81,171 research outputs found

    Utilizing Multi-level Classification Techniques to Predict Adverse Drug Effects and Reactions

    Get PDF
    Multi-class classification models are used to predict categorical response variables with more than two possible outcomes. A collection of multi-class classification techniques such as Multinomial Logistic Regression, Na\ {i}ve Bayes, and Support Vector Machine is used in predicting patientsā€™ drug reactions and adverse drug effects based on patientsā€™ demographic and drug administration. The newly released 2018 data on drug reactions and adverse drug effects from U.S. Food and Drug Administration are tested with the models. The applicability of model evaluation measures such as sensitivity, specificity and prediction accuracy in multi-class settings, are also discussed

    Predicting regression test failures using genetic algorithm-selected dynamic performance analysis metrics

    Get PDF
    A novel framework for predicting regression test failures is proposed. The basic principle embodied in the framework is to use performance analysis tools to capture the runtime behaviour of a program as it executes each test in a regression suite. The performance information is then used to build a dynamically predictive model of test outcomes. Our framework is evaluated using a genetic algorithm for dynamic metric selection in combination with state-of-the-art machine learning classifiers. We show that if a program is modified and some tests subsequently fail, then it is possible to predict with considerable accuracy which of the remaining tests will also fail which can be used to help prioritise tests in time constrained testing environments

    A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition

    Get PDF
    Predicting student attrition is an intriguing yet challenging problem for any academic institution. Class-imbalanced data is a common in the field of student retention, mainly because a lot of students register but fewer students drop out. Classification techniques for imbalanced dataset can yield deceivingly high prediction accuracy where the overall predictive accuracy is usually driven by the majority class at the expense of having very poor performance on the crucial minority class. In this study, we compared different data balancing techniques to improve the predictive accuracy in minority class while maintaining satisfactory overall classification performance. Specifically, we tested three balancing techniquesā€”oversampling, under-sampling and synthetic minority over-sampling (SMOTE)ā€”along with four popular classification methodsā€”logistic regression, decision trees, neuron networks and support vector machines. We used a large and feature rich institutional student data (between the years 2005 and 2011) to assess the efficacy of both balancing techniques as well as prediction methods. The results indicated that the support vector machine combined with SMOTE data-balancing technique achieved the best classification performance with a 90.24% overall accuracy on the 10-fold holdout sample. All three data-balancing techniques improved the prediction accuracy for the minority class. Applying sensitivity analyses on developed models, we also identified the most important variables for accurate prediction of student attrition. Application of these models has the potential to accurately predict at-risk students and help reduce student dropout rates

    Incremental Predictive Process Monitoring: How to Deal with the Variability of Real Environments

    Full text link
    A characteristic of existing predictive process monitoring techniques is to first construct a predictive model based on past process executions, and then use it to predict the future of new ongoing cases, without the possibility of updating it with new cases when they complete their execution. This can make predictive process monitoring too rigid to deal with the variability of processes working in real environments that continuously evolve and/or exhibit new variant behaviors over time. As a solution to this problem, we propose the use of algorithms that allow the incremental construction of the predictive model. These incremental learning algorithms update the model whenever new cases become available so that the predictive model evolves over time to fit the current circumstances. The algorithms have been implemented using different case encoding strategies and evaluated on a number of real and synthetic datasets. The results provide a first evidence of the potential of incremental learning strategies for predicting process monitoring in real environments, and of the impact of different case encoding strategies in this setting

    A Multi Hidden Recurrent Neural Network with a Modified Grey Wolf Optimizer

    Full text link
    Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.Comment: 34 pages, published in PLoS ON

    Can the US Minimum Data Set Be Used for Predicting Admissions to Acute Care Facilities?

    Get PDF
    This paper is intended to give an overview of Knowledge Discovery in Large Datasets (KDD) and data mining applications in healthcare particularly as related to the Minimum Data Set, a resident assessment tool which is used in US long-term care facilities. The US Health Care Finance Administration, which mandates the use of this tool, has accumulated massive warehouses of MDS data. The pressure in healthcare to increase efficiency and effectiveness while improving patient outcomes requires that we find new ways to harness these vast resources. The intent of this preliminary study design paper is to discuss the development of an approach which utilizes the MDS, in conjunction with KDD and classification algorithms, in an attempt to predict admission from a long-term care facility to an acute care facility. The use of acute care services by long term care residents is a negative outcome, potentially avoidable, and expensive. The value of the MDS warehouse can be realized by the use of the stored data in ways that can improve patient outcomes and avoid the use of expensive acute care services. This study, when completed, will test whether the MDS warehouse can be used to describe patient outcomes and possibly be of predictive value
    • ā€¦
    corecore