96 research outputs found

    Prediction of acute kidney injury using the Electronic Medical Records of a pediatric cardiac intensive care unit

    Get PDF
    Acute Kidney Injury (AKI) is a frequent complication in hospitalized patients significantly associated with mortality, length of stay, and healthcare cost. Management of AKI presents an important challenge and clinicians may be helped by robust prediction models for risk evaluation, foster prevention, and recognition. The advances in clinical informatics and the increasing availability of electronic medical records (EMR) have favored the development of predictive models of risk estimation in AKI. In this dissertation, we analyze the problem of predicting the AKI stage during the patient’s stay in the intensive care unit using retrospectively the Electronic medical records (EMRs) recently introduced in the Pediatric Intensive Care Unit (PCICU) of "Ospedale Pediatrico Bambino Gesù". After the initial phase of data selection, extraction, and management of missing data, we develop a random forest (RF) classification model including a variable selection step with the aim of predicting the stage of AKI 48 hours in advance in both binary and multiclass cases. The performances obtained in terms of Area under the ROC Curve (AUC-ROC) for binary cases and accuracy for multiclass cases are always very good compared with other recent attempts in the literature. The list of the most important variables obtained in the various classifications highlights the importance of some of the expected variables (such as creatinine) reported in other studies in the literature but also the presence of variables that are specific to pediatric patients under examination (such as PIM3). Moreover, we develop other classifications using the Generalized Additive Models (GAMS) and Bayesian network (BN) models that have the benefit of offering a more interpretable approach. Although these results are inferior to the RF, they are comparable with many outcomes reported in the literature. The plot obtained with GAMs and the structure of the directed acyclic graph (DAG) achieved with BN are consistent with a possible medical explanation and would present further interpretation hints for the doctors about the onset of AKI. Finally, we observe that all implemented models confirm the possibility of making an accurate prediction of the AKI stage using the PCICU. These models can be potentially included in a web interface and, in perspective, be integrated into the EMR of PCICU. This tool would allow the doctors to predict prospectively the patient’s stage of AKI and evaluate how to intervene if necessary. In order to proceed with this, it would be necessary for the future to implement the export of a larger dataset adding new data acquired in the meantime in PCICU

    Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia

    Get PDF
    Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality

    Explainable AI for clinical risk prediction: a survey of concepts, methods, and modalities

    Full text link
    Recent advancements in AI applications to healthcare have shown incredible promise in surpassing human performance in diagnosis and disease prognosis. With the increasing complexity of AI models, however, concerns regarding their opacity, potential biases, and the need for interpretability. To ensure trust and reliability in AI systems, especially in clinical risk prediction models, explainability becomes crucial. Explainability is usually referred to as an AI system's ability to provide a robust interpretation of its decision-making logic or the decisions themselves to human stakeholders. In clinical risk prediction, other aspects of explainability like fairness, bias, trust, and transparency also represent important concepts beyond just interpretability. In this review, we address the relationship between these concepts as they are often used together or interchangeably. This review also discusses recent progress in developing explainable models for clinical risk prediction, highlighting the importance of quantitative and clinical evaluation and validation across multiple common modalities in clinical practice. It emphasizes the need for external validation and the combination of diverse interpretability methods to enhance trust and fairness. Adopting rigorous testing, such as using synthetic datasets with known generative factors, can further improve the reliability of explainability methods. Open access and code-sharing resources are essential for transparency and reproducibility, enabling the growth and trustworthiness of explainable research. While challenges exist, an end-to-end approach to explainability in clinical risk prediction, incorporating stakeholders from clinicians to developers, is essential for success

    Real-world evidence for the management of blood glucose in the intensive care unit

    Full text link
    Glycaemic control is a core aspect of patient management in the intensive care unit (ICU). Blood glucose has a well-known U-shaped relationship with mortality and morbidity in ICU patients, with both hypo- and hyper-glycaemia associated with poor patient outcomes. As a result, up to 40-90% of ICU patients receive insulin, depending on illness severity and variation in clinical practice. Generally, clinical guidelines for glycaemic control are based on a series of trials that culminated in the NICE-SUGAR study in 2009, a multicentre study demonstrating that tight glycaemic control (a target of 80-110 mg/dL) did not improve patient outcomes compared to moderate control (<180 mg/dL). However, there remain open questions around the potential for more personalised blood glucose management, which real-world evidence sources such as electronic medical records (EMRs) can play a role in answering. This thesis investigates the role that EMRs can play in glycaemic control in the ICU using open access EMR databases, covering a heterogenous 208 hospital USA based patient cohort (the eICU collaborative research database, eICU-CRD) and a large tertiary medical centre in Boston, USA (MIMIC-III and MIMIC-IV). This thesis covers: i) curation and characterisation of the eICU-CRD cohort as a data resource for real-world evidence in glycaemic control; ii) investigation of whether blood lactate modifies the relationship between blood glucose and patient outcome across different subgroups; and iii) the development and comparison of machine learning and deep learning probabilistic forecasting algorithms for blood glucose. The analysis of the eICU-CRD demonstrated that there is wide variety in clinical practice around glycaemic control in the ICU. The results enable comparison with other data resources and assessment of the suitability of the eICU-CRD for addressing specific research questions related to glycaemic control and nutrition support. Informed by this descriptive analysis, the eICU-CRD was used to examine whether blood lactate modifies the relationship between blood glucose and patient outcome across different subgroups. While adjustment for blood lactate attenuated the relationship between blood glucose and patient outcome, blood glucose remained a marker of poor prognosis. Diabetic status was found to influence this relationship, in line with increasing evidence that diabetics and non-diabetics should be considered distinct populations for the purpose of glycaemic control in the ICU. The forecasting algorithms developed using MIMIC-III and MIMIC-IV were designed to account for the intrinsic statistical difficulties present in EMRs. These include large numbers of potentially sparsely and irregularly measured input variables. The focus was on development of probabilistic approaches given the measurement error in blood glucose measures, and their potential conversion into categorical forecasts if required. Two alternative approaches were proposed. The first was to use gradient boosted tree (GBT) algorithms, along with extensive feature engineering. The second was to use continuous time recurrent neural networks (CTRNNs), which learn their own hidden features and account for irregular measurements through evolving the model hidden state using continuous time dynamics. However, several CTRNN architectures are outperformed by an autoregressive GBT model (Catboost), with only a long short-term memory (LSTM) and neural ODE based architecture (ODE-LSTM) achieving comparable performance on probabilistic forecasting metrics such as the continuous ranked probability score (ODE-LSTM: 0.118±0.001; Catboost: 0.118±0.001), ignorance score (0.152±0.008; 0.149±0.002) and interval score (175±1; 176±1). Further, the GBT method was far easier and faster to train, highlighting the importance of using appropriate non-deep learning benchmarks in the academic literature on novel statistical methodologies for analysis of EMRs. The findings highlight that EMRs are a valuable resource in medical evidence generation and characterisation of current clinical practice. Future research should aim to continue investigation of subgroup differences and utilise the forecasting algorithms as part of broader goals such as development of personalised insulin recommendation algorithms

    Predictive Modelling Approach to Data-Driven Computational Preventive Medicine

    Get PDF
    This thesis contributes novel predictive modelling approaches to data-driven computational preventive medicine and offers an alternative framework to statistical analysis in preventive medicine research. In the early parts of this research, this thesis presents research by proposing a synergy of machine learning methods for detecting patterns and developing inexpensive predictive models from healthcare data to classify the potential occurrence of adverse health events. In particular, the data-driven methodology is founded upon a heuristic-systematic assessment of several machine-learning methods, data preprocessing techniques, models’ training estimation and optimisation, and performance evaluation, yielding a novel computational data-driven framework, Octopus. Midway through this research, this thesis advances research in preventive medicine and data mining by proposing several new extensions in data preparation and preprocessing. It offers new recommendations for data quality assessment checks, a novel multimethod imputation (MMI) process for missing data mitigation, a novel imbalanced resampling approach, and minority pattern reconstruction (MPR) led by information theory. This thesis also extends the area of model performance evaluation with a novel classification performance ranking metric called XDistance. In particular, the experimental results show that building predictive models with the methods guided by our new framework (Octopus) yields domain experts' approval of the new reliable models’ performance. Also, performing the data quality checks and applying the MMI process led healthcare practitioners to outweigh predictive reliability over interpretability. The application of MPR and its hybrid resampling strategies led to better performances in line with experts' success criteria than the traditional imbalanced data resampling techniques. Finally, the use of the XDistance performance ranking metric was found to be more effective in ranking several classifiers' performances while offering an indication of class bias, unlike existing performance metrics The overall contributions of this thesis can be summarised as follow. First, several data mining techniques were thoroughly assessed to formulate the new Octopus framework to produce new reliable classifiers. In addition, we offer a further understanding of the impact of newly engineered features, the physical activity index (PAI) and biological effective dose (BED). Second, the newly developed methods within the new framework. Finally, the newly accepted developed predictive models help detect adverse health events, namely, visceral fat-associated diseases and advanced breast cancer radiotherapy toxicity side effects. These contributions could be used to guide future theories, experiments and healthcare interventions in preventive medicine and data mining
    • …
    corecore