data (xt), as shown in Equation 4.4,

where w is a weight and b is a bias. An activation function, usually tanh (as shown in

Equation 4.5), is used to regulate the network by squashing the input values between

-1 to 1.

z = tanh(wxzxt + whzht−1 + bz) (4.4)

tanh x =
ex − e−x

ex + e−x (4.5)

At the same time the input gate is calculated. This gate decides what should be

added to the cell state (ct) from the current input (xt), the previous hidden state
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(ht−1), and the previous cell state (ct−1), as shown in Equation 4.6.

i = σ(wxixt + wcict−1 + bi) (4.6)

The sigmoid activation function of the input gate (i) outputs a value between zero

and one. Therefore, when the block input and input gate are multiplied together,

only the values the input gate has determined important are passed through. The

current cell state can be calculated as z × i.

The second gate calculated is the forget gate. The forget gate decides what part of

the cell state should be allowed to pass through and what should be forgotten from

the current input (xt) and the previous hidden state (ht−1), as shown in Equation 4.7.

The output of the forget gate enters the CEC and is multiplied by the previous cell

state (ct−1), then added to the output of the previous step, block input and input

gate, as shown in Equation 4.8.

f = σ(wx f xt + wc f ct−1 + b f ) (4.7)

ct = ct−1 ◦ ft + z ◦ i (4.8)

Gers, Schmidhuber, and Cummins would go on to add peepholes to the architecture

[103] which allows the gates to connect to the CEC. Therefore, the hidden state (ht)

in Equations 4.6, 4.7, and 4.9 has been replaced with cell state (ct).

Lastly, the output gate is calculated. The output gate decides how much of the

new memory should be passed through to the output from the cell based on the

previous hidden state (ht−1) and the current input data (xt), as shown in Equation

4.9. Again, an activation function of sigmoid (Equation 3.4) is applied to squash the

values between zero and one.

o = σ(wxoxt + wcoct + bo) (4.9)

The cell state is then passed through an activation function, usually tanh, to regulate

its values between minus one and one, then multiplied by the output gate’s output

to determine the output of the cell, and what will be passed forward as shown in

Equation 4.10.

ht = tanh(ct) ◦ ot (4.10)
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GRU Model

The gates included in a standard GRU cell are an update gate and a forget gate, as

shown in Figure 4.3. The current input (xt) and the previous hidden state (ht−1)

FIGURE 4.3: A gated recurrent cell [34]

is added together and passes through the update gate, as shown in Equation 4.11.

The update gate decides what information should be forgotten and what should be

added. A sigmoid activation function (Equation 3.4) is used to squash the values of

the input between zero and one, as shown in Equation 4.11.

u = σ(wxuxt + whuht−1 + bu) (4.11)

Next, the same input (xt and ht−1) is passed through the reset gate with a sigmoid

activation function (Equation 3.4), as shown in Equation 4.12. The reset gate is used

to decides how much of the past information should be forgotten.

r = σ(wxrxt + whrht−1 + br) (4.12)

The hidden state (h) is then updated using the reset gate and the current input (xt)

(as shown in Equation 4.13), where the product of the reset gate (rt) and the weighted

previous hidden state (whhht−1) is the Hadamard product.

ht = tanh(wxhxt + (1 − rt) ◦ whhht−1 + bh) (4.13)

Finally, the hidden state is updated using the update gate to determine what infor-

mation from the current memory should be stored, as shown in Equation 4.14.

ht = zt ◦ ht−1 + (1 − zt) ◦ ht (4.14)
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4.3.3 Performance Metrics

In order to evaluate and compare the accuracy of the models the RMSE, as shown

in Equation 2.3, was used to measure the average deviation between the predicted

value and the actual value.

The RMSE is a standard performance metric for the evaluation of time series pre-

diction models; it is also the most commonly used in road traffic flow prediction [44].

However, the fundamental problem with this performance metric, and its counter-

parts such as mean absolute percentage error, is they only evaluate the accuracy of

a model. No consideration is given to the training time, or the trade-off between

accuracy and training time. This is not appropriate for DNNs. As technology ad-

vances, so does the depth and breadth of DNNs that are feasible. However, these

advancements come at a price, the training time. DNNs must be assessed on their

overall performance, accuracy, and training time. To compound the issue further,

limited studies that do consider training time find it challenging to compare the ac-

curacy and training time due to both results being in different units of measurement.

Therefore, performance metrics like RMSE for DNNs are antiquated.

We propose a novel performance metric, the Standardised Accuracy and Time

Score (STATS), as shown in Equation 18. STATS overcomes the limitations of the

standard performance metric by evaluating both the accuracy and the training time

of a model. Furthermore, these evaluations are standardised in a set range (0 to

100, where the higher the score the better the performance) allowing comparisons to

be made. Additionally, due to the scores being standardised they can be combined

(accuracy and training time) to give a model an overall performance score.

The accuracy and training time scores are normalised by their ratio to the range

of the results, as shown in Equation 4.15. The range can be adapted for specific time

series problems through the use of upper and lower bounds, as shown in Equation

4.16 to 4.18. The bounds may be used to disregard any accuracy or training times

which fall beyond a set range determined by the user. For example, setting an upper

bound of 20 for the accuracy score will score any model with an RMSE of 20% or

above as zero for accuracy, and vice versa, setting a lower bound on accuracy as

10%, any models achieving 10% or better will be scored as full marks (100%) for

accuracy. The same logic extends to the upper and lower bounds of the training
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times.

STATS =

(
wa

αa − βa
× (αa − xa)

)
+

(
wt

αt − βt
× (αt − xt)

)
(4.15)

xa ≡ xa(s) =


U if s ≥ U,

L if s ≤ L,

s otherwise

(4.16)

αα ≡ αα(s) =


U if s ≥ U,

s otherwise
(4.17)

βa ≡ βa(s) =


L if s ≤ L,

s otherwise.
(4.18)

The equations (4.16–4.18) hold for xt, αt, βt respectively where αa is the largest ac-

curacy (RMSE), βa is the smallest accuracy (RMSE), αt is the largest training time,

βt is the smallest training time, wa is the weighting for the accuracy score, wt is the

weighting for the training time score (where wa + wt = 100), xa is the actual accu-

racy (RMSE), and xt is the actual training time. In this chapter, there were no external

constraints to take into consideration during experimentation. Therefore, no upper

or lower bounds were used and a priori equal weighting was given to the accuracy

and training time (wa = wb = 50) to express lack of specific weighted preference..

4.3.4 Comparison of Existing Deep RNNs

To answer research questions one and two, what is the most suitable deep RNN for

road traffic flow prediction based on its accuracy and training time and what is the

most suitable performance metric for DNNs, three deep RNNs were used with the 12

different architectural structures, as described in Section 4.3.2, and applied to the real

traffic flow dataset, as illustrated in Section 4.3.1. The models were used to predict

the traffic flow at the next time horizon (five minutes). A comparison of the models

was made based on their accuracy using the performance metric RMSE (Equation

2.3) and their accuracy, training time, and overall score using the novel performance

metric, STATS, as shown in Equation 4.15. The RMSE and STATS results were then

compared.
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TABLE 4.1: The comparison of the performance scores of the deep
recurrent neural network models

Model
RMSE

(%)

STATS
Accuracy

Score
(%)

Time
Score
(%)

Overall
Score
(%)

RNN 17.32 80.46 98.79 89.62
LSTM 9.71 98.32 82.23 90.27
GRU 9.26 98.59 82.77 90.68

Table 4.1 shows the results of the model architecture that provided the best RMSE

and the best overall performance score using STATS, with a breakdown of its accu-

racy and time score, for each deep RNN. In terms of the RMSE, the GRU was the

most accurate with an RMSE of 9.26%, closely followed by the LSTM with an RMSE

of 9.71%. The RNN model was the least accurate with an RMSE of 17.31%. Based on

the RMSE it could be assumed that the GRU and LSTM’s performances are of com-

parable success. Table 4.1 also shows that, overall, the GRU was the most successful

model for the STATS performance metric. It was the most accurate, with an accu-

racy score of 98.59%, again, closely followed by the LSTM, with an accuracy score

of 98.32%. The RNN was the least accurate model with an accuracy score of 80.46%.

However, the STATS also shows that the GRU is faster than the LSTM, with a time

score of 82.77% and 82.23% respectively, providing more insight into the model’s

performance.

The STATS performance metric was able to provide additional information when

compared to the RMSE. The RMSE evaluated the models solely on their accuracy.

No consideration was given to the training time, or the trade-off between accuracy

and training time. The STATS assessed the models on their accuracy and training

time, allowing for a more balanced evaluation of the deep learning model. It clearly

shows the trade-off between accuracy and training time, as demonstrated by the

RNN model, enabling a more informed selection of which model is superior for

road traffic flow prediction.

4.3.5 Comparison of Existing Deep RNNs’ Sensitivity to Architectural

Change

To answer research question three, what is the most suitable DNN (RNN) for road

traffic flow prediction based on sensitivity to architectural change (the model’s range
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of predictions over various architectural structures), three deep RNNs were used

with the 12 different architectural structures, as described in Section 4.3.2, and ap-

plied to the real traffic flow dataset, as illustrated in Section 4.3.1. The models were

used to predict the traffic flow at the next time horizon (five minutes). A comparison

of the models was made based on their accuracy, training time, and overall perfor-

mance using the novel performance metric, STATS, as shown in Equation 4.15. Ad-

ditionally, the STATS results were analysed (range, mean, and standard deviation)

to determine which model was most sensitive to architectural change (the model’s

range of predictions over various architectural structures).

TABLE 4.2: The performance scores of the deep recurrent neural net-
work model

Performance
Indicator

STATS
Accuracy

Score
(%)

Time
Score
(%)

Overall
Score
(%)

Highest 80.46 100 89.62
Lowest 29.42 68.36 50.46
Mean 55.61 84.55 70.08
Range 51.05 31.61 39.16

Standard
Deviation

13.72 12.19 12.12

Table 4.2 shows that the RNN architectures were consistently fast, with the high-

est mean time score of 84.55%, a small range of 31.61%, and a small standard devia-

tion of 12.19%. This is due to the RNN computational structure, as shown in Figure

4.2, which allows the model to be computational efficient at the price of poor predic-

tion results. The accuracy score was less stable, with a mean score of 55.61%, a range

of 51.05%, and a standard deviation of 13.72%. The model’s accuracy was sensitive

to architectural structure changes. Therefore, the RNN performed the worst over-

all. The simplistic RNN computational structure is unable to capture the long-term

dependencies within time series data. It is unable to learn the dependence between

input and output if the time lag is greater than 5-10 discrete timesteps. This has

limited the contextual information that the RNN can use for prediction. The results

show that more contextual information from distant time lags is needed to produce

successful prediction results. Therefore, an RNN is not suitable for the prediction of

road traffic flow.
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TABLE 4.3: The performance scores of the deep long short-term mem-
ory neural network model

Performance
Indicator

STATS
Accuracy

Score
(%)

Time
Score
(%)

Overall
Score
(%)

Highest 98.32 83.18 90.57
Lowest 0 0 40.48
Mean 78.28 47.23 62.78
Range 98.31 83.18 49.45

Standard
Deviation

27.19 29.25 17.10

Table 4.3 shows that the LSTM’s accuracy and time score were both very un-

stable. The model produced the largest range and standard deviation for both the

accuracy and time score of all the models. Therefore, both the model’s accuracy and

training time is highly sensitive to architectural structure change. This can be at-

tributed to the intricate structure of an LSTM cell, as shown in Figure 4.1. The CEC

allows the model to link cause and effect over many distant time lags, leading to an

improvement in prediction accuracy over the RNN. However, the cell contains mul-

tiple gates. Each gate is a single-layer neural network. Multiple neural networks

have caused the model’s training times to be slow and very sensitive to architectural

change. Therefore, using an LSTM is a trade-off between accuracy and training time.

TABLE 4.4: The performance scores of the gated recurrent unit neural
network model

Performance
Indicator

STATS
Accuracy

Score
(%)

Time
Score
(%)

Overall
Score
(%)

Highest 100 83.31 90.68
Lowest 55.71 16.55 39.80
Mean 87.22 51.03 69.12
Range 44.29 66.76 50.88

Standard
Deviation

13.18 25.22 17.11

Table 4.4 shows that the GRU produced the highest mean accuracy score, with

the lowest range and lowest standard deviation. Therefore, the GRU’s accuracy was

the most stable throughout the experimentation, and so was the model least sensi-

tive to structural changes. The GRU’s time score range and standard deviation were

larger than the RNN’s, however, its mean, range, and standard deviation were better
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than the LSTM. This is to be expected. The time scores will only increase/decrease

exponentially with the number of layers or nodes added/removed for all models.

Therefore, when determining which model was overall the least sensitive to archi-

tectural change, accuracy was the determining factor.

Consequently, the GRU was overall the least sensitive to architectural change.

The GRU’s stable accuracy is due to the intricacy of its cells, as shown in Figure

4.3, which contains an internal memory that allows the model to learn dependencies

over many time lags, more than a standard RNN, adding more contextual informa-

tion to its predictions. However, what has helped the GRU, has hindered the LSTM.

The LSTM is computationally more complex than the GRU and contains three gates.

A forget gate ( f ), an input gate (i), and an output gate (o). Each gate is a single neural

network. It also contains two cell states, a hidden state (h) and a memory state (C),

to retain past information (as shown in Figure 4.1). This complex structure produces

good results when the architecture is calibrated correctly. However, when not prop-

erly constructed, it can lead to overfitting and therefore, poor generalisation when

testing.

4.4 Summary

In this chapter, we have performed a comparative analysis of three deep RNN archi-

tectures (an RNN, an LSTM, and a GRU) by applying them to a real dataset to deter-

mine which was most successful for the prediction of road traffic flow based on their

accuracy and training time. We also developed a novel performance metric, STATS,

that allowed the comparison of both accuracy and training time by standardising

them into a comparable score for the overall evaluation of DNNs. Furthermore, we

then compared the DNNs’ sensitivity to architectural changes to determine how sta-

ble the models’ prediction accuracy were. The results showed that the GRU model

produced the most overall successful prediction, producing good results in both ac-

curacy and training time. Furthermore, the GRU model was the least sensitive to

architectural change. Therefore, based on these results it can be concluded that the

long-term patterns embedded within the input data are needed for the successful

prediction of road traffic flow.

Based on these experimental results, if the long-term temporal patterns embed-

ded in the data are crucial for the prediction of road traffic flow, it should be asked
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which long-term temporal patterns are important? A day, a week, a month, or a

year? Furthermore, as a prediction model can only be as good as its input data, how

can such long-term temporal patterns be inputted into a prediction model? These

issues are complicated further by online learning. The models in this work are stati-

cally trained, however, to have a real-life application they will need to advance to dy-

namic/online learning models. The main issue with online learning is catastrophic

forgetting. Due to the continual updating of an ANN’s weights and biases based on

the most recent data point(s) the ANN will eventually converge to the short-term

temporal patterns, forgetting previously learnt long-term temporal patterns. There-

fore, different magnitudes of temporal patterns, such as day, week, month, and year,

should be examined to ascertain how contextual temporal data can improve road

traffic prediction. Furthermore, a framework should be developed that can over-

come catastrophic forgetting and learn temporal patterns dynamically.
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Chapter 5

A Novel Online Dynamic Temporal

Context Neural Network

Framework for the Prediction of

Road Traffic Flow

This chapter is a modified version of ’A Novel Online Dynamic Temporal Context Neural

Network Framework for the Prediction of Road Traffic Flow’ published in IEEE Access, 7,

2019, and has been reproduced here with the permission of the copyright holder.

Chapter Summary

In the previous chapter, we compared three deep RNN architectures. The results,

summarised in Section 4.4, highlighted the importance of long-term temporal pat-

terns within the data for road traffic flow prediction. Therefore, in Section 5.4.4 we

investigate the different magnitudes of temporal patterns, detailed in Section 5.4.1,

to understand how contextual temporal data can improve prediction. Furthermore,

in Section 5.3.1 we propose a novel online dynamic temporal context neural network

framework that overcomes catastrophic forgetting and can learn temporal patterns

dynamically. In Section 5.4.4 we evaluate the proposed framework’s performance.

5.1 Introduction

Existing work into road traffic prediction has focused on using small training datasets,

ranging from a few days to a few weeks [33] [38]. However, a prediction model can
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only be as good as its input data [40]. The temporal magnitude of the training data

will determine and restrict what temporal cycles and patterns can be learnt. Despite

this weakness, past research has neglected to investigate what temporal patterns are

important and should be included within the training dataset. Most assume only

short-term patterns, such as hourly and daily, are needed based on no prior investi-

gations [33] [38]. Research by Williams and Hoel [16] has shown that traffic flow in

urbanised areas does exhibit weekly patterns linked to the working week, however,

other temporal patterns are important. Traffic flow in urbanised areas also exhibits

long-term patterns, such as monthly and even yearly. These patterns include, but

are not limited to, less traffic during the summer months and increased traffic in De-

cember and January. Therefore, the inclusion of short-term and long-term patterns

within the training data could improve prediction results.

Furthermore, DNNs, especially in the traffic flow prediction field, are tradition-

ally statically (not incrementally or online) trained [111] [37] [112] [113]. Therefore,

the learning capacity of these models is restricted to patterns and events that oc-

curred during the training dataset, such as recurring traffic congestion. This is im-

practical for real-life applications. Road traffic flow data is complex and stochas-

tic [68], hence, their prediction models must be able to adapt to previously unseen

events, such as non-recurring road traffic congestion or a road traffic incident. One

way to overcome this problem is to use online learning. Online learning is a machine

learning approach that uses the most recent sequential data point or points to update

the model’s weights and biases as soon as the data is available. This can improve the

prediction accuracy of complex and stochastic sequential data, such as road traffic

flow. However, online learning does have its limitations. The main disadvantage

of online learning is the eventual loss of the long-term temporal patterns embedded

within the training data. By continually updating the DNN’s weights and biases

based on the most recent data point or points, the model will eventually converge

to the short-term temporal patterns, forgetting previously learnt long-term temporal

patterns. This is known as catastrophic forgetting. Therefore, research into DNN’s

architectures that can learn and retain short and long-term temporal patterns during

online learning needs to be investigated further.
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The contributions and novelty of this chapter include:

1. we have investigated different magnitudes of temporal patterns (long and

short-term), through the use of different temporal data segments to under-

stand how contextual temporal data can improve prediction; and

2. we have developed a novel online dynamic temporal context neural network

framework. The framework uses different temporal data segments as input

features, and during online learning, the updating scheme can dynamically

determine how useful different temporal data segments are and weight them

accordingly for use in the regression model. Therefore, the model can include

relevant long-term temporal patterns in the regression model leading to im-

proved prediction results.

5.2 State-of-the-Art in Deep Convolutional Neural Networks

for Road Traffic Flow Prediction Models

In Section 4.2, a review of deep RNNs was performed. Although it highlighted

that deep RNNs provide good prediction results [30] [114], they can be compu-

tationally costly when processing high dimensional data [115]. Therefore, in this

section we move on to explore another deep ANN structure designed to process

high-dimensional data, a Convolutional Neural Network (CNN) [115].

A CNN [35] is a feed-forward neural network that uses the geographical proxim-

ity of its input data points to add a geospatial dimension to the prediction function

being learnt. Consequently, CNNs are traditionally used when the input data can be

expressed in terms of a map, such as an image analysis. Nevertheless, many other

data sources possess similar characteristics. CNNs combined with RNNs have been

used in image/text analysis experiments such as Peris et al. [116], Wang et al. [36],

and Lopez-Martin [117]. This research has paved the way for CNNs to be used for

road traffic flow prediction.

Narmadha and Vijayakumar [118] developed a hybrid prediction model contain-

ing two 1D CNN layers to capture the spatial dependencies and two LSTM layers to

capture the temporal dependencies. The proposed model used three months of data,

from Performance Measurement Systems (PEMS), split into two months for training

and one month for testing. The data contained a time horizon of five minutes and
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input features of traffic flow and weather details from three RTSSs (the site of predic-

tion and its up and downstream neighbours). The proposed model was compared to

five other models; 1) ARIMA, 2) KNN, 3) LSTM (univariate), 4) LSTM (multivariate)

and 5) a CNN (multivariate). The experimental results show that the CNN-LSTM

hybrid model was the most successful model. However, there are a number of is-

sues with the study. Firstly, it only considered a LSTM RNN. A GRU RNN, as shown

in Section 4.3.4, may have been more successful. Secondly, the model was statically

trained, therefore it has assumed that the temporal and spatial relationships between

the input features are constant. Furthermore, it can not cope with abnormal traffic

flow that has not been seen in the training data. Thirdly, it has assumed that the only

temporal patterns significant for road traffic flow prediction are daily and weekly.

Wu et al. [37] built upon the research by Wang et al.[36] and also developed

hybrid model to predict road traffic flow. Two GRU layers were used to detect tem-

poral features and three CNN layers were used to detect spatial features were run

concurrently. Their outputs were combined into a single regression layer to make

a prediction. Additionally, to detect patterns across different time lags, three dif-

ferent segments of historical input data (all 105 minutes in length) were used. The

segments were from: 1) immediately preceding the prediction, 2) exactly one day

before the prediction, and 3) exactly one week before the prediction. The input seg-

ments were also preprocessed in an attention model before entering the RNN or

CNN layers. Three months of data from 33 RTSSs were used to train and test the

model to predict multiple time horizons of five minutes. Its results were compared to

five state-of-the-art time series prediction models, and Wu et al. determined that the

GRU and CNN hybrid was the most accurate. However, assumptions are made over

the temporal segments. It has been assumed that only the daily and weekly temporal

patterns are significant; no consideration was given to monthly or yearly patterns.

Furthermore, again the model was only trained statically, it has assumed that the

relationship between the temporal data segments is constant. Once the model has

learnt the temporal and spatial relationships contained within the training data it

has no opportunity to update these relationships based on the current data. There-

fore, it does not lend itself to real-life applications such as road traffic incidents. A

model which includes online learning would be more appropriate.

In conclusion, CNNs are still in their infancy in terms of application for road traf-

fic flow prediction [119]. Many papers exploring architecture hybrids within image
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FIGURE 5.1: The proposed framework

analysis and text/speech analysis have started to cross over into time series pre-

diction, however, one major hurdle that needs to be overcome for CNNs to make

a significant impact on time series prediction is its ability to detect short and long-

term patterns embedded within the data. Furthermore, another issue highlighted

by the literature review is the lack of consensus over what magnitude of temporal

data should be used, or if providing historical temporal data from distant time lags

can provide context and improve prediction accuracy. Most research fails to address

the temporal element of input data. The limited research that does address the tem-

poral element does not compare their model with and without the addition of the

temporal data to assess its impact on the model’s accuracy [108]. Furthermore, the

additional temporal data is often chosen through expanding the current temporal

dataset [120], with no justification and may be irrelevant [37]. Banko and Brill [40]

identified that the input data used was the most important element of a successful

machine learning model. Therefore, further research into input data for DNNs and

their temporal magnitude is vital.

5.3 Methodology

5.3.1 The Proposed Framework

We have developed a novel online dynamic temporal context (DTC) neural network

framework, as shown in Figure 5.1. The framework uses different temporal data

segments as input features, and, during online learning the updating scheme can
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dynamically determine how useful different temporal data segments are for predic-

tion accuracy. The different temporal data segments are then weighted according

to their usefulness for the regression model and added to the current observations.

Therefore, the framework can include short and relevant long-term temporal pat-

terns in the regression model leading to improved prediction results.

The framework can be divided into three distinct components: 1) an input layer,

2) the model layer, and 3) the update scheme layer, as seen in Fig. 5.1. Each layer

will now be defined in more detail.

The Input Data Layer

Unlike traditional regression neural networks, the proposed framework has two

sources of input data: 1) the current observations (D1), and 2) the corresponding

different temporal data segments (D2).

The current observations (D1) are the traffic flow observed immediately before

the prediction point (t + 1). The current observations dataset is a 7d array, as shown

in Equation 5.1, containing the total traffic flow and its breakdown into six different

vehicle classes, as shown in Table 5.1. Vehicle classes are used as input features

( f ) for both the DTC model and regression model based on prior research which

demonstrated that vehicle classes can improve prediction results [121].

D1 =



f1,t f2,t ... fn,t

f1,t−1 f2,t−1 ... fn,t−1

f1,t−2 f2,t−2 ... fn,t−2

... ... ... ...

f1,t−n f2,t−n ... fn,t−n


(5.1)

TABLE 5.1: An extract from the current (t) traffic flow observations
(D1)

Total Total Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
t 147 12 123 2 9 2 1

t−1 139 10 115 0 10 1 3
t−2 142 9 117 1 9 2 3
t−3 148 8 119 3 11 0 7
... 12 1 8 0 2 1 0

t−n 58 3 51 0 4 0 0
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The different temporal data segments (D2) are the corresponding observed traffic

flow data that is one day, one week, one month, and one year before the prediction

point (t + 1). Each temporal data segment is a 7d array containing seven different

features ( fi ⇒ i ∈ Z : 1 ≤ i ≥ 7). This includes the total traffic flow and its break-

down into six different vehicle classes matching the current observations’ shape and

structure, as shown in Equation 5.1. In total, the different temporal data segments

dataset is a 28d array, as shown in Equation 5.2, where d denotes daily, w denotes

weekly, m denotes monthly, and y denotes yearly data segment.

D2 =



f[d1,dn],t f[w1,wn],t f[m1,mn],t f[y1,yn],t

f[d1,dn],t−1 f[w1,wn],t−1 f[m1,mn],t−1 f[y1,yn],t−1

f[d1,dn],t−2 f[w1,wn],t−2 f[m1,mn],t−2 f[y1,yn],t−2

... ... ... ...

f[d1,dn],t−n f[w1,wn],t−n f[m1,mn],t−n f[y1,yn],t−n


(5.2)

Both sources of input data, current observations and different data segments (D1

and D2), are passed to the model layer for processing.

The Model Layer

The model layer contains two models with different architectures: 1) the DTC model

architecture, and 2) the regression (GRU) model architecture.

The proposed DTC model has a CNN structure. Traditionally, CNN structures

are used for static tasks where input data can be expressed in terms of a map, such

as an image analysis or classification. In addition, cutting edge research into time

series prediction has used CNN to find geospatial relationships between different

geographical locations to help improve prediction accuracy. Our proposed model is

different from previous time series prediction models using CNNs as we seek to find

relationships between different magnitudes of temporal data segments. The model

uses the different temporal data segments (D2) to dynamically determine how useful

it is for the regression model (GRU) to produce an accurate prediction. It does this

by weighting the input segments. What differentiates the proposed model from tra-

ditional CNN architectures is; 1) we have used temporal data as input features ( fi),

therefore, in the proposed model the kernel scrolls ‘across’ the temporal data seg-

ments (D2) and not down the temporal data like traditional arrangements of CNNs,
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2) the kernel (k) used to detect temporal patterns is rectangular and not square as

traditionally used in CNNs, so the kernel (k) only convolves across one line of input

data at once, 3) the model uses downsampling to obtain the most relevant temporal

data, therefore, no padding function is used unlike in traditional CNN structures to

maintain the dimensions of the input data, and 4) the stride (s) used for the kernel

(k) is equal to the width of the kernel (k = s) to ensure that each data point is only

convolved over once by the kernel (k) per layer (ℓ). This enables the DTC to reduce

the dimensionality of the input data while ensuring no replications are passed on to

the regression model. The DTC model will now be defined in more detail.
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FIGURE 5.2: The proposed Dynamic Temporal Context framework
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The proposed DTC model’s input is the 28d array of different temporal data

segments (D2); its structure is a CNN, as shown in Equation 5.2. In the convolutional

layer a convolution kernel (k), also known as a filter or feature detector, convolves

(slides) over the different temporal data segments (D2) input features ( fi) until every

input feature has been passed over, moving left to right. Therefore, temporal data is

used as an input feature in the array columns and rows, contrary to traditional CNN

structures. The convolutional operation (k[x, y]), where x and y define the current

position of the kernel (k) in the dataset D2, can be defined as

kD2 = k ⊗ fi : fi ∈ D2[x, y] (5.3)

In the proposed model the magnitude of the movement made to the right is known

as a stride (s) and is defined as the same length as the convolutional kernel (k), there-

fore, s = k, and is a rectangle, unlike traditional CNN kernels. This constraint has

been set to ensure each feature ( fi) is passed over only once in each layer (ℓ) per

kernel (k) to ensure that the output contains no duplication. At each stride (s) the

weights (wi) in the kernel (k) are multiplied by the corresponding indices (d ∈ D2)

position (x and y) underneath in the temporal segments data (k ⊗ d) to create the

convolution. The calculated values are used to create one output value, as shown

in Equation 5.3, and used to construct the feature map (M), as shown in Figure 5.2.

What is considered an important temporal pattern by the proposed model is learned

during the training process. Multiple kernels (k) can be used to detect multiple im-

portant temporal patterns in the temporal data segments. Every hidden layer (ℓh)

has at least one kernel (k), and the depth of the feature map (M) is determined by

the number of kernels in the hidden layer (ℓh). The number of kernels (k) and hidden

layers (ℓh) the DTC contained was optimised through grid search.

It should be noted that although the literature refers to the above process as a

convolution, technically the implementation in the proposed model, and most other

implementations of CNNs, used a correlation operation. Both operations are closely

related, with both being neighbourhood operations. The only significant difference

between the two operations is during the calculation of a convolution the kernel (k) is

rotated 180 degrees; the kernel (k) does not rotate during the correlation calculation.

Therefore, for clarification, in the paper when referring to the convolution operation

of our proposed model, we are referring to a correlation operation.
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The convolutional operation is linear, therefore, an activation layer (ℓa) follows

the convolutional layer to account for the non-linear relationship between the data

points. In the proposed model a rectified linear unit (ReLU), as seen in Equation 5.4,

activation function was used.

r(m) = MAX(0, m) : m ∈ M (5.4)

A ReLU was used to normalise the output of the DTC between the range of 0 − x, to

ensure that none of the temporal data segments would be negatively weighted. The

feature map (M) is then fed the activation layer (ℓa); a ReLU function (r) was applied

to each data point (m) in the feature map (M) matrix to transform the data into the

set range. The output of the activation layer (ℓa), the activation map (A), contains

the same dimensions as its input, the feature map (M). The activation map (A) is

then fed into the pooling layer (ℓp). The pooling layer (ℓp) is used to condense the

temporal data segments while preserving the important temporal patterns (features

( f )). A sliding window is used to move across the activation map (A), and one

value is chosen per stride (s), as shown in Figure 5.2. Again, the stride is equal to

the size of the window (s = k) to ensure no duplication in the output. Therefore,

the activation map (A) is downsampled and reduced in width, to a width of qp, as

shown in Equation 5.5, where qa is the width of the activation layers (ℓa) input. The

value chosen in the sliding window is the largest value (max pooling).

qp =
qa − k

s
+ 1 (5.5)

Traditionally, the output of the pooling layer (ℓp) is calculated as

o =
q − K + 2P

s
+ 1 (5.6)

where p represents a padding function added to increase the dimensions of the out-

put data back to its original magnitude. However, as downsampling was the aim of

the proposed model, no padding function (p) was used in the proposed model.

Different from the existing time series models using CNN where the predic-

tion models are based on static data, our proposed DTC model is dynamic and

seeks to find a relationship between different magnitudes of temporal data segments



82
Chapter 5. A Novel Online Dynamic Temporal Context Neural Network

Framework for the Prediction of Road Traffic Flow

promptly. In the proposed DTC model, the output is the most relevant temporal fea-

tures (S) for prediction. The selected temporal features (S) are then added to the

current observations (D1) to create the current dataset (C) and passed through to the

regression model (GRU), as shown in Figure 5.2. Based on previous research [122]

the regression layer used was a deep GRU model. A GRU model works through

the use of gates; each gate is a neural network. The gates included in a standard

GRU cell are an update gate and a forget gate, as shown in Figure 5.2. The current

input (ct ∈ C) and the previous hidden state (ht−1) is added together and passes

through the update gate, as shown in Equation 4.11. The update gate decides what

data should be forgotten and what should be added. A Sigmoid activation function

is used to squash the values of the input between zero and one, where b is the bias.

Next, the same input (ct and ht−1) is passed through the reset gate with a Sigmoid

activation function (as shown in Equation 4.12). The reset gate is used to decides

how much of the past information should be forgotten, as shown in Figure 5.2. The

hidden state (h) is then updated using the reset gate and the current input (ct) (as

shown in Equation 4.13), where the product of the reset gate (rt) and the weighted

previous hidden state (whhht−1) is the Hadamard product. Finally, the hidden state

is updated using the update gate to determine what information from the current

memory should be stored, as shown in Equation 4.14. The output then predicts the

number of vehicle (yt) at the next time point (t + 1), as shown in Figure 5.2. Once the

regression model, GRU, has made its first prediction (yt) using the test data, the pre-

diction (yt) and the actual value (at+1) are then passed to the Update Scheme layer,

as shown in Figure 5.1.

The Update Scheme Layer

The primary objectives of the Update Scheme layer are: 1) to update the weights and

biases in the DTC model to dynamically and timely adjust the most relevant tempo-

ral features from the temporal data segments dataset (D2) for use in the regression

model, and 2) to update the weights and biases in the GRU model to allow the model

to adjust and adapt to changing temporal trends within the time series data. This

was done through online learning. Once a prediction (yt) has been made, the actual

value (at) is added as a new line of observations to the current observations dataset

(D1) and its corresponding temporal data segments are added to D2, as shown in

Figure 5.2. The prediction (yt) and actual observation (at) are then compared, and
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its error (ϵ = yt − at) is computed and passed back to the DTC model. This is done

to update the model’s weight (wi) and biases (bi) contained within the kernels (ki)

to allow the model to dynamically adjust the most relevant temporal data segments

for regression based on the most recent time series data. This is achieved through

the use of a stochastic gradient descent method [93] and a small window of the most

recent data segments in dataset D2. During backpropagation, using a small window

of the most recent data in D2, the gradient of the error (ϵ) is found with respect to the

DTC model’s weights (wi) and biases (bi) using differentiation, as seen in Equation

5.7.
δϵ

δwi
and

δϵ

δbi
(5.7)

The error’s (ϵ) gradient is then backpropagated through the model, from the output

layer (ℓo) to the input layer (ℓi), to find the global minima. In each layer (ℓ) the

gradient is scaled by a learning rate (l) as shown in Equation 5.8.

wi,t = wi,t−1 − l
δϵ

δwi
and bi,t = bi,t−1 − l

δϵ

δbi
(5.8)

The weights (wi) and biases (bi) in the kernel (ki) within the DTC model are then

updated accordingly to minimise the error (ϵ). Once the DTC model is updated,

the new temporal features are selected (s1,t+1 − sn,t+1) and added to new current

observations (D1) to create an updated current dataset (C), as shown in Figure 5.2.

A window of the new current dataset (C), is then fed to the regression model (GRU)

to update the weights (wi) and biases (bi) in the GRU layers. The regression model

is updated to improve the prediction accuracy of the overall model by adapting to

temporal trends within the time series data.

The regression model is also updated using stochastic gradient descent method

[93]. The current input (ct+1 ∈ C) and the previous hidden state (ht) is added to-

gether and passed through the update gate, as shown in Equation 4.11. The GRU

cell processes the input as described in Equation 4.11 to 4.14, and the gradient of

the error (ϵ) is found with respect to the regression model’s weights (wi) and biases

(bi) using differentiation, as seen in Equation 5.7. The error’s (ϵ) gradient is, again,

backpropagated through the regression model, from the output layer (ℓo) to the in-

put layer (ℓi), to find the global minima. In each layer (ℓ) the gradient is scaled by

a learning rate (l) as shown in Equation 5.8. The weights (wi) and biases (bi) within

the regression model are then updated accordingly to minimise the error (ϵ). Once
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the Updating Scheme has updated the regression model, a new prediction is made

(yt+1) and the cycle continues.

5.4 Experimental Evaluation

In this section, we have focused on two research questions: 1) how do different tem-

poral data segments affect prediction accuracy? 2) can a dynamic temporal context

framework that can include both short-term and relevant long-term temporal pat-

terns improve prediction accuracy?

5.4.1 Data Description

Both the proposed dynamic temporal context and the deep gated recurrent unit

model were applied to an existing real dataset collected from a typical busy ur-

banised arterial road between Manchester and Liverpool, UK. The dataset consisted

of three months of data collected from 1st January to 31st March 2016, with a time

horizon of five minutes (26,195 data points). Historic datasets, referred to as tempo-

ral data segments, were added as input features to give the data temporal context.

The temporal data segments added to the original dataset were the previous day,

week, month, and year, as shown in Table 5.2.

TABLE 5.2: The temporal datasets

Dataset Description
1 Current dataset with no temporal data segments
2 Current dataset with previous day temporal data segment
3 Current dataset with previous week temporal data segment
4 Current dataset with previous month temporal data segment
5 Current dataset with previous year temporal data segment
6 Current dataset with all temporal data segments

All temporal data segments were three months in length, with a time horizon

of five minutes, and 26,195 data points, to correspond with the original dataset. The

input data also included input features of different vehicle classes, as shown in Table

3.1, as different vehicle classes have been shown to improve prediction accuracy

[121].

Therefore, the total dataset contains 26,195 data points and 35 different input

features. Two months of the dataset were used to train and validate the framework
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and one month was used for validating and testing. No data points were missing,

therefore, no pre-cleaning of the data was necessary.

5.4.2 Model Architectures and Hyperparameters

There is currently no standard procedure or analytical calculation to determine the

optimal structure or set up for any neural network, therefore, the architecture and

hyperparameters of all neural networks used during experimentation were opti-

mised using prior knowledge from the literature review or heuristics through grid

search.

All weights and biases were randomly initialised and a dropout rate of 50% was

used based on research by Zhao, Chen, Wu, et al. [33]. All other hyperparameters,

such as the number of layers, nodes, and update window size, were determined

through brute force by a random grid search to find the optimal design.

The grid search searched through different architectural structures ranging from

two to six layers (excluding any input and output layers) and nodes ranging from 12

to 20 with different hyperparameters to find the optimal design. The different archi-

tectural structures and their variations were initially trained using the two months

of training data, as described in Section 5.4.3. The models’ weights and biases were

then continually updated during the one-month test data through online learning

(time series/rolling cross-validation).

The Adamax optimiser [93] was used to optimise the model’s learning rate based

on the data’s characteristics (a separate step size, known as the learning rate, for each

parameter) during both the training and test phase. Each variation of the models’

architectures was trained and tested 10 times and an average empirical error, based

on the performance metric described in Section 5.4.3, was taken. The architecture

that produced the lowest average empirical error was used for comparison.

5.4.3 Performance Metrics

To evaluate and compare the accuracy of all the models, the Root Mean Squared Er-

ror (RMSE), as shown in Equation 2.3, and the STATS [122], as shown in Equation

4.15, will be used was used. There were no external constraints to take into con-

sideration during experimentation. Therefore, when using the STATS performance

metric no upper or lower bounds were used and a priori equal weighting was given



86
Chapter 5. A Novel Online Dynamic Temporal Context Neural Network

Framework for the Prediction of Road Traffic Flow

to the accuracy and training time (wa = wb = 50) to express lack of specific weighted

preference.

5.4.4 The Evaluation of Different Temporal Data Segments and the Pro-

posed Dynamic Temporal Context Framework

To address research question one, how do different temporal data segments affect

prediction accuracy, we have applied a deep gated recurrent unit model to six dif-

ferent datasets containing different temporal data segments, as shown in Table 5.2).

TABLE 5.3: The prediction accuracy of different temporal datasets us-
ing a deep gated recurrent unit model for road traffic flow

Model Dataset RMSE (%) Accuracy Score Time Score Overall Score
GRU 1 14.64 0.00 100.00 57.32
GRU 2 13.95 28.92 95.24 62.08
GRU 3 13.58 36.79 85.71 61.25
GRU 4 14.01 26.42 90.47 58.45
GRU 5 14.57 3.08 80.95 42.02
GRU 6 13.57 44.58 14.28 29.43
DTC 6 12.24 100.00 0.00 50.00

Table 5.3 shows that the addition of any temporal data segment, even long-term,

improved the prediction accuracy of the model. Therefore, long-term temporal pat-

terns, such as monthly and yearly patterns, embedded within the data, have aided

the prediction model.

Table 5.3 also shows that the inclusion of the weekly temporal data segment pro-

vided the most improvement to the prediction accuracy, with an RMSE and a STATS

accuracy score of 13.575% and 28.92, respectively. The improvement was more than

the daily temporal data segment, which had an RMSE and STATS accuracy score

of 13.95% and 28.92, respectively. This will be due to the weekday and weekend

split linked to the working week, which traffic flow in most urbanised areas ex-

hibits. Furthermore, the inclusion of a yearly temporal data segment provided the

least improvement to the prediction accuracy, with an RMSE and a STATS accuracy

score of of 14.570% and 3.08, respectively. This will be due to issues such as concept

drift, changes to the road network, and the redevelopment of urbanised areas. In-

terestingly , including all temporal data segments improved the prediction accuracy

further, with an RMSE and an accuracy score of 13.574% and 44.58, respectively.

However, this improvement in accuracy has come at a cost to the training time, with

a STATS time score of 14.28. In conclusion, this shows that both short and long-term
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temporal patterns embedded within traffic flow data are important for the prediction

and can improve prediction results, but the improvement in accuracy is a trade-off

with training time.

To address research question two, can a dynamic temporal context framework

that can include both short-term and relevant long-term temporal patterns improve

prediction accuracy, the sixth dataset, as shown in Table 5.2, was used with the pro-

posed dynamic temporal context framework and its prediction results were com-

pared with a deep gated recurrent unit model. The results are shown in Table 5.3.

The proposed framework was more successful than the deep gated recurrent unit

model at predicting road traffic flow using the same existing real dataset (dataset

six from Table 5.2), with an RMSE of 12.244% and 13.574% and a STATS accuracy

score of 44.58 and 100, respectively. This not only demonstrates the importance of

temporal context for accurate road traffic flow prediction but also shows that the

temporal context must be relevant. Therefore, using the proposed dynamic temporal

context layer has enabled the framework to provide only relevant temporal data

segments to the regression model (deep gated recurrent unit model) dynamically in

real-time. This led to a 10.8% RMSE and a 40.42 STATS accuracy score improvement

in prediction. However, again the accuracy has been a trade-off with the training

time taken, with a STATS time score of 14.28 and 0, respectively.

5.5 Summary

In this chapter, we investigated different magnitudes of temporal patterns (short and

long-term) by using different temporal data segments to assess how contextual tem-

poral data affects prediction accuracy. Furthermore, we proposed a dynamic tempo-

ral context framework. The framework can dynamically incorporate both short and

relevant long-term temporal patterns. By using different temporal data segments

as input features the model can dynamically determine what temporal segments

are needed for regression in real-time. The different temporal data segments and

proposed framework were evaluated using an existing real dataset and compared

against a comparable prediction model (a deep gated recurrent unit model). The

experimental results show that the inclusion of any, short or long-term, temporal

pattern improves prediction accuracy. Furthermore, the proposed framework im-

proved prediction accuracy when compared to the deep gated recurrent unit model,
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with an RMSE of 12.244% and 13.574%, and a STATS accuracy score of 44.58 and 100,

respectively.

Based on these experimental results, the temporal patterns within road traffic

flow data are vital for accurate prediction. Therefore, could adding more temporal

patterns from a road network improve prediction accuracy further? The proposed

framework was designed for, and implemented, at one geographical location (RTSS).

Extending the model to include road network data would be computationally very

heavy. Furthermore, which geographical and temporal input features should be in-

cluded? There is currently no standard analytical method for the selection of input

features on a road network. This issue is complicated further by the very nature

of road traffic flow; road traffic flow on a road network is highly interdependent.

These interdependent relationships may improve prediction accuracy by providing

contextual information for the regression model. However, many input features may

be redundant due to the replication of similar temporal patterns (correlation). There-

fore, selecting the most discriminative input features for the prediction of road traffic

flow remains a challenging task that should be examined further.
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Chapter 6

A Novel Dynamic Exogenous

Feature Filter using Local Windows

for Deep Learning-based

Prediction of Road Traffic Flow

Chapter Summary

Due to dynamic input features that change over time and space and are highly cor-

related, how to select the most discriminative input features remains a challenging

task for the accurate prediction of road traffic flow. Therefore, in this Chapter, we

have examined the dynamic nature of the spatio-temporal input features’ correla-

tions in Section 6.4.2, and developed a novel dynamic exogenous feature selection

mechanism based on local windows and Spearman’s Rank correlation, in Section

6.3. The proposed method was compared to a state-of-the-art method, a dynamic

rolling window feature filter model in Section 6.4.3.

6.1 Introduction

Predicting real-time road traffic flow is a problematic task due to its dynamic and

heterogeneous in time and space with its numerous interweaving variables [68]

[123] [124], therefore, many researchers only consider one input feature, such as total

road traffic flow, for their prediction models [44]. However, a prediction model can

only be as good as its input data [40], so including more relevant input features can

help improve prediction accuracy as shown by Koesdwiady, Soua, and Karray who
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added weather conditions [68], and Wang, Zhao, Shao, et al. who added truck flows

[125]. Yet, in the era of big data, one of the main challenges is what input features

should be included in a prediction model. Adding too few input features can cause

a model to become too dependent on particular input features, leading to overfitting

and poor generalisation. Too many input features and a model may make decisions

based on noise, leading to slower training and issues with converging. The issue

is exasperated further by adding a spatial dimension to the input data. Although

machine learning models such as RNN, LSTM, and GRU have produced promising

results [46] [109] [38] extracting temporal features alone is not sufficient.

Spatial dependencies within the traffic data are vital for road traffic prediction

[126]. Consequently, spatial-temporal approaches to road traffic flow prediction, that

can model the interlacing relationships of the input features both temporally and

geographically, have increased in popularity in the last decade. However, what ge-

ographical locations should be included? The success of any road traffic prediction

model relies heavily on detecting and including these spatial dependencies [127].

Deciding what input features to use in a prediction model is a vital but difficult task

with no standard analytical approach.

Current research into feature selection methods can be divided into three cate-

gories: 1) wrapper methods, where the usefulness of individual features is based

on the prediction model’s performance, 2) embedded methods, similar to wrapper

methods the usefulness of individual features is based on performance, however, the

method is embedded into the prediction model, and 3) filter methods, where useful

input features are selected through analysis of their intrinsic properties.

Wrapper methods, such as permutation feature importance [128] and genetic al-

gorithms [129], and embedded methods, such as LASSO [130] and sparse autoen-

coders [99], despite their popularity, both suffer from a fundamental flaw. They both

assume that the relationship between the input features is temporally static, there-

fore, they only determine the global optimal subset of input features. Road traffic

networks are dynamic and suffer from concept drift. Concept drift occurs when the

probability distributions of the input features change over time. Concept drift can

develop suddenly in seconds or slowly evolve over months. The causes of concept

drift are, but are not limited to, road traffic incidents, road closures, public holidays,

special events, investment/redevelopment of geographical areas, or simply due to
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the time of day. This can result in input features that were originally deemed vi-

tal for road traffic prediction becoming unnecessary, or worse, input features that

were regarded as redundant and omitted may now be essential, leading to an inef-

fective model with poor prediction accuracy. Statically trained models suffer more

with concept drift as they can not update the model’s weights to account for changes

within the road network, however, online trained models [46] are not immune from

concept drift. Online models typically update the model’s weights when new input

data is available, but the input features used are not updated. This can result in

redundant input features being used, or worse, vital input features being omitted.

Filter feature selection methods, which included both exogenous and endoge-

nous methods, are computationally very fast. Therefore, despite previous research

focusing on the optimal offline global subset of input features, they would lend

themselves well to an online setting. Exogenous filters methods use pre-defined

spatial ’windows’ such as neighbouring nodes or upstream neighbour [131] [132]

[133] to determine which input features should be used. However, this method

also suffers from a fundamental flaw, it assumes that a road network’s dependen-

cies are spatially static and determined only by a node’s geographical proximity.

Spatial-temporal dependencies in a road network are not limited to adjoining roads

or even directly connected roads; relationships between remote nodes can occur due

to the interdependent nature of road traffic flows [134]. Furthermore, these rela-

tionships may not be a constant. Another issue with exogenous feature filters is

that neighbouring nodes often display similar temporal patterns due to road traffic

flow’s strong periodic patterns. Adding multiple similar input features to a predic-

tion model can cause a model to become too reliant on one temporal pattern, leading

to a lack of generalisation. Therefore, a dynamic feature filter not based on spatial

proximity is required.

Exogenous feature filters are not dependent on a road network’s spatial design

and instead filter input features based on statistical analysis. A common endogenous

feature filter used for road traffic flow prediction is correlation coefficient (CC) [135].

Most research models that use CC use Pearson’s bivariate correlation (PBC) [136]

[124] [132]. PBC measures the linear relationship between two sets of data where

the variables move in the same relative direction at a constant rate. A more suit-

able CC analysis would be the Spearman’s rank correlation coefficient (SRCC) [137];

SRCC can measure the monotonic relationship between two sets of data, therefore,
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can detect relationships where the variables move in the same relative direction, but

not necessarily at a constant rate, detecting more latent relationships within the road

traffic data. However, the limited papers that do use SRCC assume that the cor-

relation relationships within the data are fixed in both time and space, and can be

adequately described by a global correlation analysis [124]. The global correlation is

the measure of the spatial and temporal relationship between two road traffic sensor

sites (RTSS) for the whole dataset. However, it is well established that road traffic

flow is dynamic and patterns change during the course of a day, week, month and

even year [46] [124]. Therefore, a global correlation can not capture all the complex

relationships with a road traffic network. The local correlation is a measure of the

spatial and temporal relationship between two RTSSs using a subset of the dataset.

Some RTSSs may contain strong local correlates yet display no correlation over a

larger timespan or geographical area. Therefore, a local correlation would be more

suitable.

In this chapter, we propose a framework for road traffic prediction, which con-

tains a novel dynamic exogenous feature filter mechanism using SRCC and local

windows. This novel feature filter updates the input features delivered to the pre-

diction model to improve prediction accuracy. The proposed framework was com-

pared against three other prediction models: 1) a model with no feature selection, 2)

a model with static (global) feature selection, and 3) a state-of-the-art feature selec-

tion model using a ’rolling window’ [138], which, to the best of our knowledge, has

not been applied to road traffic data before.

The contributions and novelty of this chapter include:

1. we investigate the dynamic nature of the road traffic flow’s input features

by examining the spatial and temporal relationships between RTSSs. We use

SRCC to calculate the global and local correlations to determine if a global cor-

relation analysis is adequate enough to illustrate the relationships between the

RTSSs.

2. we propose a novel dynamic exogenous feature filter using Spearman’s Rank

Correlation Coefficient and local windows used in combination with a deep

neural network for the prediction of road traffic flow on a network. We com-

pare our proposed model to a deep neural network with no feature selection
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filter, a statically (global) chosen feature selection, and a state-of-the-art online

rolling window [138] feature selection.

6.2 Literature Review of Feature Selection Methods

Feature selection methods (FSMs) are a technique used to select the most important

input features for a prediction model. What is defined as important depends upon

the method employed. The FSMs can be broadly split into three main categories: 1)

wrappers methods (supervised), 2) embedded methods (supervised), and 3) filters

methods (unsupervised) [139], as shown in 6.1.

FIGURE 6.1: Feature selection methods, such as filter, wrapper, and
embedded method [140]

6.2.1 Wrapper Methods

Wrapper methods measure the usefulness of individual features based on the pre-

diction model’s performance. The method performs multiple evaluations of the pre-

diction model using every possible combination of input features to determine the

optimal subset of input features, evaluated on an empirical measure such as RMSE

or MAPE. Wrappers methods include, but not limited to, permutation feature impor-

tance [141], genetic algorithms (GA) [142], and recursive feature elimination [143].

Ou, Xia, Wu, et al. [128] used permutation feature importance, derived from ran-

dom forests, to quantify the importance of each input feature. A ’data-driven feature

selection strategy’ was then used to select input features for the prediction model

(also a random forest). The accuracy of the model, measured by the RMSE, MA,
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and MAPE, was then compared to 10 other models. The results show that the pro-

posed model was more accurate but no real discussion of the model’s complexity or

computational time was made. A notable feature of random forests is their ability

to measure feature importance, through permutation importance measure, during

training without the need for additional training time. However, adding a data-

driven FS strategy to the model will add complexity and therefore, computational

time to the model. For example, when the proposed model is compared with the

ARIMA model the average RMSE is 9.70 and 10.89 respectively. The training time,

in seconds, is 350.01 and 0.71. This is a monumental difference which questions

the real-life application of the model. Furthermore, the model suffers from a major

theoretical flaw. It has assumed that the important input features are static. Past re-

search has shown that road traffic flow is complex and stochastic in nature [68] and

therefore, the inter-dependent nature of the input features can change over time.

Chen, Wei, Liu, et al. [129] used a GA for feature selection in a proposed novel

sparse hybrid GA model for the prediction of road traffic flow. The model contains

a sparsity constraint and real encoding scheme in the GA for spatial and temporal

input feature selection, reducing the number of input features used in the prediction

model. A Least Squares Support Vector Regression (LSSVR) model was then used

for prediction. Results show that the proposed model performed better with fewer

spatial-temporal variables when compared to other models. However, again no dis-

cussion of the model’s complexity was had, nor was the training time reported. It

would be interesting to compare the prediction models based on model complex-

ity/training time as well as accuracy for a more complete evaluation: e.g. is the

trade-off between accuracy and time appropriate or even required? Furthermore,

this method also assumes that the relevance of the input features remains static over

time.

In conclusion, although wrapper methods can produce accurate results they are

prone to overfitting and computationally very heavy [144]. Consequently, they are

used to generate a subset of input features that are a constant and not suitable for

online dynamic input feature selection.

6.2.2 Embedded Methods

Embedded feature selection methods are similar to wrapper methods as they are

also based on the empirical performance of the model. However, the method is
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embedded into the prediction model, unlike wrapper methods, making them less

computationally heavy. Embedded methods included, but not limited to, LASSO

method [130], LSTM method [106], and structural risk minimisation method.

Zhou, Hong, Xing, et al. [145] proposed a Two Level Hierarchies with time Lag

Lasso (TLHL) model for the prediction of road traffic flow based on the idea of com-

bining causality (through time lags) with regression. The model contained a LASSO

regression model, which can select input features by shrinking them towards a cen-

tral point (like the mean) and therefore, eliminating irrelevant input features by re-

ducing them to zero. The proposed model was compared to a regular LASSO with

no causality relationship, a LASSO with a fixed time lag causality, and a Granger

LASSO. The results showed that TLHL model performed best. The main issue with

the LASSO feature selection method for road traffic flow input features is that it

assumes that the relationships between the input features are static and therefore,

during the training phase determines the global relevant input features. No consid-

eration is given to the dynamic dependencies within the road traffic flow data.

In conclusion, embedded methods are less prone to overfitting and computation-

ally faster than wrapper methods, however, they are still computationally heavy and

not suitable for dynamic online learning feature selection.

6.2.3 Filter Methods

Filter feature selection methods, the main category used for road traffic prediction

models, selects input features through analysis of their intrinsic properties and can

be separated into two distinct sub-classes: 1) exogenous and 2) endogenous.

Exogenous filters, the most commonly used FSM for road traffic flow prediction,

are filters based on spatial connectivity within the road structure/network. Popular

methods include, but not limited to, only using direct neighbouring nodes, upstream

neighbouring nodes, a fixed ’window’ of nodes [131] [133], or a network weight

matrix [132].

Cao, Ren, and Li [133] transformed their data into a 2-channel ’image like’ struc-

ture to capture all the nodes’ input features. A residual convolutional unit was

then applied to model the spatial-temporal relationships of the road traffic flow. Its

output was then fused with the output of two other residual neural networks and

weights were assigned to different nodes. Cao, Ren, and Li reported that the model’s
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predictions outperformed traditional neural networks with no feature filter. How-

ever, while the paper reported good results, the local ’neighbours’ in a CNN struc-

ture are determined by the window size used. Therefore, assumptions about the

road network must be made. This causes two main issues, which can not be solved

simply by increasing or decreasing the dimensions of the window. First, a CNN

will assume relationships between nodes within the window where no relationship

may exist. Similarly, it fails to include relationships between two nodes where a

relationship may be present, due to the nodes falling outside the window’s bound-

ary. This problem is exasperated further by the second issue, the operation used

by CNNs. A CNN uses a co-variance operation that operates a bi-directional rela-

tionships between the input features. Consequently, CNNs assume a bi-directional

relationship across all its input features within its window. In many real-life data

structures, such as road traffic networks, this is not true. A road traffic network

structure may include both bi-directional and unidirectional relationships. Further-

more, a bi-directional relationship may only be relevant during saturation periods,

such as rush hour periods or during road traffic incidents, resulting in the model

searching for irrelevant relationships and adding unnecessary computational time.

Therefore, the main issue with an exogenous filter, like the one detailed above, is

its rigidity in using pre-defined spatial ’windows’. The filter needs to be more dy-

namic to truly capture the heterogeneous nature of road traffic flow. Furthermore,

its assumptions that the road network’s dependencies are static and determined by

a node’s geographical location can cause issues. While some neighbouring nodes

may influence a node’s traffic flow, this may not be a constant and there may be re-

lationships between indirectly connected nodes. Therefore, exogenous filters are not

suitable for dynamic feature selection.

Endogenous filters are still based on the intrinsic properties (through statisti-

cal analysis) of the input features however, they make no assumptions of the road

network’s spatial design. Endogenous filters include correlation coefficient [135],

variance thresholds, and information gains.

Li, Jiang, Li, et al. [132] noted that adding all input features to a prediction model

was not the best practice and sought to compare feature selection methods for road

traffic flow prediction models. Li, Jiang, Li, et al. compared three different methods:

1) graphical LASSO, 2) geographical neighbours (a network weight matrix), and 3)

correlations. The results were mixed, showing no clear superior method. However,
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the research used Pearson’s bivariate correlation (PBC) [136]. PBC is a measure of the

linear relationship between two sets of data, where the variables move in the same

relative direction at a constant rate. Using a different correlation calculation, such as

SRCC [137] may have produced different results. SRCC can measure the monotonic

relationship between two sets of data, therefore, can detect relationships where the

variables move in the same relative direction, but not necessarily at a constant rate.

Furthermore, Li, Jiang, Li, et al. assumed that the correlation relationships within the

data were fixed in both time and space and therefore, only calculated a global (static)

correlation coefficient.

In conclusion, filter methods are computationally less heavy when compared

with wrapper and embedded methods, therefore, endogenous filters, in particular,

lend themselves well to online learning.

6.3 Methodology

We have proposed a framework containing an online prepossessing component in

the input layer to select relevant input features. The novel dynamic exogenous fea-

ture filter uses Spearmen’s rank correlation coefficient and three predefined tempo-

ral windows, known as local windows, to periodically update the input features in

real-time before it is passed through to the regression model. The model is defined

in more detail below. Furthermore, for the regression model used within the ensem-

ble framework architecture, we have extended our online model [46] to allow for

multiple RTSSs (a road network) to be added to the input data. All adaptations are

detailed below.

The framework is divided into three components: 1) the input layer, 2) the model

layer, and 3) the update scheme layer, as seen in Fig. 6.2.

6.3.1 Input Layer

The input layer comprises the input data, including the current network data seg-

ments and the historical network data segments, and the dynamic exogenous feature

filter mechanism. Each element will be defined in more detail.
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FIGURE 6.2: The proposed framework

Input Data

The proposed ensemble framework has two sources of input data from the road

network for the input data layer. The two sources of data are: 1) the current network

observations dataset (D1), and 2) the historical temporal and spatial data segments

(D2).

The current network observations dataset (D1) is a 3D array. D1 contains six

input features ( f ). The input features are the total traffic flow categorised into six

different vehicle types ( fi ⇒ i ∈ Z : 1 ≤ i ≤ 6), as shown in Table 3.1, overtime (t)

from all 13 different RTSSs (sn ⇒ n ∈ Z : 1 ≤ i ≤ 13) as shown in Table 6.1. Vehicle

classes were used as input features ( f ) for the prediction model based on previous

research [121] that demonstrated that vehicle classes have their own latent patterns

and including them as different input features improves prediction accuracy.

The historical temporal and spatial data segments dataset (D2) is a 3D array,

as shown in Figure 6.3. D2 contains the historical temporal data segments for all

13 RTSSs (S). The dataset’s time steps have a time horizon of 5 minute, there-

fore, the historical temporal data segments are historical data from the previous day

(d = t − 288), week (w = t − 2, 016), and month (m = t − 8, 064) prior to the point

of prediction (t + 1). Due to COVID-19 affecting the input data a one-year historical

temporal segment was omitted. Each temporal data segment contains the break-

down of the total traffic flow into six different vehicle types (as shown in Table 3.1,

mirroring the current network dataset, D1. Both the current network dataset (D1)

and the historical temporal and spatial data segments (D2) are passed to the online

correlation filter, while the current network dataset (D1) is also fed directly to the

regression model (gated recurrent model detailed below).
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FIGURE 6.3: The historical network data (D2) which includes tempo-
ral segments of a day, week, month and year

Dynamic Exogenous Feature Filter Mechanism

The novel dynamic exogenous feature filter mechanism aims to remove unnecessary

or redundant input features before they are passed through to the model layer. In

the era of big data, vast amounts of input features are available to be incorporated

into regression models. While additional input features, such as different vehicle

classes, can improve prediction accuracy [46] adding unnecessary or redundant in-

put features can negatively affect the computational time of the model and increase

the likelihood of overfitting. Therefore, a vital part of model development is filtering

out unnecessary and redundant input features.

Choosing an appropriate data filter is entirely dependent on the data type and

its characteristics. Road traffic flow on a road network, due to its strong periodic

patterns, is highly correlated. This correlation can lead to some input features be-

coming redundant. Therefore, a correlation filter would be suitable for road traffic

flow data.

To calculate the crosscorrelation the Spearman’s rank correlation coefficient (SRCC)

[137] was used. Most research papers on correlation and road traffic use Pearson’s

bivariate correlation (PBC) [136] [124], however, SRCC was chosen over PBC due to

SRCC being non-parametric. SRCC can measure the monotonic relationship between

two sets of data, therefore, can detect relationships where the variables move in the

same relative direction, but not necessarily at a constant rate. PBC is a measure of
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the linear relationship between two sets of data, therefore, can only detect linear

relationships where the variables move in the same relative direction at a constant

rate. SRCC is also less sensitive to outliers. Road traffic flow, especially in urbanised

areas, can be volatile and susceptible to sudden changes due to road traffic incidents

or road traffic flow reaching a road’s saturation point. Therefore, the model must

be able to cope with outliers. Lastly, PBC assumes the input data is homoscedastic;

road traffic flow is heteroscedastic.

SRCC, used for road traffic flow correlation where the RTSS one (s1) is the point

of prediction can be defined as

sr = ρR(s1
fi
), R(sm

fi
) =

COV(R(s1
fi
), R(sm

fi
))

σR(s1
fi
), σR(sm

fi
)

(6.1)

where ρ denotes the Pearson’s correlation, fi is the input feature ( fi ⇒ i ∈ Z : 1 ≤ i ≥ 6),

and sn denotes the RTSS. In this equation sm ⇒ m ∈ Z : 2 ≤ m ≥ 13. RTSS one is ex-

cluded as it is the point of prediction; the site all other sites are compared to. There-

fore, RTSS one (s1) is included on the left side of Equation 6.1.

Therefore, if all points in the input feature’s dataset (Fi = fi,t, fi,t−1, fi,t−n) ranks

are all distinct integers then

sr = 1 −
6 ∑ d2

( fi ,tn)

n(n2 − 1)
(6.2)

where

d( fi ,tn) = R
(

s1
( fi ,tn)

)
− R

(
sn
( fi ,tn)

)
(6.3)

One issue with SRCC, and PBC, is that it computes the global relationship (corre-

lation) between the input features within the dataset. However, as previously stated,

road traffic flow is complex and stochastic [68]; it is both dynamic and heterogeneous

in time and space [124]. Therefore, the correlation relationships within the data will

be dynamic, and any model used to assess the correlation in road traffic flow should

accommodate this dynamic nature.

We propose a dynamic local windows mechanism. The dynamic local windows

mechanism uses three predefined temporal windows (w). For the input features ( fi

and fi ⇒ i ∈ Z : 1 ≤ i ≥ 6) as stated in Table 3.1, cut points (k1, k2), are, in ascending

order, selected for f1 and fi. It is generally accepted that road traffic patterns in
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urbanised areas during weekdays display three distinct sections: 1) morning rush

hour peak, 2) midday trough, and 3) evening rush hour peak [124], which can be

seen in Figure 6.5. Therefore, these smaller patterns (7:00AM to 11:00AM, 11:00AM

to 3:00PM, and 3:00PM to 7:00PM) will be used for the local windows for weekday

road traffic flow data. A two-dimensional matrix, denoted as K is then produced to

store the data points that fall within the cut points (k1, k2). The only data that will be

used to calculate the local correlations within the windows will be the training data,

as defined in the Experimental Evaluation section.

Dynamic Rolling Window Filter Feature

We also present a second model for comparison, a state-of-the-art model which also

uses local correlations. The model calculates the local correlations through an online

rolling window algorithm [138] for streaming data. Therefore, we have adapted this

methodology for road traffic flow. The online dynamic model which uses streaming

data and a rolling window is used during the testing process to continually update the

K matrix. The model uses the previous static windows model’s input feature selec-

tion as a starting point then as a new data point
(

s1( f1,t+1, ..., f6,t+1), ..., s13( f1,t+1, ..., f6,t+1)
)

becomes available the cut points are moved along from k1 and k2 to k1 + 1 and k2 + 1

and the new data point is added to the K matrix while the oldest data point is re-

moved. The SRCC is then recalculated at every model iteration. The size of the

window will be determined during the testing phase using brute force trial and er-

ror.

Therefore, given the site of prediction, RTSS one (s1 ∈ f1,tn , f1,t2 , ..., f6,tn), the

SRCC can be calculated as

sr

∑t
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fi
)
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(6.4)

The current traffic flow data at RTSS one is fed directly to the regression layer,

while the remaining traffic flow data (various sites and temporal segments) is up-

dated based on the SCRR results and any highly correlated input features are re-

moved, then passed through to the regression layer.
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6.3.2 The Model and Update Scheme Layer

Building on our previous work in Chapter 5 and paper [46], we have extended the

model layer to allow for for multiple RTSSs in the input data. The model layer

includes two different neural network architectures: 1) a dynamic temporal context

(DTC) model architecture, and 2) a regression model architecture.

Different to existing time-series models using CNN, where the prediction models

are based on static data, the DTC model is dynamic and seeks to find a relationship

between different magnitudes of temporal data segments. The DTC model takes in

various magnitudes of temporal data, D2 (one hour, one day, one week, one month,

one year), and uses a convolutional neural network (CNN) [35] to create the current

dataset (C), which is then passed on to the regression model. The model’s architec-

ture has been adapted to include more nodes to accept multiple RTSS data, such as

dataset D2, as shown in Figure 6.3.

The keys points of the DTC model are;

1. Temporal segments are used as an input feature, therefore, the CNN’s kernel

(k) scrolls across the temporal data and not down like in traditional CNN ar-

chitectures.

2. The kernel (k) used to scroll across the temporal data segments (D2) is rect-

angular and not square as in traditional CNN arrangements. Instead, a matrix

the size of one by the number of input features within the temporal data seg-

ment is used. Therefore, it only considers (convolves) all the data within the

temporal data segment at one time point at once and at one RTSS.

3. The kernel’s (k) stride in typical CNN setups is one. However, in the DTC

model, the stride is the same size number of input features within the temporal

data segment. Therefore, each temporal data segment is only considered once

every pass.

4. The model does not use any ’padding’ which is typically used in CNN architec-

tures to return the input data to its original size. Downsampling is purposely

used so the model only retains the most relevant temporal features.

The current dataset, C, is passed through to the regression architecture. For the

regression, based on previous research [122], the model uses a deep a gated recurrent

unit (GRU) architecture. A GRU model works through the use of gates; each gate is
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a neural network. The gates included in a standard GRU cell are an update gate and

a forget gate, as shown in Figure 4.3 to make predictions.

A more detailed explanation of the DTC model can be found in Section 5.3.1 and

the published paper [46].

6.4 Experimental Evaluation

In this section we focus on two research questions: 1) is a global correlation suffi-

cient to capture the relationships between the road traffic flows’ spatial and tempo-

ral input features? 2) can a novel dynamic exogenous feature filter method for the

prediction of road traffic flow on a network improve prediction accuracy?

6.4.1 Data Description

A real dataset was used for experimentation. The dataset contained thirteen RTSSs

around Manchester city centre, each site is positioned on all the primary roads that

join the inner ring road encircling Manchester’s city centre (as seen in Figure 6.4).
18/02/2021 Multi-node map

https://tfgmc2.drakewell.com/multinodemap.asp?sgid=wdiwfhoupenh2liwp5gpgq 1/1

Maps © Thunderforest (https://www.thunderforest.com), Data ©
OpenStreetMap contributors (https://www.openstreetmap.org/copyright)

500 m
2000 ft

Close Data set     
+
−





 (c2

FIGURE 6.4: A map of Manchester illustrating the geographical loca-
tions of the thirteen RTSSs, depicted as blue dots, chosen for the test

case

A detailed list of the RTSSs and their orientation can be found in Table 6.1. The

dataset contained data from 1st January 2020 to 31st March 2020 (90 days) and had

a time step of five minutes (25920 time points). Each RTSS also contained input

features of different vehicle classes, as shown in Table 3.1, as different vehicle classes
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have been shown to improve prediction accuracy [121]. Therefore, the input data is

a 3D array of 7 by 25920 by 13.

Site Name Geographical Location Orientation
1026 Chapel St (A6) / 5m W of Great George St, Salford (ATC) E
1161 Princess Rd (A5103) / 100m N of Bonsall St, Hulme, Manchester (ATC) N
1165 Ardwick Green (A6) / 35m E of Hamsell Rd, Ardwick, Manchester (ATC) SE
1368 Cheetham Hill Rd (A665) / 15m N of Knowsley St, Collyhurst, Manchester (ATC) N
1410 Regent Rd (A57) / 105m W of Ordsall Ln, Salford (ATC) E
1412 Oldham Rd (A62) / 40m SW of Poland St, Ancoats, Manchester (ATC) NE
1413 Rochdale Rd (A664) / 20m SW of Peary St, Ancoats, Manchester (ATC) SW
1414 Upper Brook St (A34) / 80m N of Cottenham St, Manchester (ATC) SE
1415 Chester Rd (A56) / 25m SW of Barrack St, Manchester (ATC) NE
1416 Ashton Old Rd (A635) / 90m E of Chancellor Ln, Ancoats, Manchester (ATC) E
1418 Ashton New Rd (A662) / 130m W of Hillkirk St, Manchester (ATC) E
1419 Great Ducie St (A56) / 10m S of Sherborne St, Manchester (ATC) SE
1420 Blackfriars Rd (A6041) / 15m NW of Greengate W, Salford (ATC) SE

TABLE 6.1: Details of the RTSS’s geographical location, including
their orientation.

6.4.2 Research Question One

Road traffic flow is dynamic, its temporal, spatial, and heterogeneous patterns can

change daily, weekly, monthly, and even yearly [46]. Furthermore, these patterns

evolve, due to concept drift, or can suddenly shift due to road traffic incidents.

Therefore, the relationships between road traffic flows at different geographical lo-

cations (RTSSs) are also dynamic. In this section, we aim to answer research ques-

tion one, is a global correlation sufficient to capture the relationships between the

road traffic flows’ spatial and temporal input features, by investigating the dynamic

nature of these input features (road traffic flow broken down by vehicle class). We

examine their dynamic relationships by analysing their global and local correlations.

The total traffic flow training data for each RTSSs location (22 days from 7:00AM

to 7:00PM) was used to create an ’average day’, as shown in Figure 6.5. Bank holi-

days and weekends were omitted due to road traffic patterns shifting considerably

from weekday to weekend.

Each RTSSs location shows a similar daily pattern, with differences in volume

being attributed to the different roads’ capacities. This was to be expected as it is well

established that road traffic flow in urbanised areas exhibits strong daily periodic

patterns (autocorrelated) [124]. However, despite using the averages the plotted

lines are still extremely jerky and not smooth; this indicates the road traffic flow’s

dynamic and heterogeneous nature.
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FIGURE 6.5: The average weekday road traffic flow for all thirteen
RTSSs

It is generally accepted that traffic patterns in urbanised areas display three dis-

tinct periods during weekdays: 1) morning rush hour peak, 2) midday trough, and

3) evening rush hour peak [124], which can be seen in Figure 6.5. Therefore, these

smaller patterns will be investigated further when exploring the input feature’s cor-

relation changes over time. These three distinct periods will be the local correlations.

First, the crosscorrelation of all the weekdays (excluding bank holidays), across

all sites, using all vehicle classes (Table 3.1), was calculated (Equation 6.4) the point

of prediction (RTSS 1161, as shown in Table 6.1) as the reference point. This is re-

ferred to as the global correlation hereafter. Next, the correlations for each of the

three temporal segments (7:00AM to 11:00AM, 11:00AM to 3:00PM, and 3:00PM to

7:00PM) shown in Figure 6.5, known as the local correlations, were calculated and

the results were compared.

Table 6.2 show that the global correlation input feature two, cars or vans, is

highly correlated across all sites, with an average crosscorrelation of 90%. Geograph-

ical distance from the reference site (1161) bears no influence on the correlation. This

is most likely due to input feature two, cars or vans, being the dominant input fea-

ture and with strong periodic patterns due to commuting traffic. Variable four, rigid

goods, is also well correlated with an average correlation of 48%, however, it has

a large range (26% to 5%) when compared to input feature two (82% to 92%). The
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1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 0.27 0.60 0.15 0.53 0.20 0.08 0.04 0.50 0.15 0.47 0.07 -0.06 0.03 0.08 0.01 0.01 -0.01 -0.04 0.06 0.31 0.01 0.09 -0.01 -0.02
2 0.37 0.82 0.20 0.79 0.23 0.11 0.06 0.47 0.11 0.41 0.14 0.03 0.06 0.11 -0.01 -0.06 0.10 -0.05 0.00 0.18 0.01 0.04 0.02 -0.06
3 0.10 0.18 0.03 0.13 0.06 0.01 0.04 0.08 -0.05 0.00 0.07 0.06 0.02 0.04 -0.01 0.00 0.04 0.01 0.05 0.06 0.00 0.06 -0.03 -0.03
4 0.38 0.66 0.16 0.58 0.35 0.10 0.14 0.06 -0.01 -0.01 0.07 0.10 0.12 0.13 0.02 -0.10 0.16 -0.03 0.02 0.13 0.02 0.05 0.10 0.02
5 0.31 0.62 0.15 0.52 0.23 0.08 0.08 0.23 0.09 0.20 0.04 0.08 0.06 0.18 0.04 -0.05 0.08 0.04 0.02 0.12 0.00 -0.03 0.06 0.01
6 0.35 0.65 0.15 0.58 0.29 0.10 0.07 0.05 0.01 0.08 0.07 0.09 0.09 0.15 0.05 -0.07 0.14 -0.03 0.02 0.14 0.01 -0.03 0.10 0.04
1 0.25 0.46 0.11 0.41 0.21 0.08 0.08 0.16 0.06 0.16 -0.02 -0.01 0.09 0.08 -0.01 0.02 0.12 -0.01 0.06 0.09 0.04 -0.01 0.11 0.05
2 0.41 0.91 0.22 0.82 0.26 0.12 0.09 0.64 0.14 0.60 0.10 0.00 0.09 0.37 -0.01 -0.15 0.01 -0.04 0.04 0.27 0.06 0.08 0.13 0.06
3 0.12 0.22 0.03 0.19 0.13 0.02 0.03 0.10 -0.03 0.08 0.02 -0.03 -0.02 0.05 -0.06 0.00 0.01 -0.05 -0.03 0.03 0.02 0.06 0.06 0.04
4 0.35 0.56 0.13 0.51 0.40 0.11 0.15 -0.12 0.02 -0.13 0.12 0.17 0.11 0.05 -0.01 -0.05 0.16 0.01 0.01 -0.04 0.00 0.03 0.21 0.13
5 0.24 0.36 0.08 0.31 0.26 0.09 0.05 -0.01 0.01 -0.03 0.08 0.12 0.16 0.08 -0.01 -0.07 0.11 0.03 0.03 0.02 -0.02 0.02 0.09 0.06
6 0.38 0.73 0.16 0.64 0.30 0.13 0.12 -0.34 -0.08 -0.33 0.13 0.21 0.07 0.07 -0.01 0.00 0.12 -0.01 0.05 0.14 -0.02 0.00 0.06 0.00
1 0.27 0.55 0.12 0.47 0.17 0.04 0.07 0.06 0.03 0.11 0.10 0.05 0.09 0.21 -0.02 -0.10 0.04 -0.04 0.06 0.15 0.00 0.06 0.05 -0.04
2 0.41 0.92 0.21 0.80 0.22 0.09 0.07 0.66 0.13 0.57 0.08 -0.03 0.02 0.33 0.00 -0.08 0.05 -0.06 0.04 0.43 0.00 0.07 -0.01 -0.05
3 0.09 0.12 0.03 0.10 0.09 0.02 -0.05 -0.04 -0.03 -0.04 0.07 0.00 0.09 0.04 0.03 0.00 -0.04 -0.03 0.02 0.02 -0.04 0.03 0.07 0.03
4 0.33 0.58 0.14 0.51 0.32 0.10 0.09 -0.07 -0.02 -0.11 0.06 0.17 0.09 0.08 -0.04 -0.04 0.08 0.02 -0.01 0.04 -0.02 0.03 0.12 0.07
5 0.09 0.17 0.05 0.15 0.12 0.05 0.00 0.09 0.03 0.08 0.00 -0.02 0.03 0.05 -0.01 -0.06 0.08 0.05 -0.01 -0.01 -0.01 0.04 0.06 0.03
6 0.21 0.44 0.11 0.43 0.18 0.10 0.07 0.04 0.02 0.03 0.04 0.05 0.06 0.10 -0.02 -0.02 0.08 -0.05 0.01 0.05 0.01 -0.02 0.04 -0.03
1 0.22 0.46 0.10 0.43 0.13 0.06 0.05 0.28 0.04 0.24 0.05 -0.02 0.05 0.12 -0.05 -0.02 0.04 0.02 0.04 0.15 -0.01 0.03 -0.01 -0.03
2 0.41 0.90 0.21 0.79 0.26 0.08 0.09 0.66 0.17 0.48 0.08 -0.10 0.10 0.44 0.00 -0.21 0.09 -0.03 -0.04 0.09 0.05 0.11 0.08 0.06
3 0.18 0.33 0.08 0.29 0.20 0.04 0.05 0.12 0.05 0.05 0.07 0.03 0.04 0.12 0.01 -0.02 0.04 0.02 -0.03 0.00 -0.05 0.12 0.04 0.03
4 0.31 0.45 0.11 0.40 0.42 0.09 0.15 -0.09 -0.05 -0.13 0.14 0.16 0.09 0.04 -0.03 -0.08 0.20 0.02 0.07 0.01 -0.01 0.04 0.16 0.08
5 0.28 0.42 0.10 0.37 0.33 0.09 0.13 0.13 0.00 0.13 0.11 0.16 0.09 0.07 0.02 -0.04 0.15 0.04 0.10 0.19 0.01 -0.01 0.04 0.04
6 0.13 0.27 0.07 0.27 0.12 0.05 0.02 0.10 0.01 0.08 0.00 0.02 -0.02 0.08 0.03 0.01 0.05 -0.06 0.02 0.01 -0.03 -0.05 -0.03 0.06
1 0.19 0.37 0.09 0.34 0.13 0.04 0.05 0.20 -0.01 0.16 0.04 -0.02 0.04 0.06 0.03 -0.01 0.01 -0.01 0.05 0.11 0.01 -0.02 0.06 0.00
2 0.42 0.92 0.22 0.82 0.24 0.09 0.11 0.68 0.15 0.54 0.09 -0.08 0.05 0.30 0.07 -0.04 -0.01 -0.08 0.06 0.39 0.00 0.08 -0.02 -0.02
3 0.07 0.16 0.04 0.16 0.09 0.05 0.00 0.04 0.01 0.08 -0.02 0.03 -0.02 0.05 0.02 -0.01 -0.02 -0.02 -0.04 -0.01 -0.02 0.07 0.06 0.01
4 0.25 0.31 0.08 0.26 0.37 0.08 0.15 -0.03 0.02 0.00 0.10 0.14 0.13 0.08 -0.03 -0.06 0.16 0.01 0.03 -0.01 0.02 0.00 0.18 0.08
5 0.16 0.24 0.06 0.21 0.18 0.08 0.08 0.05 -0.01 0.07 0.03 0.04 0.00 0.01 0.00 0.04 0.11 0.02 0.04 -0.01 -0.02 0.01 0.07 0.03
6 0.36 0.69 0.16 0.62 0.29 0.10 0.05 0.03 -0.01 0.15 0.11 0.11 0.07 0.13 0.01 -0.03 0.07 0.01 0.05 0.17 -0.02 0.03 0.11 0.01
1 0.09 0.18 0.05 0.17 0.05 0.03 0.04 0.15 0.02 0.17 -0.04 0.02 0.01 0.07 0.01 0.00 -0.02 0.00 0.04 0.12 0.07 0.02 -0.04 0.00
2 0.41 0.91 0.21 0.82 0.25 0.09 0.10 0.69 0.18 0.60 0.10 -0.09 0.02 0.29 -0.03 -0.04 0.07 -0.05 0.03 0.34 -0.02 0.11 0.03 -0.03
3 0.08 0.16 0.03 0.12 0.06 -0.01 0.03 -0.01 0.01 0.01 -0.01 -0.04 -0.02 0.01 -0.03 -0.05 0.07 0.00 0.02 0.11 0.01 0.04 0.00 -0.06
4 0.28 0.46 0.11 0.40 0.32 0.09 0.09 0.03 0.02 0.02 0.11 0.08 0.12 0.13 -0.06 -0.06 0.17 -0.02 -0.01 0.19 0.02 0.07 0.10 -0.01
5 0.14 0.28 0.07 0.23 0.11 0.05 0.03 0.01 -0.05 -0.05 0.08 0.03 0.01 0.03 0.01 0.01 -0.01 -0.03 0.00 0.15 0.05 0.04 -0.02 0.03
6 0.37 0.72 0.17 0.65 0.30 0.10 0.12 0.05 0.00 0.06 0.12 0.10 0.05 0.14 0.05 0.00 0.12 -0.03 0.05 0.19 0.04 0.01 0.08 0.02
1 0.23 0.49 0.11 0.42 0.12 0.10 0.08 0.20 0.07 0.18 0.07 0.06 0.02 0.13 -0.02 -0.05 0.05 0.02 0.01 0.17 0.01 0.03 -0.01 0.00
2 0.42 0.91 0.22 0.80 0.25 0.13 0.08 0.62 0.14 0.60 0.11 0.03 0.12 0.48 -0.02 -0.25 0.10 -0.04 0.01 0.32 0.06 0.17 0.12 0.01
3 0.08 0.13 0.02 0.10 0.08 0.00 0.07 0.02 0.01 0.02 0.02 -0.02 0.02 0.07 -0.05 -0.05 0.05 -0.02 0.02 0.00 -0.01 0.00 0.07 -0.03
4 0.31 0.55 0.14 0.49 0.34 0.11 0.11 0.09 0.01 0.05 0.14 0.09 0.02 0.06 0.05 -0.06 0.14 -0.01 -0.02 0.04 0.00 0.06 0.14 0.14
5 0.21 0.38 0.08 0.29 0.20 0.05 0.07 0.09 -0.02 0.11 0.11 -0.01 0.07 0.14 0.01 -0.12 0.09 -0.01 0.04 0.12 0.00 0.01 0.11 0.06
6 0.19 0.36 0.10 0.33 0.15 0.09 0.05 0.07 0.04 0.14 0.09 0.08 0.03 0.07 0.03 -0.03 0.06 -0.01 -0.07 0.09 -0.02 0.03 -0.04 -0.03
1 0.21 0.47 0.11 0.44 0.11 0.06 0.03 0.38 0.04 0.34 0.04 -0.02 0.03 0.11 0.00 -0.01 -0.01 0.00 0.02 0.12 0.01 0.01 0.00 -0.05
2 0.42 0.92 0.22 0.84 0.26 0.13 0.08 0.74 0.16 0.66 0.06 -0.07 0.12 0.50 0.02 -0.19 0.06 -0.08 0.02 0.38 0.04 0.20 0.04 0.02
3 0.16 0.37 0.10 0.32 0.11 0.07 0.05 0.27 0.03 0.20 0.05 0.03 -0.02 0.06 -0.01 0.03 0.04 0.02 0.05 0.15 0.03 0.06 0.02 0.04
4 0.39 0.72 0.17 0.65 0.35 0.13 0.12 0.08 -0.01 0.00 0.11 0.10 0.13 0.16 -0.04 -0.13 0.06 -0.01 -0.03 0.01 -0.01 0.07 0.18 0.13
5 0.31 0.51 0.13 0.44 0.34 0.09 0.13 0.17 0.05 0.11 0.08 0.09 0.07 0.11 -0.04 -0.07 0.10 -0.01 0.00 0.11 0.03 0.04 0.16 0.09
6 0.10 0.17 0.05 0.16 0.07 0.07 0.02 -0.02 -0.01 -0.05 -0.02 0.10 0.03 0.05 0.03 -0.02 0.10 0.00 0.06 0.02 0.01 -0.08 -0.02 -0.03
1 0.29 0.64 0.14 0.58 0.19 0.07 0.04 0.22 0.03 0.17 0.03 -0.02 0.06 0.06 -0.02 0.00 0.07 0.03 0.01 0.20 0.03 0.13 0.04 0.03
2 0.42 0.88 0.22 0.82 0.32 0.13 0.06 0.76 0.16 0.68 0.11 -0.06 0.10 0.42 0.03 -0.17 0.04 -0.05 0.01 0.12 0.01 0.05 0.11 0.11
3 0.19 0.45 0.10 0.36 0.11 0.03 0.01 0.17 0.04 0.08 0.05 0.00 0.05 0.14 -0.02 -0.05 0.03 -0.04 -0.05 0.17 -0.01 0.09 0.05 0.03
4 0.35 0.58 0.15 0.51 0.39 0.10 0.12 -0.06 -0.03 -0.08 0.13 0.12 0.12 0.12 0.00 -0.05 0.15 0.04 0.00 0.06 0.03 0.07 0.14 0.10
5 0.25 0.38 0.10 0.31 0.30 0.08 0.10 0.12 0.00 0.07 0.06 0.09 0.07 0.09 -0.02 -0.05 0.10 0.00 0.01 0.07 0.05 0.08 0.11 0.04
6 0.12 0.25 0.06 0.23 0.11 0.03 0.01 0.06 -0.02 0.10 -0.01 0.00 -0.02 0.03 -0.01 -0.01 0.01 0.03 -0.01 0.03 0.03 0.02 0.04 0.03
1 0.07 0.12 0.02 0.11 0.04 0.04 0.04 0.08 0.03 0.10 0.03 0.05 0.07 0.01 -0.01 0.02 0.01 -0.03 0.06 0.05 -0.06 -0.02 0.01 -0.01
2 0.41 0.90 0.22 0.84 0.28 0.11 0.04 0.69 0.18 0.70 0.08 -0.04 0.03 0.35 0.03 -0.10 -0.01 0.01 -0.01 0.26 0.03 0.14 0.04 -0.01
3 0.08 0.17 0.06 0.16 0.08 0.03 0.03 0.07 0.02 0.08 0.03 0.03 -0.02 0.07 0.02 -0.06 -0.03 0.02 -0.03 0.01 0.00 0.08 0.03 -0.04
4 0.30 0.48 0.12 0.42 0.36 0.09 0.09 0.02 -0.03 0.06 0.12 0.15 0.09 0.16 0.02 -0.07 0.11 -0.01 0.03 0.02 0.00 0.08 0.16 0.11
5 0.14 0.24 0.06 0.19 0.18 0.04 0.03 0.01 0.03 0.00 0.05 0.05 -0.02 0.07 -0.04 -0.04 0.06 0.00 0.05 0.08 0.01 -0.04 0.03 0.01
6 0.30 0.58 0.14 0.54 0.23 0.07 0.05 0.06 0.04 0.12 0.03 0.05 0.08 0.10 0.00 0.02 0.11 0.01 0.03 0.09 0.00 0.00 0.05 -0.02
1 0.12 0.25 0.07 0.21 0.08 0.03 0.08 0.15 0.05 0.14 0.02 0.01 -0.01 0.01 0.05 -0.01 0.05 -0.07 0.06 0.11 0.00 -0.01 0.00 -0.07
2 0.41 0.88 0.20 0.79 0.23 0.11 0.08 0.58 0.17 0.48 0.11 -0.03 0.01 0.22 -0.02 0.02 0.03 -0.09 0.03 0.29 0.02 0.04 0.01 0.04
3 0.16 0.33 0.09 0.26 0.12 0.02 0.05 0.03 0.01 0.02 0.03 0.04 0.03 0.15 0.02 -0.04 0.03 -0.02 -0.04 0.07 0.03 0.07 0.04 0.00
4 0.35 0.62 0.14 0.52 0.32 0.10 0.13 -0.16 -0.05 -0.18 0.09 0.18 0.08 0.11 0.01 -0.02 0.09 -0.02 0.02 0.11 -0.02 0.08 0.12 0.06
5 0.24 0.45 0.11 0.37 0.23 0.04 0.05 0.16 0.04 0.15 0.07 0.00 0.11 0.16 0.02 -0.07 0.16 -0.05 -0.03 0.15 0.03 0.08 0.07 0.01
6 0.30 0.57 0.13 0.50 0.24 0.06 0.07 0.04 0.03 0.07 0.10 0.09 0.06 0.15 -0.01 -0.04 0.14 -0.05 0.07 0.13 -0.04 0.05 0.14 -0.03
1 0.09 0.17 0.06 0.16 0.06 0.02 0.02 0.07 0.03 0.10 0.00 0.01 -0.02 0.04 -0.03 0.03 0.03 0.07 0.02 0.07 0.01 0.13 -0.01 0.05
2 0.41 0.92 0.21 0.82 0.23 0.11 0.07 0.58 0.14 0.55 0.11 0.00 0.10 0.45 0.05 -0.14 0.06 -0.02 0.00 0.37 0.03 0.07 0.08 0.04
3 0.05 0.11 0.03 0.09 0.03 0.01 0.01 0.07 0.06 0.04 -0.03 -0.02 0.01 0.04 0.01 -0.02 0.01 0.00 0.02 0.04 0.02 0.01 -0.03 0.01
4 0.34 0.60 0.15 0.54 0.33 0.09 0.09 -0.04 -0.03 -0.05 0.10 0.14 0.03 0.05 -0.02 0.00 0.09 0.01 0.03 0.04 0.01 -0.03 0.08 0.03
5 0.13 0.24 0.05 0.21 0.13 0.05 0.02 0.05 0.05 0.05 0.05 0.03 0.01 0.06 0.01 -0.02 -0.03 0.06 0.08 0.02 -0.07 -0.05 0.08 0.02
6 0.25 0.45 0.10 0.41 0.19 0.05 0.05 0.10 0.02 0.10 0.07 0.05 0.09 0.10 0.00 -0.03 0.08 0.01 0.04 0.10 0.01 0.02 0.05 0.03

14
19

14
20

14
16

14
18

14
14

14
15

14
12

14
13

13
68

14
10

10
26

11
65

7AM to 11AM 11AM to 3PM 3PM to 7PM7AM to 7PM
1161 1161 11611161

TABLE 6.2: A correlation matrix for 1) the whole dataset, 2) the
7:00AM to 11:00AM dataset, 3) the 11:00AM to 3:00PM dataset, and 4)
the 3:00PM to 7:00PM dataset showing the correlations with site 1161.
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fluctuations do not appear to be connected to the geographical distance from the

reference site (1161).

The correlation matrix for temporal segment 7:00AM to 11:00AM, as shown in

Table 6.2, is notably different from the global correlation matrix. Input feature two,

cars or vans, is still strongly correlated (average of 65%), however, the spread is big-

ger (47% to 76%), showing that some of the locations have their distinct patterns

during morning rush hour, not shown in the global correlation. Furthermore, ge-

ographical location now has some influence on correlation, with the neighbouring

RTSSs, 1414 and 1415, having a correlation of 74% and 62%. More interestingly,

variable four, rigid goods, has gone from a good positive correlation to a negative

correlation in six of the 12 sites, with a range of -18% to 20%. This makes logical

sense, as the rigid good drivers would try to avoid the rush hour traffic. This is a

contradiction to the strong positive correlation shown in the global correlation ma-

trix.

The correlation matrix for temporal segment 11:00AM to 3:00PM, 6.2, shows that

input feature two, cars and vans, has diminished more, with an average correlation

of 37% and a bigger spread of 11 to 50. The geographical location seems to have

a strong impact on the correlation, with the neighbouring RTSSs, 1414 and 1415,

having 48% and 50% respectively. Furthermore, for input feature four, rigid goods,

none of the 12 sites have a positive correlation, in stark contrast to the good positive

correlation of the global correlation matrix.

The correlation matrix for temporal segment 3:00PM to 7:00PM, as shown in Ta-

ble 6.2, changes again when compared to the global correlation matrix and the previ-

ous time segment matrix. Variable four has now gone from all negative correlations

to all bar one now having a positive correlation, as shown in Figure 6.6. This is an

interesting observation which deserves more investigation out of the scope of this

thesis, however, it gives more evidence of the evolving nature of the input features.

In conclusion, the global correlation matrix was insufficient to explain the corre-

lation across time and space for the road traffic data. The global correlation exhibits a

strong correlation for input feature two, however, this appears to have a diminishing

effect as the day progresses. Furthermore, there is a geographical element to the in-

put features which the global correlation does not identify. Lastly, there is a negative

correlation for input feature four during certain times of the day, as shown in Figure

6.6, that the global correlation matrix also failed to identify. This illustrates that static
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FIGURE 6.6: The dynamic nature of input feature four illustrated
across the three time segments (7:00AM to 11:00PM, 11:00:PM to
3:00PM, and 3:00PM to 7:00PM) for each RTSS when correlated with

the site of prediction (1161)

input features and statically trained models for the prediction of road traffic flow are

inadequate to capture the complex and dynamic nature of the input features over

space and time. A dynamic feature selection and prediction model is needed.

6.4.3 Research Question Two

To address research question two, can a novel dynamic exogenous feature filter

method for the prediction of road traffic flow on a network improve prediction accu-

racy, the novel dynamic exogenous feature filter mechanism and three other models

were trained and tested on the same dataset and their results were compared. The

models were:

1. A state-of-the-art dynamic rolling window feature selection model.

2. The proposed local windows feature selection mechanism model.

3. A static feature selection model.

4. A model with no feature selection.

All four model architectures and parameters for experimentation were deter-

mined by using prior knowledge from the literature review and/or heuristics through

grid search.
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All weights and biases were randomly initialised and a dropout rate of 50%

was used based on research by Zhao, Chen, Wu, et al. [33] and Srivastava, Hin-

ton, Krizhevsky, et al. [92]. All other hyperparameters, such as the number of layers,

nodes, and update window size, were determined through brute force by a random

grid search to find the optimal design. The grid search searched through different

architectural structures ranging from two to six layers (excluding any input and out-

put layers) and nodes ranging from 12 to 20 with different hyperparameters to find

the optimal design.

The different architectural structures and their variations were initially trained

using the two months of training data, as described in Section 6.4.4. The mod-

els’ weights and biases were then continually updated during the one-month test

data through online learning (time series/rolling cross-validation). The Adamax

optimiser [93] was used to optimise the models’ learning rate based on the data’s

characteristics (a separate step size, known as the learning rate, for each parameter)

during both the training and test phase. Each variation of the models’ architectures

was trained and tested 10 times and an average empirical error, based on the perfor-

mance metric described in Section 6.4.4, was taken. The architecture that produced

the lowest average empirical error was used for comparison.

6.4.4 Performance Metric

In order to compare and evaluate the accuracy of all four models the RMSE, as

shown in Equation 2.3, and the STATS [122], as shown in Equation 4.15, will be

used. There were no external constraints to take into consideration during experi-

mentation. Therefore, when using the STATS performance metrics no upper or lower

bounds were used and a priori equal weighting was given to the accuracy and train-

ing time (wa = wb = 50) to express lack of specific weighted preference.no upper

or lower bounds were used during experimentation, and the accuracy and training

time were given equal weighting (wa = wb = 50) .

6.4.5 Evaluation of the Proposed Novel Dynamic Exogenous Feature Fil-

ter for the Prediction of Road Traffic Flow

In table 6.3 the results for the no feature selection model show that it is the fastest,

with a time score of 96.72%. This is due to no feature selection method being used
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TABLE 6.3: Comparison of the feature filter methods

Feature Selection Model
RMSE

(%)

STATS
Accuracy

Score
(%)

Time
Score
(%)

Overall
Score
(%)

None 12.82 87.18 96.72 91.95
Static 11.09 88.91 93.65 90.78

The Proposed Method 10.06 89.94 93.56 91.75
Dynamic Rolling Window 10.98 89.02 84.97 87.00

before or during the training of the model. However, it is also the worst perform-

ing model, with an RMSE of 12.82% (accuracy score of 87.18%). The duplication of

similar input features may have caused the model to become too dependent on cer-

tain features leading to overfitting of the training data and therefore, struggling to

generalise during the testing stage.

In the static feature selection model, the training dataset was used before the test-

ing stage to determine which input features should be used. This model performed

better than the model with no feature selection (as shown in Table 6.3) with an RMSE

of 11.09% and an accuracy score of 88.91%. Removing duplicated input features has

improved the prediction results, however, this has come at the cost to the computa-

tional load with a noticeable drop in the time score from the ’No Feature Selection’

model from 96.72% to 93.65%.

The dynamic local windows feature filter mechanism, which uses three distinct

periods: 1) morning rush hour peak, 2) midday trough, and 3) evening rush hour

peak [124] to determine which input features should be used during these periods,

improved the RMSE further to 10.06%, as shown in Table 6.3. Tailoring the input

features to the different time windows has enabled the model to ensure that no du-

plicated traffic patterns are included in the training and test dataset and no relevant

input features have been mistakenly disregarded because, as shown in Section 6.4.2,

a global correlation can miss some correlations or assume correlations that are not

present at certain periods of the day. Therefore, the ’local windows’ mechanism was

able to perform better. However, again this has come at a cost to the time, with a time

score of 93.56%. Despite the extra time taken, it is still the overall best performing

model with an overall score of 91.75%.

The dynamic rolling windows model, which uses an online rolling window to

update the input feature’s correlations and determine which input features should
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be used, performed worse than the dynamic local windows mechanism with an

RMSE of 10.98% and an accuracy score of 89.02%. Furthermore, its time score,

84.97% was the lowest out of all the models by a large margin as the computational

load of the rolling window and the regression model was quite high when compared

to the other models.

In conclusion, the best performing model by a small margin was the model with

no feature filter, with an overall score of 91.95%. However, its high score was solely

due to its performance speed as it was also the least accurate model. The second best

model, and the model with the highest accuracy score, was the dynamic windows

model with an overall score of 91.75%. This model was the most accurate with an

RMSE of 10.06% and it also scored well in the time score (93.56%). Therefore, overall

the most successful model appears to be the dynamic local windows mechanism.

6.5 Summary

Accurate and timely road traffic flow prediction is vital for the management and

planning of road traffic networks. One problem for accurate road traffic flow pre-

diction is choosing which input features to use. To avoid overfitting many input

features should be chosen, however, in the era of big data, there is an abundance of

road traffic and other relevant data to select from. Choosing which input features

to use is often down to the researchers’ prior knowledge, or worse, best guess. This

problem is compounded further by the very nature of road traffic flow in a network.

Road traffic flow input features suffer from two main issues, firstly, the road traf-

fic flow on a road network is highly correlated and therefore, adding more input

features, which is usually used to avoid overfitting, can cause and exasperate over-

fitting and lead to a lack of generalisation during the testing phase. Secondly, road

traffic flow suffers from concept drift, resulting in input features that were originally

deemed vital becoming unnecessary, or worse, input features that were regarded as

redundant and omitted may now be needed.

To address these issues we investigate the dynamic nature of the input features

over time by examining their relationships using SRCC. Furthermore, a novel dy-

namic exogenous feature filter model was proposed and combined with a deep neu-

ral network for the prediction of road traffic flow. The proposed model was assessed

on both accuracy and time taken and compared with three other models: 1) a model
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with no feature selection, 2) a model with static feature selection, and 3) a state-of-

the-art dynamic rolling window feature selection.

The results from the input features analysis show that the global correlation ma-

trix was insufficient to explain the correlation across time and space for the road traf-

fic data. The local correlations showed that time and geographical local did affect

correlation, and were able to more preciously show how the correlation of some in-

put features diminish over time and how the geographical location was important at

certain times of the day. Therefore, a dynamic feature selection and prediction model

is needed. The results from the proposed model and the state-of-the-art model both

performed better in terms of accuracy. The dynamic local windows feature selection

mechanism performed the best with an RMSE of 10.06%, which was closely followed

by the dynamic rolling window feature selection model, with an RMSE of 10.98%.

The dynamic rolling window model did not do as well as expected; this may be due

to the model struggling to retrain and adjust the weights when new input features

were added during the online testing phase.

Both the proposed model and the dynamic rolling window model were, more

computationally heavy when compared to a model with no feature selection fil-

ter and a model with a static feature selection filter and therefore, had higher time

scores. The dynamic rolling window model in particular was very computationally

heavy compared with the other three models, with a time score of 84.97%. Whereas,

the dynamic local windows mechanism’s time score was only marginally worse than

the static feature selection model, with a time score of 93.56% and 93.65% respec-

tively. Therefore, overall the proposed model, the dynamic local window mecha-

nism, was the most accurate and efficient.
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Conclusion

Chapter Summary

The final chapter returns to the aims and objectives of this thesis, as shown in Section

1.2, and summaries the contributions of this research in each chapter. Furthermore,

in Section ?? it discusses possible avenues for future development of the proposed

framework.

7.1 Concluding Summary

Due to urbanisation, road traffic congestion has become a critical issue for most

countries. In the UK alone, traffic congestion costs the economy £6.9 billion in 2019,

and shows no sign of abating. Due to a lack of space in inner city areas, building

new or widening existing roads is not possible. Therefore, better road traffic flow

management is the only solution to avoid or mitigate road traffic congestion. As a

result, research in the past two decades on Intelligent Transport Systems (ITS) has

flourished. However, despite extensive research, an accurate and timely short-term

road traffic flow prediction model for a road network is not yet available. Therefore,

this thesis aimed to develop an accurate novel road traffic flow prediction model,

with a particular focus on the short-term prediction of heterogeneous road traffic

flow, for an urbanised road network.

In chapter two, we conducted a comprehensive literature review on road traffic

flow prediction models (statistical, machine learning, and process-based) with ap-

plications to recurrent and non-recurrent road traffic flow, achieving objective one.

It highlighted two main gaps in the literature; 1) there is no consensus on what

methodology was most suitable for road traffic flow prediction, and 2) the datasets
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used for experimentation were inadequate. In general, the datasets were temporally

and spatially small and only considered one input feature/data source.

Based on chapter two’s findings, in chapter three, we performed a benchmark

evaluation of existing machine learning models, partially achieving objective two.

We examined their prediction accuracy and time-horizon sensitivity. We also exam-

ined different input feature settings (different classes of vehicles) to investigate how

heterogeneous traffic flow can affect prediction accuracy, using a real dataset from

Transport for Greater Manchester. The experimental results show that the ANN was

most successful at predicting short-term road traffic flow on an urbanised road. Ad-

ditionally, it was found that the inclusion of different classes of vehicles can improve

prediction accuracy.

Therefore, in chapter four, we fully achieved objective two by examining three

recurrent neural networks (a standard recurrent, a long short-term memory, and a

gated recurrent unit) to determine how they perform on road traffic flow time-series

data, based on a real dataset from Transport from Greater Manchester. We compared

their accuracy, training time, and sensitivity to architectural change using a new

performance metric we developed, Standardised Accuracy and Time Score (STATS),

which standardises the accuracy and training time into a comparable score. The

experimental results show that the gated recurrent unit performed the best and was

most stable against architectural changes. Conversely, the long short-term memory

was the least stable model.

In chapter five, we then moved on to investigating different magnitudes of tem-

poral patterns in the road traffic flow dataset, such as short-term and long-term, to

understand how contextual temporal data can improve prediction accuracy. This

led to the development of a novel online dynamic temporal context neural net-

work framework, achieving objective three. The framework dynamically determines

how useful a temporal data segment (short and long-term temporal patterns) is

for prediction, and weights it accordingly for use in the regression model, in real-

time. Therefore, the framework can include short-term and relevant long-term pat-

terns in the regression model, leading to improved prediction results. Using a real

dataset, from Transport for Greater Manchester, containing daily, weekly, monthly

and yearly data segments we performed a thorough evaluation. The experimental

results show that short and long-term temporal patterns improved prediction accu-

racy. In addition, the proposed online dynamical framework improved prediction
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results by 10.8% when compared with a deep gated recurrent model.

In chapter six, we adapted the framework to include a road network to add spa-

tial context. However, as input features are dynamic, in both time and space, we first

examined the dynamic nature of the spatio-temporal input features’ correlations.

The results show that a global correlation was insufficient to describe the complex

and dynamic relationships between the input features. The local correlations were

able to identify additional geospatial and temporal relationships that the global cor-

relation missed. Based on these findings, we developed a novel dynamic exogenous

feature selection mechanism based on local windows and SRCC, achieving objective

four. The proposed mechanism was compared to a state-of-the-art method, a dy-

namic rolling window feature filter method. We conducted a thorough experimen-

tal evaluation with a real dataset, from Transport for Greater Manchester, achiev-

ing objective five. The experimental results showed that the proposed filter feature

mechanism was the most accurate, with an RMSE of 10.06%, closely followed by the

dynamic rolling window feature filter model, with an RMSE of 10.98%. However,

another advantage of the proposed feature the proposed feature filter mechanism

was computationally much lighter than the rolling windows model.

In conclusion, we have achieved the main aim of the thesis, to develop an accu-

rate novel road traffic flow prediction model, with a particular focus on the short-

term prediction of heterogeneous road traffic flow on an urbanised road network,

by creating a novel online dynamic temporal context neural network framework

and a dynamic exogenous feature selection mechanism for the prediction of road

traffic flow on an urbanised road network. Furthermore, the outcome of this thesis

demonstrates the importance of input data. A prediction model can only be as good

as its input data, therefore, the magnitude of the temporal, spatial, and input fea-

tures’ diversity will determine and restrict what temporal, spatial, and input feature

cycles and patterns can be learnt. Providing relevant temporal, spatial, and diverse

input features is vital for accurate road traffic flow prediction.

7.2 Limitations and Future Work

Due to the scope, restricted time and resources available during this research, there

are limitations to this study and avenues that have not yet been investigated. These
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limitations and potential adaptations/extensions will now be explored in more de-

tail. The limitations and adaptations/extensions, can be split into two categories; 1)

data, and 2) prediction model.

7.2.1 Data

During this research real-life datasets, described in Section 3.2.4, provided by Trans-

port for Greater Manchester were used for experimentation. The datasets contained

three months of road traffic flow broken down into different vehicle classes, with a

time horizon of five minutes. Although efforts were made to use temporally and

spatially extensive datasets, one limitation of this thesis is their scope. Therefore,

in this section, we will briefly detail the limitations of the datasets and how this

research could be expanded upon if time permitted.

The main limitation of the datasets used is selection bias. The research only con-

siders road traffic flow from Manchester, leading to limitations in the study’s scope.

Can we make generalisations that the proposed framework will work in other ge-

ographical locations? Driving style and behaviour varies from culture to culture

[146]. Therefore, more representative datasets from other urbanised areas in the UK,

or other countries, to test the proposed framework should be explored. Further-

more, their heterogeneous traffic flows should be analysed to quantify any cultural

differences in road traffic flows.

Another limitation of the dataset used for experimental evaluation is the con-

founding parameters. The datasets contained only road traffic flow broken down

into different vehicle classes, as shown in Table 3.1. Many studies have found that

other input parameters, such as weather and social networks [147] can improve pre-

diction accuracy. Furthermore, in this thesis we have shown how adding more con-

textual information (spatial, temporal, and input feature diversity) can improve pre-

diction results. Therefore, adding more input parameter/context to the proposed

framework, such as planned events, annual holidays, railway strikes, and even ma-

jor events such as the COVID ’Stay at Home Order’, should be investigated to im-

prove accuracy.

7.2.2 Prediction Model

In this thesis, we have designed a deep learning framework specifically for predict-

ing road traffic flow that yields good accuracy. However, there are limitations to the
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proposed framework and areas that can be improved.

The main limitation of the proposed framework is methodological limitations,

which result from the selection bias detailed in Section 7.2.1. While we have thor-

oughly tested the novel framework, it has only been tested on road traffic flow from

Manchester city centre. Therefore, can we generalise the results? Is Manchester city

centre road network a good representation of the target population (any road net-

work in an urbanised area)?

Continuing with methodological issues and datasets. The proposed framework,

like most time-series regression models, relies on complete and accurate input data.

In real-life situations, such data may not be available. Road traffic sensors are sus-

ceptible to malfunctions and breakdowns or may need recalibrating regularly. There-

fore, the proposed framework should be extended further to deal with missing datasets

and values if it is to have real-world applications.

Another limitation of this research is, due to continued research, ANNs (and re-

gression models in general) is a rapidly expanding field, and new concepts and ap-

plications are continuously added. Therefore, in this section, we will briefly review

alternative models or structural extensions/adaptations that could be explored to

improve the proposed framework if time permitted.

Part of the novel online dynamic temporal context neural network framework

was a CNN with a unique sliding window, as described in Section 5.3. The sliding

window is pivotal to CNNs, as its size and shape dictate what temporal and/or

spatial patterns can be learnt. One concept that could be explored is a dynamic

window. The spatial dependencies in a road network change over time. During

free flow, it would be advantageous to consider numerous non-neighbouring RTSSs

from the road network to improve prediction accuracy. However, during times of

severe congestion prediction results may be improved by only considering limited

neighbouring RTSSs. Therefore, having a sliding window that can adapt in real-time

to the state of the road would be an interesting concept to explore.

Another aspect of the framework that could be adapted is the ANN structure

used to add a geospatial aspect to the data. The current proposed framework uses

a CNN. CNNs operate on Euclidean data structures (1D or 2D matrices), however,

road networks are not so uniform. Graph neural networks (GNNs) [148], unlike

CNNs, are essentially a ’diffusion mechanism’, meaning they are designed to spread

information across a network. Therefore, exploring the expressive power of a graph
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to denote a road network (non-Euclidean data) should be investigated further to

improve the proposed framework’s prediction results.
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Glossary

catastrophic forgetting The lose of long-term temporal patterns in the training data

through the continual updating of the ANN’s weights and biases. 72

concept drift When the probability distributions of the input features change over

time. 90

density The average number of vehicles on a section of road at a specified point in

time. Usually given in vehicles per mile (VPM). 9

endogenous To be derived internally. 96

exogenous To be derived externally. 95

headway The time between two vehicles as they pass a specified point in the road.

Usually given in seconds. 9

heterogeneous Diverse in contents and nature. 100

heteroscedastic The variance around the regression line is not evenly distributed

and therefore, not the same for all predictor values (x). 100

homoscedastic The variance around the regression line is evenly distributed and

therefore, the same for all predictor values (x). 10

input features The individual independent variables that act as the input in the traf-

fic flow prediction models. 8

iteration Used to described the number of times all data points within a batch have

passed through the model. 10

non-parametric No assumptions of the form or parameters of the frequency distri-

bution have been made. 15
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occupancy The percentage of time a specified section of the road is occupied by a

vehicle. 9

outlier A data point which is more than two standard deviations away from the

mean. 10

performance metric Measurable data used to evaluate the performance of the road

traffic flow prediction models. 11

periodicity The tendency to recur at regular temporal intervals.. 15

robust The performance of the machine learning model is stable after adding some

noise to the dataset. 10

saturation point The maximum number of vehicles the junction/road/network is

able to handle before the traffic flow is impeded. 1

seasonality A repeated daily/weekly/monthly/yearly pattern within the road traf-

fic flow data. 9

state The classification of the road traffic flow into three different categories, 1) free-

flow, 2) saturated, and 3) jammed. Other categories have been suggested. 9

time horizon The change in time from one point to the next (t to t + 1) in the histor-

ical data or prediction. 8, 13

timestep The time interval between one data point to the next.. 8, 13

traffic flow The number of vehicles that pass a specified point in the road during a

time-step. 9

volume The number of vehicles on a section of road during one time-step. 9
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Artificial Neural Networks, 29, 40

Activation Function, 30

Convolutional, 73

Deep, 53

Gated Recurrent Unit, 57, 63

Jordan Sequential, 31

Long Short-term Memory, 56, 61

Recurrent, 60

Transfer Function, 30

Auto-Regressive Conditional

Heteroskedasticity, 16

Auto-Regressive Integrated Moving

Average model, 14

Concept Drift, 90

Convolutional Neural Network, 73

Correlation

Pearson’s Bivariate, 99

Sperman’s Rank, 99

Deep Neural Networks, 53

Distance Function, 22

Cityblock/Manhattan, 23

Euclidean, 23

Minikowski, 23

Feature Selection Methods, 90, 93

Embedded, 90, 94

Endogenous, 96

Exogenous, 95

Filter, 91, 95

Wrapper, 90, 93

Gated Recurrent Unit Neural

Network, 57, 63

Generalised Autoregressive

Conditional

Heteroskedasticity, 16

Grey Series Forecasting, 18

Input Features, 8

Density, 9

Headway, 9

Occupancy, 9

State, 9

Traffic Flow, 9

Volume, 9

K-Nearest Neighbour, 21, 39

Kalman Filter, 24

Covariance Update, 24

Estimation Update, 24

Kalman Gain, 24

Observation Equation, 26

State Equation, 25

Long Short-term Memory Neural

Network, 56, 61
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Machine Learning Models, 21

Artificial Neural Networks, 29, 40

K-Nearest Neighbour, 21, 39

Kalman Filter, 24

Support Vector Machine, 27, 40

Outlier, 10

Pearson’s Bivariate Correlation, 99

Performance Metrics, 11

Process-Based Models, 32

Maroscopic, 32

Mesoscopic, 33

Microscopic, 32

Recurrent Neural Network, 60

Gated Recurrent Unit, 57, 63

Long Short-term Memory, 56, 61

Seasonal Auto-Regressive Integrated

Moving Average model, 15

Seasonality, 9

Spearman’s Rank Correlation

Coefficient, 99

Statistical Models, 13

ARCH, 16

ARIMA, 14

GARCH, 17

Grey Series Forecasting, 18

SARIMA, 15

Support Vector Machine, 27, 40

Classifier Step, 27

Kernel Function, 28

Linear, 28

Polynomial, 28

Radial Basis Function, 28

Learning Step, 27

The Prediction of Road Traffic Flow, 7

Time Horizon, 8

Time Parameters, 8

Timestep, 8

Traffic Data, 10

Traffic Data Sources, 10

Traffic Prediction Models, 12
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