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Abstract

Acute Kidney Injury (AKI) is a frequent complication in hospitalized patients significantly associ-
ated with mortality, length of stay, and healthcare cost. Management of AKI presents an important
challenge and clinicians may be helped by robust prediction models for risk evaluation, foster pre-
vention, and recognition. The advances in clinical informatics and the increasing availability of
electronic medical records (EMR) have favored the development of predictive models of risk esti-
mation in AKI.

In this dissertation, we analyze the problem of predicting the AKI stage during the patient’s
stay in the intensive care unit using retrospectively the Electronic medical records (EMRs) recently
introduced in the Pediatric Intensive Care Unit (PCICU) of "Ospedale Pediatrico Bambino Gesù".

After the initial phase of data selection, extraction, and management of missing data, we de-
velop a random forest (RF) classification model including a variable selection step with the aim of
predicting the stage of AKI 48 hours in advance in both binary and multiclass cases.

The performances obtained in terms of Area under the ROC Curve (AUC-ROC) for binary
cases and accuracy for multiclass cases are always very good compared with other recent attempts
in the literature. The list of the most important variables obtained in the various classifications
highlights the importance of some of the expected variables (such as creatinine) reported in other
studies in the literature but also the presence of variables that are specific to pediatric patients
under examination (such as PIM3).

Moreover, we develop other classifications using the Generalized Additive Models (GAMS) and
Bayesian network (BN) models that have the benefit of offering a more interpretable approach.
Although these results are inferior to the RF, they are comparable with many outcomes reported
in the literature. The plot obtained with GAMs and the structure of directed acyclic graph (DAG)
achieved with BN are consistent with a possible medical explanation and would present further
interpretation hints for the doctors about the onset of AKI. Finally, we observe that all implemented
models confirm the possibility of making an accurate prediction of the AKI stage using the PCICU.
These models can be potentially included in a web interface and, in perspective, be integrated into
the EMR of PCICU. This tool would allow the doctors to predict prospectively the patient’s stage
of AKI and evaluate how to intervene if necessary.

In order to proceed with this, it would be necessary in the future to implement the export of a
larger dataset adding new data acquired in the meantime in PCICU.
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Motivation

I’m a high school mathematics and physics teacher with a background as an IT consultant for a
software house that operates in the field of Remote Sensing.

The motivation for joining a Ph.D. program and developing a thesis project on PCICU EMR
for AKI prediction comes from the illness of my second son.

At the time of my son’s second heart operation, the Pediatric Cardiac Intensive Care Unit
(PCICU) of the "Bambino Gesù" hospital introduced the electronic medical record (EMR), and I
saw the opportunity to do something useful not only for him but also for other children hospitalized
in the intensive care unit.

I discussed the idea with the doctors and I made my skills available as a volunteer on the existing
accumulated data, starting from a specific problem identified by a group of doctors in the facility.

In order to proceed with this project in the best possible way I embarked on a Ph.D. in method-
ological statistics at the Sapienza University of Rome. The Ph.D. program offered the opportunity
to improve my methodological skills to join this challenging project of extracting useful information
from the massive availability of data.

In the coming years, all hospitals will be equipped with electronic medical records and a large
amount of data will be accumulated over time.

During the program, I reinforced my belief that the increasingly widespread introduction of
medical records will provide an important new source of data to support physician decisions.

I realize that an important role will be played in this process by the interaction between doctors
and other specialists (statisticians, data scientists, engineers, and computer scientists).

Unfortunately, having lived as a parent with the experience of intensive care for several days, I
am aware of the complexity and variety of the data acquired in intensive care.

Nevertheless, the publications present in the literature over the last 20 years have shown the
potential of using EMR data to support the decision of doctors and suggested that my view and
convictions could be increasingly confirmed. I can not be sure that there will be a "paradigm shift"
in the near future in clinical practice thanks to the use of EMR data, but in my opinion, it will be
important to develop decision support tools for doctors.

In order to do this, it is important to support and incentivize the collaboration between doctors
and scientists, who are capable of helping them to develop these tools.

Currently, the EMR is certainly a valid support for doctors in patient care. However, only a
minimal part of the data recorded in the database is subsequently used. I hope that my work
will encourage other researchers in the future to further advance this field and that the interaction
between different realities (hospitals, universities, and companies that provide IT services) will lead
to effective solutions capable of supporting more and more doctors in patient care.
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Introduction

This dissertation analyzes the possibility of the use of electronic medical records acquired in the
PCICU of "Ospedale Pediatrico Bambino Gesù" recently introduced in this facility. In particular,
following the literature and the doctors’ instructions, we focused on the problem of Acute Kidney
Injury (AKI) a frequent complication in hospitalized patients. We consider the problem of predicting
the AKI stage during the patient’s stay in the intensive care unit.

Given the type of problem and the data used, the aim of this work is mainly applicative. The
adopted methodological approach is focused more on predicting the phenomenon.

The contribution of this work is essentially that of having developed a system capable of predict-
ing the onset of AKI with a temporal advance that allows doctors to evaluate any actions, starting
from raw and never-before-extracted data with this level of detail.

Below we outline in a synthetic way the contents of the different chapters that make up this
thesis dissertation.

Chapter 1 presents the acute kidney injury problem, pointing out the high importance of devel-
oping methods to forecast when patients are at risk for AKI in order to improve patient outcomes.

This chapter also explains the introduction of electronic medical records (EMRs). It illustrates
how the data stored in the EMR are actually used with the aim of supporting doctors in many
challenging open problems in the medical field.

Finally, Chapter 1 is closed with a review of the recent attempts to predict AKI using EMR.
Chapter 2 focuses on the EMR data from the PCICU of "Ospedale Pediatrico Bambino Gesù"

describing this kind of data. In particular, it describes the phase of data selection, extraction, prepa-
ration, cleansing, and management of missing data. This dissertation has a primarily applicative
aim and used a methodological approach focused on prediction. The contribution of this work is
essentially to have developed, starting from raw and never-before-extracted data with this level of
detail, a system capable of predicting the onset of AKI with a temporal advance that allows doctors
to evaluate any actions.

The specificity of this dataset has required us to make choices that, although consistent with the
literature, have specific characteristics of uniqueness in particular for the type of patients involved
and the selected variables.

Chapter 3 will focus on AKI forecast. It presents a random forest classification model, including
a variable selection step, for the modeling of AKI in binary and multiclass cases. We also analyzed
the use of an RFE algorithm in order to reduce the number of variables involved in the model.

Based on these results we chose to explore the possibility of using models that benefit from
being more interpretable and offering more information about the role of the involved variable.
In a sector such as the medical one, interpretability is not a negligible aspect since it can provide
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possible confirmations on some clinical dynamics or further unexpected hypotheses. For this reason,
in Chapters 4 and 5, we describe two alternative models applied to the problem:

• General Additive Models;

• Bayesian Networks.

As for RF, in the case of BN, we use a variable selection algorithm in order to possibly provide
comparable performances with fewer covariates.

In Chapter 6 we analyze an interpretable machine learning approach in order to provide clini-
cians:

• a graphical representation using the partial dependence plot of each variable involved in the
random forest classification models;

• a classification tree surrogate model.

Finally, in the Conclusion, we highlight the aspects that, according to our point of view, are
characterizing and worthy of interest in our work.
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Chapter 1

Acute Kidney Injury and Electronic
Medical Records

This chapter, after a brief introduction to the problem of Acute Kidney Injury (AKI) and the use of
Electronic Medical Record (EMR), analyzes the literature on the use of EMR, in order to provide
clinicians with useful tools to predict the onset of AKI.

In the first paragraph of this chapter, it will be introduced the AKI definition, in the second a
brief overview of Electronic Medical Records (EMRs) and in the third paragraph a review of the
literature where different methods are used to predict the patient’s AKI using this type of data.

1.1 Acute Kidney Injury

Acute kidney injury (AKI) is a frequent complication in hospitalized patients. The term AKI
has replaced acute renal failure because smaller changes in kidney function without overt failure
can result in significant clinical consequences and increased morbidity and mortality. AKI is an
increasingly common clinical problem faced by nephrologists, intensivists, general physicians, and
surgeons. It is also associated with adverse outcomes both in the short and long term with chronic
kidney disease. AKI is significantly associated with mortality, length of stay, and healthcare cost
(Chertow et al. [2005]).

In light of the impact of AKI on short and long-term outcomes, it is of high importance to
develop methods to identify when patients are at risk for AKI and to diagnose subclinical AKI in
order to improve patient outcomes.

Since 2012, a novel definition of AKI was proposed by the KDIGO (Kidney Disease Improving
Global Outcomes) workgroup (Khwaja [2012]) in the attempt of reconciling previous formulations
and adapting them to pediatric patients. This classification aims to assist practitioners caring for
adults and children at risk for or with AKI, including contrast-induced acute kidney injury (CI-AKI)
(Khwaja [2012]).

AKI is defined with the occurrence of at least one of the conditions reported in the following
list:

(a) Increase in Serum Creatinine (SCr) by ≥ 0.3mg/dl (≥ 26.5µmol/l) within last 48 hours; or

(b) Increase in SCr to ≥ 1.5 times baseline, which is known or presumed to have occurred within
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the prior 7 days; or

(c) Urine volume < 0.5ml/kg/h for 6 hours.

AKI is also staged for severity according to criteria reported in Table 1.1.

Staging of AKI
Stage Serum creatinine (SCr) Urine output
1 1.5–1.9 times baseline OR ≥ 0.3 mg/dl (≥ 26.5µ

mol/l ) increase
< 0.5ml/kg/h for 6–12 hours.

2 2.0–2.9 times baseline < 0.5ml/kg/h for ≥ 12 hours.
3 3.0 times baseline OR Increase in serum creatinine to

≥ 4.0mg/dl (≥ 353.6µ mol/l) OR Initiation of renal
replacement therapy OR, In patients < 18 years, de-
crease in eGFR to < 35 ml/min per 1.73m2

< 0.3 ml/kg/h for ≥ 24 hours
OR Anuria for ≥ 12 hours.

Table 1.1: Staging of AKI.

This new grading is considered an advancement compared to previous criteria. In fact, this
definition joint with the availability of electronic records has enabled timely alerts to warn the
clinician of the occurrence and severity of AKI. Despite that there are still some open issues on this
definition as highlighted in Thomas et al. [2014].

Moreover, clinicians have increasingly recognized the scale and effect of AKI, but significant
challenges remain in reducing AKI incidence and improving outcomes.

Indeed AKI is a heterogeneous cluster of pathophysiologic processes that affect in the rise of
serum creatinine and/or drop in urine output (UO). The diagnosis of AKI is often delayed by the
reliance upon these bio-markers of kidney function that are often late and inaccurate (Soranno et al.
[2022], Kaddourah et al. [2017]).

Changes in kidney function are detected by a change in biomarkers, the most common biomarker
being serum creatinine (SCr). Serum creatinine is an imperfect biomarker for recognizing AKI,
given that an increase in SCr often lags (48–72 hours) behind the onset of the injury. In addition,
SCr is not in a steady-state condition in critically ill patients, leading to inaccurate estimates of
glomerular filtration rates (eGFRs). Using an imperfect biomarker for AKI definition, recognition,
and management may affect patient outcomes.

Advances in clinical informatics and the increasing availability of electronic medical records
allowed the development of predictive models for risk estimation for AKI and provide a better
method to predict AKI overcoming this problem of lag observed behind renal injury.

1.2 Electronic Medical Records

In the last thirty years, the development of technologies has favored the development of Electronic
Medical Records (EMRs) and a more general version denoted as Electronic Health Record (EHR).

Electronic Medical Records (EMRs) are the digital version of a patient’s paper chart. EMRs
are real–time, patient–centered records that make information available instantly and securely to
authorized users.

As reported in Mcmullen et al. [2014], EMRs and EHRs have become essential systems by which
it is possible to communicate vital patient information to other members of the health care team
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as well as to patients.
EMRs were the first electronic sources introduced with the aim of digitization patient informa-

tion adding benefits, not present in paper charts, like the ability to easily collate and track sets of
information, monitor changes in patient outcomes after implementation of a new practice or pro-
cedure, and determine which patients are due for physical exams, procedures, immunizations, and
the like.

Unfortunately, EMRs are often practice-specific, making it difficult to transfer information to
outside groups of providers, to other healthcare systems, and to patients. Because of such limita-
tions, over time, EHRs were specifically designed for information sharing also between providers
and patients. The introduction of this type of technology and the effort to make it more and more
shareable seems to be an unavoidable trend.

A database with Electronic Health Records contains patient data recorded to varying levels of
granularity. In particular, it contains:

• continuous physiologic monitoring data;

• laboratory measurements;

• medications administered;

• treatments and procedures;

• physician notes;

• imaging results.

In other words, advances in electronic medical record (EMR) technology have made it possible
for the EMR to replace many functions of the traditional paper chart, and the use of EMR systems
promises significant advances in patient care (Makoul et al. [2001]).

The presence of this new type of data has involved the development of research with the aim of
using this data to support doctors’ decisions.

Hodgson et al. [2019] observe that, within health care, clinical decision support systems (CDSS)
are increasingly being introduced with the aim to provide pertinent information, intelligently filtered
or presented at appropriate times, to enhance care and potentially improve outcomes.

Indeed, Electronic Health Records contain valuable data for identifying health outcomes, but
these data also present numerous challenges. Statistics and Machine Learning methods could help
with some of these challenges (Wong et al. [2018]).

Electronic health records are also considered as an instance of Real World Data (RWD). They
are obtained outside the context of randomized controlled trials since generated during routine
clinical practice.

The analysis of RWD is therefore primary to generating evidence about the real-world effects of
medical products and health outcomes. In fact, EHR data may have utility for predicting health
outcomes due to the presence of richer clinical information (including vital signs, laboratory test
results, progress notes, and radiologic and pathologic images and reports).

The creation of computer-processable algorithms to identify individuals with specific health
conditions, diseases, or provide a timely warning of risks of clinical events from electronic health
data is often referred as ‘computational phenotyping’ (Wang [2020]).
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In recent years the trend of adoption of digital health record systems in hospitals seems to be
clear and no longer deferrable. In the US, for example, the number of hospitals with basic digital
systems increased from 9.4% to 75.5 % over the period between 2008 and 2014 (Collins and Tabak
[2014]).

Despite the progress realized in recent years, the EMRs and the EHRs data suffer yet of no
standardization problem in measurements acquisition in the particular case of Intensive Care Unit
(ICU).

Indeed interoperability of digital systems remains an open issue, leading to challenges in data
integration. As a result, the potential that hospital data offers in terms of understanding and
improving care is yet to be fully realized.

In parallel, the scientific research community is increasingly under criticism for the lack of
reproducibility of studies (Collins and Tabak [2014]).

Recently some freely-available ICU databases have been made available for research purposes.
In particular, MIMIC-III (Johnson et al. [2016]) is a large, freely-available database comprising de-
identified health-related data associated with over 40000 patients who stayed in critical care units
of the Beth Israel Deaconess Medical Center between 2001 and 2012. The database includes infor-
mation such as demographics, vital sign measurements made at the bedside, laboratory test results,
procedures, medications, caregiver notes, imaging reports, and mortality. MIMIC supports a diverse
range of analytic studies spanning epidemiology, clinical decision-rule improvement, and electronic
tool development. MIMIC-III, by making it easier to access this type of data, has contributed to
the dissemination of articles on the use of ICU data.

As highlighted by Shafaf and Malek [2019], the use of statistical methods as well as artificial
intelligence and machine learning techniques in different medical fields are rapidly growing. In
particular, studies belonged to three categories:

• prediction and early detection of disease;

• prediction of need for admission;

• discharge and mortality;

Different examples of models on disease prediction reported in Shafaf and Malek [2019] are
applied on:

• AKI;

• influenza;

• sepsis;

• chronic obstructive pulmonary disease (COPD);

• urinary tract infection (UTI).

In Table 1.2 Shafaf and Malek [2019] list different models developed with the aim of disease
prediction

As observed by Tsai et al. [2020] despite advances in the field of electronic health records (EHRs)
implementation and adoption challenges persist, and the benefits realized remain below expectations
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Disease Algorithm Result Year
boosted ensembles of decision trees AUC: 0.72- 0.87 2018 (8)
Logistic regression AUC: 0.77 2018 (9)
Gradient Boosting Machine AUC: 0.73-0.97 2018 (12)
Deep Learning Accuracy: 99.1% 2018 (13)
Logistic regression AUC : 0.74 2016 (10)

AKI

Binary logistic regression Sensitivity: 96.6%
Specificity: 95.7% 2008 (11)

Bayesian classifier (naïve Bayes) AUC: 0.92-0.93 2015 (15)Influenza Bayesian network classifiers AUC: 0.79 2014 (14)
Gradient tree boosting AUC: 0.87-0.92 2018 (18)Sepsis Support Vector Machine AUC: 0.86 2017 (19)
Random forest C-statistic: 0.84 2018 (20)
Logistic regression Accuracy: 89.1% 2017 (21)
Naive Bayes Accuracy: 70.7% 2013 (23)COPD and Asthma

Tree-based decision model AUC: 0.83 2010 (22)
UTI Extreme gradient boosting AUC: 0.90 2018 (17)
Appendicitis Rule base AP: 0.86 2013 (25)
AKI: acute kidney injury; COPD: chronic obstructive pulmonary disease;
UTI: urinary tract infection; AP: average precision and recall.

Table 1.2: Models on disease prediction as reported in Shafaf and Malek [2019]

although positive effects of EHR implementation were identified, relating to clinical work, data, and
information, patient care, and economic impact.

In the same review, Tsai et al. [2020] insert also information about the country of origin of the
studies. The majority of the 141 studies analyzed by them are developed in the USA (81 studies)
while only 6 are developed in a European country (1 in Italy).

1.3 Literature review on predicting Acute Kidney Injury using EMR

As previously mentioned, the advances in clinical informatics and the increasing availability of
electronic medical records (EMR) have eased the development of predictive models of risk estimation
in AKI.

Management of AKI presents a significant challenge and clinicians may be helped by robust
prediction models for risk evaluation, foster prevention, and recognition. Electronic interventions
also hold promise to systematically improve overall AKI care across healthcare settings from risk
recognition to early detection and subsequent monitoring and management (Hodgson et al. [2019]).

In this paragraph, we insert a brief review of the literature on the methods applied to predict the
onset of AKI. There is expanding literature on the problem, especially in recent years, demonstrating
the growing interest in the topic published in almost all medical journals. For this reason, my
overview is limited to a subset of the most recently published articles.

First of all, we start by mentioning the article of Gameiro et al. [2020] where a review of the
literature on AKI risk prediction is carried out.

A summary of the studies is synthesized in the Table in 1.3.
In Gameiro et al. [2020], it is noted that almost all of these studies share common features:
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Study Design Setting N AKI
Definition

Timing
of AKI

ML Algorithm Predictive
Ability

Kate et al.
(2016)

retrospective medical
and
surgical

25,521 AKIN during
hospitalization

naïve Bayes;
support vector machine;
decision trees;
logistic regression

AUC 0.654
AUC 0.621
AUC 0.639
AUC 0.660

Thottakkara
et al. (2016)

retrospective surgical 50,318 KDIGO post surgery naïve Bayes;
generalized additive model;
logistic regression;
support vector machine

AUC 0.819
AUC 0.858
AUC 0.853
AUC 0.857

Davis et al.
(2017)

retrospective medical
and
surgical

2003 KDIGO during
hospitalization

random forest;
neural network;
naïve Bayes;
logistic regression

AUC 0.730
AUC 0.720
AUC 0.690
AUC 0.780

Cheng et al.
(2018)

retrospective medical
and
surgical

60,534 KDIGO,
AKIN,
RIFLE

during
hospitalization

random forest;
AdaBoostM1;
logistic regression

AUC 0.765
AUC 0.75
AUC 0.763

Ibrahim et al.
(2018)

prospective contrast 889 KDIGO pre and post
intervention

logistic regression AUC 0.790

Koola et al.
(2018)

retrospective medical
and
surgical

504 KDIGO during
hospitalization

logistic regression;
naïve Bayes;
support vector machines;
random forest;
gradient boosting

AUC 0.930
AUC 0.730
AUC 0.900
AUC 0.910
AUC 0.880

Lin et al.
(2018)

retrospective ICU 19,044 KDIGO during
hospitalization

support vector machine AUC 0.860

Koyner et al.
(2018)

retrospective medical
and
surgical

121,158 KDIGO 24 h post
admission

gradient boosting AUC 0.900

Huang et al.
(2018)

retrospective PCI 947,091 AKIN during
hospitalization

gradient boost;
logistic regression

AUC 0.728
AUC 0.717

Huang et al.
(2019)

retrospective PCI 2,076,694AKIN pre and post
intervention

generalized additive model AUC 0.777

Tomašev et al.
(2019)

retrospective medical
and
surgical

703,782 KDIGO during
hospitalization

recurrent neural network AUC 0.921

Adhikari et al.
(2019)

retrospective surgical 2901 KDIGO post surgery random forest AUC 0.860

Flechet et al.
(2019)

prospective ICU 252 KDIGO during
hospitalization

random forest AUC 0.780

Parreco et al.
(2019)

retrospective medical
and
surgical

151,098 KDIGO during
hospitalization

gradient boosting;
logistic regression;
deep learning

AUC 0.834
AUC 0.827
AUC 0.817

Xu et al.
(2019)

retrospective medical
and
surgical

58,976 KDIGO during
hospitalization

gradient boosting AUC 0.749

Tran et al.
(2019)

prospective burn 50 KDIGO during
hospitalization

k-nearest neighbor AUC 0.920

Zhang et al.
(2019)

retrospective ICU 6682 KDIGO 24 h post
admission

gradient boosting AUC 0.860

Zimmerman
et al. (2019)

retrospective ICU 46,000 KDIGO 72 h post
admission

logistic regression;
random forest;
neural network

AUC 0.783
AUC 0.779
AUC 0.796

Rashidi et al.
(2020)

retrospective
and
prospective

burn and
trauma

50/51 KDIGO
vs New
Biomark-
ers

1st week
post ICU
admission

recurrent neural network AUC 0.920

AKI-acute kidney injury, AKIN-acute kidney injury network, AUC-area under the receiver operating characteristic curve,
ICU-intensive care unit, KDIGO-kidney disease improving global outcomes, ML-machine learning,
PCI-percutaneous coronary intervention, RIFLE-risk, injury, failure, loss of kidney function, end-stage kidney disease.

Table 1.3: Table with a review of results from Gameiro et al. [2020]

• use the definition of AKI KDIGO and as primary output the binary classification AKI-NO
AKI;

• are retrospective and largely without external validation (although prospective studies are
starting to be performed);

• apply a variety of supervised classification techniques in the same study (gradient boosting,
logistic regression, k-nearest neighbor, Random Forest, deep learning, support vector machine,
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naive Bayes, generalized additive model, recurrent neural network);

• have performances reported indicating the AUROC which for the various methods and in the
various studies is variable between 0.7 and 0.93

Analogous methods are also reported in Huang et al. [2020], another article with a review of five
studies (with partial overlap with the previous review) carried out on adult patients. Again, the
studies use the AKI classification according to the KDIGO criterion (with and without using the
Urine Output). The techniques cited were also in this case: logistic regression, and random forest.

The objective output of the supervised learning in these studies varies and includes, for example,
the prediction of AKI within one day of admission to intensive care, within 48 hours of admission,
and up to one day before the onset of the phenomenon.

The study reported in Simonov et al. [2019] focuses on data acquired from 2012 to 2016 of
three hospitals using the same electronic medical record (avoiding in this way the standardization
problems of EMRs). As an output, in addition to the primary one of AKI-NO AKI, the prediction
of the onset of dialysis, death, and "sustained AKI" (defined as at least two consecutive creatinine
values consistent with a diagnosis of AKI) are also evaluated.

This article is interesting for the careful description of the covariates involved in the analysis
(demographics, vital signs, and laboratory data were obtained directly from the EHR) and the ap-
proach that assumes that the measures varying over time are assumed as constants until remeasured.
In this case, logistic regression is used for binary classification.

Moving from reviews to individual studies an interesting research is presented in Flechet et al.
[2017]. In this case, a model is developed and made usable with an online application (available here
http://www.akipredictor.com/). It predicts AKI according to the KDIGO classification in adult
patients without using the Urine Output. The model was elaborated using about 4000 patients
extracted from the multicenter EPaNIC database. In this case, the objectives of the study were:

• predict the development of AKI in any of the stages during the first week of stay in intensive
care;

• predict the development of stages 2 and 3 (AKI23) in the first week of stay in the ICU.

To achieve the previous objectives, 4 models have been developed:

• Baseline model that uses only demographic data known upon admission;

• Admission model which uses, in addition to the previous ones, the data available for admission;

• Day1 model in which the data available on the first day of stay in therapy are added;

• Day1 + model which uses additional data acquired in the week prior to admission to intensive
care.

The selection of the variables was carried out starting from the univariate association of the candi-
date variables to be considered as predictors of AKI. The Random Forest technique was applied to
the subset of the selected variables.

A subsequent publication of the same authors Flechet et al. [2019], it is shown a comparison
between the ability to predict the onset of AKI using the AKIpredictor model with the prediction
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of doctors. The study was carried out prospectively and showed similar capabilities of the model
compared to doctors who, however, according to the study, tend to overestimate the risk of AKI.
This article is reported because it is a prospective study and shows an interesting comparison
between the "algorithm" and the clinicians’ estimate.

To our knowledge, Tomašev et al. [2019] is the most extensive study on the subject of continuous
AKI prediction. It was carried out on the data of 703782 patients between 18 and 99 years old
collected by the US Department of Veterans Affairs. Also in this case the classification according
to the KDIGO criterion was used as the ground truth label (without using the Urine Output, not
present in the majority of the data). Also, in this case, a deep learning algorithm has been developed
that can predict the onset of AKI in a subsequent time window from 6-h to 72-h (in particular 48h).
The event is considered positive if the onset of the AKI of the stage of interest occurs in that window
(in particular the option at any stage), and otherwise negative. The measures varying over time of
each patient were "discretized" in time windows of 6 hours (4 events per day of hospitalization).
In this case, deep learning techniques were applied to carry out the classification, in particular,
a Recurrent Neural Network was used. According to what was reported, the model was able to
predict 55.8 % of AKI episodes and 90.2 % of AKI episodes requiring subsequent dialysis.

Lei et al. [2020] is a particularly relevant publication in that the characteristics of this study are
similar to the type of data that will be subsequently analyzed by us. This retrospective study, in
fact, is aimed at predicting the onset of AKI in 897 patients undergoing cardiac surgery within the
first 7 days of hospitalization (although this study limits to a single type of intervention: aortic arch
surgery). Also in this case the KDIGO criterion is used for the classification of AKI without using
the UO because, according to the authors, it was a measure acquired in an unreliable way in the data
in their possession. The following techniques were used by applying both a binary and a multiclass
classification to the various stages of AKI: logistic regression, random forest, support vector machine,
and Light gradient machine. According to the authors, the best results were obtained using the
Light gradient machine with an AUC-ROC of 0.8 (binary classification case).

The article published by Morid et al. [2019] is characterized by the idea of inscribing the AKI
problem in the broader field of the prediction of adverse events in intensive care and for the discussion
of possible approaches to managing the time series of data. The application example shown in the
article is created using data from the MIMIC-III database and having as its purpose the prediction of
the AKI using the KDIGO criterion (without UO); the problem of managing the time series of data
and the subsequent classification is seen in detail and tackled as a “pattern recognition” problem.
In other words, the article describes the different approaches to "transform" a time series into
"features" that can subsequently be used as input for the classification algorithms. The approaches
described are for each patient’s time series:

• Static transformation: the series is replaced by a representative value (e.g. average, first value,
last value, most recent value);

• Dynamic transformation: the series is split into a series of consecutive time windows of fixed
intervals not overlapping. Subsequently, for each of these time windows are identified the
characteristic patterns.

In the article, in addition to the local trend of each time window, a global trend is also extrapolated
that takes into account the global trend, for example, of the averages of the different time windows.
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Once the series of features have been built, the study applies many statistical techniques to it
(logistic regression, random forest, kernel-based Bayesian Network, SVM, neural networks, and
gradient boosting tree). Among these, the best result of the study is obtained with the use of
random forests.

In a more recent publication by Song et al. [2021] a review of the most recent article focused
on predicting AKI makes a comparison between the results obtained using machine learning and
logistic regression techniques. According to Song et al. [2021], although machine learning and
logistic regression have Area under the curve (AUC) similar however ML models exhibited variable
performance with some ML displaying very good performance.

In Song et al. [2021] is reported a scatter plot of model performance comparing logistic regression
and ML models (see 1.1).

Figure 1.1: Scatter plot of model performance comparing logistic regression (LR), Gradient boosting (GB),
artificial neural network (ANN), support vector machine (SVM), Bayesian Network (BN).

Gradient boosting with the exception of the random forest was significantly more effective at
predicting AKI compared with ANN, SVM, and BN. Song et al. [2021] refer that although significant
predictors were unique and study specific, the analyzed studies the creatinine results be the most
common predictor.

A final mention to the article of Sanchez-Pinto and Khemani [2016] is due because it was carried
out on the data reported from the electronic records of a pediatric intensive care unit (even if not
cardiac) by analyzing patients from 1 month to 21 years of age. The goal of the study is to predict
the onset of AKI at any stage within 72 hours of admission using data from the first 12 hours. Also
in this case the KDIGO criterion without UO is chosen as a reference for the classification.

In the end, we report that studies that use EMRs in order to predict the AKI stage focused on
pediatric intensive care are rare and no studies, at least to the best of our knowledge, have been
performed in pediatric cardiac patients admitted to the intensive care unit.
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Chapter 2

EMRs data from "Ospedale Pediatrico
Bambino Gesù"

Ospedale Pediatrico Bambino Gesù (OPBG) is the leading children’s hospital in Italy, being a key
center for the health of children and adolescents from both Italy and abroad. It was founded in
the second half of the 19th century and today it is the largest sub-specialty children’s hospital
and research center in Europe. OPBG collaborates with the main international organizations in
the pediatric field and treats a large number of patients. The hospital covers all pediatric sub-
specialties: transplantation, genetic and metabolic diseases, neuroscience and rehabilitation, and,
in particular, cardiology and cardiac surgery.

Children’s Hospital Bambino Gesù is recognized at the national level as an Institute for research,
hospitalization, and health care in pediatric patients. OPBG is also accredited as Academic Hospital
by Joint Commission International, a non-governmental, non-profit organization that has been
dedicated to improving the quality, safety, and efficiency of healthcare for over 75 years.

In particular, among the various departments of the hospital, there is the Pediatric Cardiac
Intensive Care Unit (PCICU). It is committed to caring for all patients with acquired and congenital
heart disease from fetal life to adulthood. The PCICU’s team is composed of cardiac intensivists,
cardiac surgeons, cardiologists, cardiac anesthesiologists, and nurses who collaborate in a state-of-
the-art facility to provide high-quality care. A significant part of Italian children with congenital
heart disease is treated in PCICU of OPBG.

Starting from the end of 2016, the EMRs were introduced in the intensive care unit and sub-
sequently, a project has been approved with the aim to use retrospectively this new type of EMR
data collected at the OPBG PCICU to the problem of AKI.

In this chapter, we present the characteristics of the EMRs of Pediatric Cardiac Intensive Care of
Children’s Hospital "Bambino Gesù" and describe the process that led to the selection and extrac-
tion of the information present in the database. In the absence of an established data standardization
practice for the treatment of the AKI problem, this process lasted several months involving many
meetings with doctors and IT technicians.

Our retrospective study involved patient records extracted from January 2018 to February 2020.
All the data extracted by the EMR have been anonymized. The ultimate goal is to develop a
system capable of performing a continuous prediction of the AKI status for each patient with such
an advance in time to allow doctors to decide on any changes to therapies.
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2.1. Characteristics of OPBG PCICU EMRs

Figure 2.1: Database schema

2.1 Characteristics of OPBG PCICU EMRs

At the end of 2016, PCICU introduced the Ascom Digistat a comprehensive suite of clinical workflow
software provided by Ascom (https://www.ascom.com ). After a period of experimentation, this
software suite has become part of PICU’s clinical practice. After this initial phase, it was possible
to collect all patient data regarding in particular:

• continuous physiologic monitoring data;

• laboratory measurements;

• treatments and procedures administered;

• blood gas analysis;

• admission data and doctor’s summary notes.

It is important to notice that although the continuous physiologic monitoring data are acquired
with an acquisition time of the order of the second, the database is designed to store permanently
only the subset of these acquisitions validated by nurses/doctors as described in figure 2.1

This choice allows a better quality data decreasing the number of spurious measurements and
storing only values that are compatible with the patient’s status on the basis of the opinion of those
working in the ICU. In particular, this choice largely avoids the acquisition made with sensors not
correctly positioned due to patient movements.

The choice of the variables involved was made following doctors’ indication taking into account
the literature on AKI and the specific characteristics of the pediatric intensive care unit.
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2.1. Characteristics of OPBG PCICU EMRs

Type of variable name of variable

Admission and post-surgical data (fixed data) sex, age, weight, PIM3,
Vasoactive-inotropic Score (VIScore),

surgical state, baseline creatinine, CEC
Duration, Clamping Duration

Vital Signs systolic pressure, diastolic pressure,
average pressure, saturation, cardiac

frequency
Fluids diuresis, fluid input, fluid output, blood

input, blood output
Blood gas analysis Be, Na+, Cl-, Lac, blood PH
Laboratory analysis creatinine, albumin, hemoglobin,

platelets, LDH, APPT
Therapies administered Adrenaline, Milrinone, Furosemide

(Lasix), Levosimendan, Vasopressin,
Etacrynic acid

Table 2.2: Selected PCICU variables

We use a selection of objectively collected markers through the available EMR system. This
information can be grouped according to their characteristics into groups such as patient demo-
graphics, vital parameters, laboratory analysis, blood gas analysis, etc...

Some of these variables are static and not subject to change during hospitalization (e.g. age or
sex) whereas others might be susceptible to substantial changes over time (eg. pressure, saturation,
diuresis, cardiac frequency, etc).

We include all such features that are collected both manually (such as urinary volume) or
automatically (such as cardiac frequency, pressure, saturation) from patients’ monitors and devices.

In our study, we use a subset of measures reported in Table 2.2 selected following the PCICU
doctors’ indications.

Currently, the data stored in the database are only those validated by nurses or doctors or
provided by blood gas analysis or laboratory data. For this reason, different measures have different
acquisition frequencies as described in Table 2.3.

Mean acquisition time means that for medical reasons a measurement could be acquired more
frequently (for example laboratory analysis of blood gas analysis) by doctors and if non requested
it is assumed to be stable in time.

Type of variable Mean Acquistion Time
Vitals Signs ∼ 2 h
Fluids ∼ 2 h
Blood gas Analysis ∼ 4 h
Laboratory analysis ∼ 24 h

Table 2.3: Mean acquisition time for each group of variables.

Regarding the therapies administered, they are inserted in the database according to some
conventional rules involving the start time and assumed duration and the administered dose in each
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2.1. Characteristics of OPBG PCICU EMRs

time interval must be computed.
It is important to notice that a pediatric patient admitted to intensive care can be subjected,

although not frequently, to more than one surgical and/or hemodynamic procedure during the same
hospitalization.

Due to the complexity of the data acquired on a patient in the ICU (including not standardized
data management or the lack of data between the successive procedure) and according to PCICU
doctors we decided to select a subset of the dataset. In particular, we use:

• only patient in pediatric age (≤ 18 years) with a length of hospitalization greater than 48h;

• only the temporal data between admission and discharge date from PCICU or between the
end time of the first surgery (or first cardiac procedure) and the start time of subsequent
surgery.

2.1.1 Admission and post-surgical data

In this section, we describe the variables that are acquired in PCICU admission phase or obtained
after the surgical or hemodynamic procedures. In particular, we notice that:

• pediatric Index of mortality (PIM3) is a severity scoring system used for predicting the out-
come of patients admitted to pediatric intensive care units based on data collected within the
first hour of admission;

• vasoactive-inotropic Score (VIS score) is a measure of post-operative cardiovascular support,
and has been associated with morbidity and mortality after infant cardiac surgery;

• baseline creatinine is the value of serum creatinine which is reflective of the patient’s pre-
morbid kidney function;

• extracorporeal circulation (CEC) is used to maintain the patient’s blood circulation and/or
lung function outside the body. The CEC duration is related to the difficulty of the surgical
procedure and the consequent risk;

• clamping duration indicates, instead, the length of clamping the aorta and separates the
systemic circulation from the outflow of the heart.

2.1.2 Vital signs and fluids

Nurses and clinicians have traditionally relied on many vital signs to assess their patients. In the
particular case of a cardiac intensive care unit, the selected variables are pressure (systolic, diastolic,
and average), heart rate, and saturation.

It is important to notice that we use the invasive measurement of continuous arterial pressure
except in case a non-invasive contemporary measure is stored in the database.

Although invasive measurement from an arterial line is generally considered to be the gold
standard, for many practical reasons (e.g. movement artifacts) nurses and doctors proceed with the
acquisition of non-invasive measurement when the invasive one is considered not reliable. Concerning
the group of variables denoted in Table 2.2 as fluids, these variables are linked related to fluid and
blood management. All the fluids in input and output (non only the diuresis) are strictly controlled.
The same approach is obviously used for blood loss or transfusions.
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2.2. Time dependent data extraction

2.1.3 Blood gas analysis

Blood gas analysis is a common investigation used to assess and monitor the acid–base balance of
patients. Blood gas analysis can inform healthcare professionals about the respiratory and metabolic
status of their critically ill patients. Concerning blood gas analysis we use the following variables:

• base excess (BE) or base deficit is characterized by the amount of base that is required to
normalize the pH of the blood;

• Na+, Cl-, Lac indicate the concentration for potassium (Na), chloride (Cl), and lactate (Lac);

• blood PH indicates the pH of the blood and refers to how acidic it is.

2.1.4 Laboratory analyses

Laboratory testing is ubiquitous among hospitalized patients and is more common among patients
in the intensive care unit (ICU). The execution of laboratory tests is frequently requested for the
diagnosis and/or monitoring of critical patients.

The variables included in the group of laboratory analyses are:

• creatinine, a product made by muscles as part of regular, everyday activity. Normally, kidneys
filter creatinine from your blood and send it out of the body in urine. If there is a problem
with the kidneys, creatinine can build up in the blood and less will be released in the urine;

• albumin is a plasma protein; low albumin levels can be a sign of liver or kidney disease or
another medical condition. High levels may be a sign of dehydration;

• hemoglobin is the protein contained in red blood cells that is responsible for the delivery of
oxygen to the tissues and transports carbon dioxide from organs and tissues back to the lungs;

• platelets are a component of blood whose function (along with the coagulation factors) is to
react to bleeding from blood vessel injury by clumping, thereby initiating a blood clot;

• lactate dehydrogenase (LDH) is an enzyme found in nearly all living cells. Because it is
released during tissue damage, it is a marker of common injuries and diseases such as heart
failure;

• a partial thromboplastin time (aPTT) measures the time it takes for a blood clot to form.

2.2 Time dependent data extraction

As highlighted in the introduction of this chapter, the final aim is to develop a system able to
support doctors’ decisions on any changes in therapies to prevent AKI. To allow this, a continuous
forecasting approach of the state of AKI was chosen with a time advance (e.g. 48 hours) capable
of making a forecast for each pre-selected time interval, possibly allowing the doctors to decide on
any modifications to the therapies.

For this reason, according to PCICU clinicians, we use the approach to discretize all the different
acquisition frequencies in a common sample frequency of ∆t = 6 hours. In particular, in the case
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2.2. Time dependent data extraction

Figure 2.2: Data extrapolation schema

of measure acquired more frequently than 6 hours, we use, starting from the initial time, for each
time interval ∆t:

• the mean of data acquired in the case of intensive measures (e.g. pressure, cardiac frequency)

• the sum of data acquired in case of extensive measures (e.g. diuresis, blood output).

For the laboratory analysis case, instead, following the indications of the ICU doctors, we assume
to repeat the most recent measure until new acquisition.

In addition to these data, the EMR records the AKI KIDIGO value in each hour of stay in the
ICU.

In this case, we adopt different methods of “discretization”. For each ∆t we compute:

• bin AKI: 0 if all hourly records are zero, 1 otherwise;

• severe AKI: 0 if the values are all 0 or 1, 1 otherwise;

• max AKI: the maximum values assumed in each interval ∆t;

• mode AKI: the mode in each interval ∆t.

The first two values are binary values, while the other values assume values 0,1,2,3 following the
AKI stage criteria.

The main objective of this study is to predict the stage of AKI (in particular bin AKI, severe
AKI, max AKI, and mode AKI) that will occur after a certain temporal delay. This approach can
be summarized using this schema:

6h data→ 48h temporal delay → 6h data

In Figure 2.2 we depict the data extrapolation schema taking into account time-dependent and
time-independent variables.
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2.3. Therapies data extraction

2.3 Therapies data extraction

Our study considers also some therapies administered to the patients. Between all the possible drugs,
according to doctors’ expertise, we select the following subset of drugs reported in the following table
2.4.

Name of the drug (unit of measure) type of intravenous administration
Ethacrynic Acid (mg/kg) infusion and bolus
Adrenaline (mcg/kg) infusion
Furosemide (mg/kg) infusion and bolus
Levosimendan (mg/kg) infusion
Milrinone (mg/kg) infusion
Vasopressin (UI/kg) infusion

Table 2.4: List of drugs extracted from the database

Intravenously administered drugs are given either as a “bolus” or an infusion over a period of
many hours. Bolus administration is rarely used and is restricted to emergency situations where
rapid pharmacological action of limited duration is required.

In our case, the bolus was considered only in the case of furosemide and ethacrynic acid.
In Table 2.5 we show an example of how the information is stored in PCICU’s database in case of

infusion, where start and end time of a drug are entered together with the Amount, Speed, Volume
and Weight.

IDEpisode Name DateUTC Action Amount Speed Volume Weight
XXXX Levosimendan YYYY-12-01 08:00:17 Start 1.3 2.08 50 9
XXXX Levosimendan YYYY-12-02 07:40:58 Start 2 0.8 50 9
XXXX Levosimendan YYYY-12-03 07:34:53 End 2 0.8 50 9

Table 2.5: Example of database in the infusion case

In table 2.6, instead, we show the data in the case of the bolus.

IDEpisode Name DateUTC Amount Weight
YYYY Furosemide (bolo) YYYY-05-23 14:42:36 3 2.8
YYYY Furosemide (bolo) YYYY-05-26 06:04:25 2 2.8
YYYY Furosemide (bolo) YYYY-05-26 17:31:20 2 2.8

Table 2.6: Example of the database in the bolus case

The database doesn’t provide the actual hourly dose administered to the patient, but only the
prescribed dose that, in some cases, changes with the time or terminates beforehand. Therefore,
the dose was then calculated by us starting from the database data.

In the case of Furosemide and vasopressin, we consider also the bolus dose.
Since all previous variables were discretized every ∆t (6 hours), the dose was calculated and

administered to the patient from the initial time every ∆t. In the event that the bolus is also present
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2.4. Missing data

in that drug, for each time interval of 6 hours, the dose final is given by the sum of the drug given
as an infusion and bolus.

In the table, we show an example of the database with the therapeutic indication.
For the bolus case, the dose is evaluated with the following formula:

dose =
Amount(mg)

Weight(kg)

.
In the infusion case, instead, the dose is calculated using the following relation:

dose =
Amount(mg)

V olume(ml)×Weight(kg)
× Speed(ml/h)×∆t(h)

with ∆t the chosen time interval, Weight the weight of the patient, and Speed the speed of intra-
venous infusion.

2.4 Missing data

Some variables involved in our study are affected by the problem of missing values. For variables
belonging to groups of fluids and therapies, there are no missing data because, when a value is not
present that means that it is zero.

Concerning the Laboratory analysis, the clinical practice usually assumes to make one measure-
ment for days or more frequently based on the patient’s condition and the doctor’s instructions.
If laboratory analyses are not requested it is possible to assume, following the indications of the
PCICU doctors, that the values have not changed compared to the previous ones and for this reason
could be repeated until a new acquisition is inserted in the database.

In the case of variables relating to vital parameters and blood gas analysis, we assume to have
missing data if there is no acquisition in the average acquisition time interval (respectively 2 hours
for vital signs and 4 hours for blood gas analysis).

In table 2.7 we report information about missing data in the case of vital signs. Instead in table
2.8 we insert the missing data in case of blood gas analysis.

Variable name number of missing data total number of acquisitions
systolic pressure 3654 64168
diastolic pressure 3300 64168
average pressure 6825 64168
heart rate 1567 64168
saturation 2970 64168

Table 2.7: Missing data in case of vital signs

As described in Rubin [1976], we assume the origin of the missing data is Missing at Random
(MAR). Missing data are regarded to be MAR when the probability that the responses are missing
depends on the set of observed responses but is not related to the specific missing values which are
expected to be obtained.
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2.5. Summary statistics of selected dataset

Variable name number of missing data total number of acquisitions
Na+ 5554 31642
Cl- 5716 31642
bloodPH 5514 31642
Lac 5552 31642
BE 5595 31642

Table 2.8: Missing data in case of blood gas analysis

Starting this assumption of MAR, in the case of Blood gas analysis and Vital Signs we use a
nonparametric missing value imputation using Random Forest provided by MissForest R Package.

As described in Stekhoven and Bühlmann [2011] MissForest, allows for missing value imputation
on basically any kind of data. In particular, it can handle multivariate data consisting of continuous
and categorical variables simultaneously. Moreover, it handles tuning parameters and requires no
assumptions about distributional aspects of the data.

MissForest is an iterative imputation method based on a random forest. This approach, averag-
ing over many unpruned classification or regression trees, takes advantage of the fact that random
forest intrinsically constitutes a multiple imputation scheme.

Given X = (X1,X2, ...,Xp) variables and a n× p matrix of data, this method for an arbitrary
variable Xs (which includes missing values) splits the dataset into to four parts:

• the observed values of Xs denoted by y
(s)
obs;

• the missing of Xs, denoted by y
(s)
mis;

• the variables other than Xs with observations denoted by x
(s)
obs;

• the variable other than Xs with missing observation denoted by x
(s)
mis.

The pseudo Algorithm 1 depicted in figure 2.3 gives a representation of the missForest method.
The imputation has been computed separately for blood gas analysis and vital signs given the

different mean times of measurement acquisition.
In particular, Stekhoven and Bühlmann [2011] shows on several real datasets coming from dif-

ferent biological and medical fields that MissForest outperforms established imputation methods
like k-nearest neighbors imputation or multivariate imputation using chained equations.

2.5 Summary statistics of selected dataset

In this section we insert some brief descriptive statistics evaluated on the selected subset of patients
with:

• pediatric age

• time of permanence in PCICU such as to allow a continuous prediction using the temporal
delay of 48h
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Figure 2.3: The pseudo Algorithm of the MissForest method

Following this choice, the total number of patients on which it was possible to perform an
analysis is 419 (193 female, 226 male). These patients are divided by surgical state within the
following groups: Surgical and Hemodynamic (48), Surgical (299), Hemodynamic (34), and Medical
(38).

In table 2.9 we insert the summary statistics related to the variables deriving from admission
and post-surgical data.

Variables Min, Q1 Median Q3 Max; N = 419

weight (kg) 1 3 6 12 97
age (month) 0 0 5 32 216
basal creatinine (mg/dL) 0.08 0.26 0.35 0.58 1.37
PIM3 0 0.01 0.02 0.04 1
Vis Score 0 0 8 15 50
CEC Duration (min) 0 0 85 160 470
clamping duration (min) 0 0 22 80 294

Table 2.9: Summary statistics of variables related to admission and post-surgical data
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2.5. Summary statistics of selected dataset

In table 2.10 the time-dependent summary statistics are reported.

Variables Min, Q1, Median, Q3, Max; N = 12,852

diuresis (ml) 0 95 160 310 2,600
fluid input (ml) 3 104 158 306 2,569
fluid output (ml) 0 100 165 320 2,660
creatinine (mg/dl) 0.07 0.26 0.37 0.56 11.05
ldh (mU/ml) 143 351 479 706 6,389
albumin (g/dl) 2.00 3.70 4.10 4.70 7.50
hemoglobin (g/dl) 6.90 11.10 12.10 13.30 22.40
platelets (×103/mm3) 14 132 226 341 901
aPTT (s) 20 31 36 43 178
BE (mEq/l) -12.8 3.4 6.4 10.1 40.2
Cl- (mmol/l) 70.0 97.2 100.6 104.0
Lac (s) 0.40 1.00 1.23 1.60 18.57
Na+ (mmol/l) 118.0 135.5 138.0 141.4 161.0
blood PH 7.08 7.42 7.45 7.49 7.72
blood input (ml) 0 0 0 0 2,200
blood output (ml) 0 0 0 6 770
systolic press (mmHg) 42 76 88 100 150
diastolic press (mmHg) 16 42 52 61
average press (mmHg) 25 54 63 72 107
heart rate (bpm) 46 108 126 142 220
saturation 51.3 92.3 97.7 99.5 100.0
adrenaline (mcg/kg) 0 0 0 6 144
furosemide (mg/kg) 0.0 0.0 0.0 0.0 5.00
ethacrynic acid (mg/kg) 0.00 0.0 0.77 1.67 6.52
milrinone (mg/kg) 0.0 0.0 0.0 0.18 30.0
levosimendan (mg/kg) 0.000 0.000 0.000 0.000 0.076
vasopressin (UI/kg) 0.00 0.00, 0.00 0.00 0.48

Table 2.10: Summary statistics of time-dependent variables: Min, Max, median (IQR)

In figure 2.4 we show boxplots of admission and post-surgical data separated according to the
onset of AKI. In particular, we indicate by "No AKI" a patient in whom the onset of AKI does not
occur and with "AKI" a patient in whom disease onset occurs at any stage.

In figure 2.5 we show the box plots of admission and post-surgical data separated according to
the onset of severe AKI (stage 2 ore 3) or not severe (stage 0 or 1).

Finally, in figure 2.6 we show the boxplots of admission and post-surgical data separated ac-
cording to the maximum stage of observed AKI.
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Figure 2.4: Box plots of admission and post-surgical data separated according to the onset of AKI or not.

Figure 2.5: Boxplots of admission and post-surgical data separated according to the onset of AKI severe
(stage 2 or 3) or not (no AKI or stage 1).
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Figure 2.6: Boxplots of admission and post-surgical data separated by the maximum stage of observed
AKI.
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Chapter 3

Classification using Random Forest

3.1 Introduction

In this chapter, we show the results obtained applying Random Forests classification method to the
PCICU dataset previously described in chapter 2. We have chosen this methodology after various
preliminary attempts because it provides excellent performance and because, being an ensemble
method that makes use of classification trees, it is characterized by being less black-box than other
methods.

After a brief theoretical introduction to the random forest, we insert the classification results
obtained by applying the RF model to:

• the selected subset of variables acquired in PCICU and the therapies administered;

• subsets of the previous variables identified using Recursive Feature Elimination (RFE) ap-
proach.

3.2 A brief introduction to Random Forest

The random forest algorithm was proposed by Breiman [2001]. It has been extremely successful as
a general-purpose classification and regression method.

As highlighted by Biau and Scornet [2015], the popularity of forests depends on the fact that
they can be applied to a wide range of prediction problems using a relatively small number of
tuning parameters compared to other methods. The presence of a little number of parameters to
tune makes using this algorithm easier than others.

Moreover, the method is generally recognized for its accuracy and its ability to deal with both
small sample sizes and high-dimensional feature spaces. Another advantage is that it can be paral-
lelizable.

Random forests are a combination of tree predictors such that each tree depends on the values
of a random vector sampled independently and with the same distribution for all trees in the forest.

A pseudocode representing the random forest algorithm is displayed in Table 3.1.
As described by James et al. [2013] and Hastie et al. [2001] RF is an improvement over bagged

trees by way of a random forest small tweak that decorrelates the trees. As in bagging, a number of
decision trees on bootstrapped training samples are built. But when building these decision trees,
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3.2. A brief introduction to Random Forest

Random Forest for Regression or Classification.

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data, by recur-
sively repeating the following steps for each terminal node of the
tree, until the minimum size nmin is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m
iii. Split the node into two daughters nodes.

2. Output the ensemble of trees TbB1

To make a prediction at a new point x:
Regression: f̂Brf (x) = 1

B

∑B
b=1 Tb(x)

Classification: Let Ĉb(x) be the class prediction of the bth random-forest
tree. Then Ĉrf (x) = majority vote {Ĉb(x)}B1

Table 3.1: Random Forest algorithm for regression or classification

each time a split in a tree is considered, a random sample ofm predictors is chosen as split candidates
from the full set of p predictors. The split is allowed to use only one of those m predictors.

A fresh sample of m predictors is taken at each split; typically it is chosen m ≈ √p where p the
number of predictors considered at each split is approximately equal to the square root of the total
number of predictors. This implies that, in the phase of building a random forest, at each split in
the tree, the algorithm is not even allowed to consider a majority of the available predictors.

As suggested in James et al. [2013], intuitively this can be explained starting from the example
of a case in which there is a strong predictor along with a number of other moderately strong
predictors. Then in the collection of bagged trees, most or all of the trees will use this strong
predictor in the top split. Consequently, all of the bagged trees will look quite similar to each other.

Hence the predictions from the bagged trees will be highly correlated and this unfortunately
means that bagging will not lead to a substantial reduction in variance over a single tree in this
setting. Random forests circumvent this problem by forcing each split to consider only a subset of
the predictors.

Moreover, RF can be used to rank the importance of variables in regression or classification
problems. The main method used to compute the variable importance makes use of the mean
decrease in the Gini coefficient, a measure of how each variable contributes to the homogeneity of
the nodes and leaves in the resulting random forest. The higher the value of mean decrease accuracy
or mean decrease Gini score, the higher the importance of the variable in the model. Gini Importance
or Mean Decrease in Impurity (MDI) (see Breiman [2001]) calculates each feature’s importance as
the sum over the number of splits (across all tress) that include the feature, proportionally to the
number of samples it splits. The variable importance score is normalized by dividing all scores over
the maximum score: the importance of the most important variable is always 100%.

Variable importance plots can be constructed for random forests in exactly the same way as
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they were for gradient-boosted models. At each split in each tree, the improvement in the split
criterion is the importance measure attributed to the splitting variable and is accumulated over all
the trees in the forest separately for each variable.

On the theoretical side, several results have been obtained starting from Breiman [2001]; he
demonstrates an upper bound on the generalization error of forests in terms of correlation and
strength of the individual trees. Biau and Scornet [2015] present a review of several results obtained
with the aim of narrowing the gap between theory and practice in particular on the consistency and
asymptotic distribution of random forests.

3.3 Classification procedure and evaluation measures of the classi-
fication performance

In this section we describe the classification procedure implemented and the evaluation measures of
classification performance used.

We implement a classification procedure using the caret (Classification And REgression Train-
ing) R package (see Max [2008] and Kuhn [2012]).

• We split the dataset in train (70%) and test (30%) sets. The former is used to fit the classifi-
cation model, whereas the latter is employed to evaluate its performance;

• in splitting the data, we preserve the percentages of each class in train and test sets.

• in order to have more stable predictions and avoid the problem of overfitting, we use the
k–Fold Cross–Validation (with k = 10) repeated 3 times;

• we perform tuning of the m (also noted as mtry) parameter using the random choice option
in order to calibrate random forest parameters;

• finally, for this first model, we use the RF classification method.

In order to perform an evaluation measure of the classification performance we use the most
common metric reported in the literature as highlighted in Chapter 1. All the results that will be
shown in the next paragraphs are computed using the test dataset.

As described in Novakovic et al. [2017] and Labatut and Cherifi [2011] the evaluation of different
classification models is a common task in which two cases are usually distinguished:

• binary classification with two possible classes;

• multiclass classification with more than two classes.

In the binary case, especially in the medical field, the most common measure is the Area Under
the Curve (AUC) ROC, where ROC is the acronym of receiver operating characteristic curve.

As described in Fawcett [2006], the ROC curve is a graphical plot that illustrates the diagnostic
ability of a binary classifier system as its discrimination threshold is varied taking into account also
the unbalanced case. The method was originally developed for operators of military radar receivers
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starting in 1941, which led to its name. In order to explain the AUC-ROC we start with the possible
results of a classification with two classes. In binary classification, there are four possible outcomes
for a test prediction: true positive (TP), false positive (FP), true negative (TN), and false negative
(FN).

We also indicate with P and N respectively the number of positive and negative cases according
to the True class. In figure 3.1 a classification scheme with two classes.

The true positive rate (TPR), or sensitivity, can be represented as:

TPR =
TP

TP + FN

. In this case it is useful to use the ROC curve.
The true negative rate (TNR), or specificity, instead, is defined as

TNR =
TN

FP + TN

. The false positive rate (FPR) is defined as:

FPR =
FP

FP + TN

. FPR is also equal to:
FPR = 1− specificity

. The ROC curve is created by plotting the true positive rate (TPR) against the false positive
rate at various threshold settings. The true-positive rate is also known as sensitivity (or recall or
probability of detection); the false-positive rate is also known as the probability of a false alarm and
can be calculated as 1− specificity.

The Area Under the ROC curve (AUC-ROC) is a measure of how well a parameter can distin-
guish between two diagnostic groups.

As observed in Fawcett [2006], one point in ROC space is better than another if its TPR is
higher, FPR is lower, or both and it is to the northwest of the first.

In multiclass cases, multiple metrics can be used as described in Grandini et al. [2020]. As re-
ported also in Chapter , the most common metric is Accuracy computed starting from the confusion
matrix.

The confusion matrix, a generalization of binary classification schema, is a cross table that
records the number of occurrences between the true/actual classification and the predicted classifi-
cation, as shown in Figure 3.2. The Accuracy is defined as:

Accuracy =
number of correctly classified examples

total number of cases

Referring to the figure 3.2, the accuracy (or overall accuracy) is computed by the sum of diagonal
elements on the confusion matrix divided by the total number of observations.

In binary classification, Accuracy is defined as:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
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3.4. Classification results using all variables

Figure 3.1: Binary classification schema (from Fawcett [2006])

Another useful measure is the so-called kappa index. Its origins are in the field of psychology with
the aim of measuring the agreement between two human evaluators or raters (e.g., psychologists)
when rating subjects (patients). It was later “appropriated” by the machine-learning community to
measure inter-rater reliability for the qualitative (categorical) case.

As described in McHugh [2012], the Kappa result is interpreted as follows:

• values < 0.20 as indicating no agreement;

• 0.21–0.40 as fair;

• 0.41–0.60 as moderate;

• 0.61–0.80 as substantial;

• 0.81–1.00 as almost perfect agreement.

3.4 Classification results using all variables

In this section we show the results obtained by applying random forest using all the possible variables
previously described in the following cases:

• binary AKI;

• severe AKI;

• maximum AKI;

• mode AKI.

All the results that will be shown below are computed using the test dataset not used in the
training phase.

In all the cases we perform tuning ofm parameter using the random choice available in the caret
R package with the same tuneLength option equal to 15 and using a number of trees ntree = 500.
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3.4. Classification results using all variables

Figure 3.2: Example of confusion matrix in multiclass case (from Grandini et al. [2020])

The processing time for training each model is about 3 hours with a MacBook Pro Intel Core i5
dual-core with 2.3 GHz and 16 GB of RAM. In caret, it is possible to use parallelization and the
time can be reduced by exploiting the availability of a greater number of cores.

3.4.1 Binary and severe AKI case

In this paragraph, we show the results in binary and severe AKI cases. The results obtained in the
binary AKI case are shown in Table 3.2. In particular, considering the reference class AKI 1, we
obtain:

• AUC −ROC = 0.93

• sensitivity = 0.71

• specificity = 0.99

The sensitivity and specificity reported are computed using the typical p = 0.5 cut-off. More
detailed information is reported in Appendix A.

48h binary AKI score all variables CI
SENS 0.71 0.68-0.74
SPEC 0.99 0.98-1
TP 523 -
FP 45 -
TN 3075 -
FN 212 -
AUC-ROC 0.93 0.92-0.94

Table 3.2: 48h classification results via Random Forest with therapies (binary AKI case)
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3.4. Classification results using all variables

Figure 3.3: Variable importance case binary AKI

In figure 3.3 we insert the corresponding variable importance.
The results obtained in the severe AKI case are, instead, shown in Table 3.3. In this case, we

have:

• AUC −ROC = 0.99

• sensitivity = 0.74

• specificity = 0.994

48h severe AKI score all variables CI
SENS 0.74 0.70-0.78
SPEC 0.99 0.99-1
TP 350 -
FP 20 -
TN 3362 -
FN 123 -
AUC-ROC 0.99 0.98-1

Table 3.3: 48h classification results via Random Forest with therapies (severe AKI case)

The results of AUC-ROC in the case of binary and severe AKI are very good compared, in
particular, with results presented in the literature and reported in Chapter 1.

3.4.2 Maximum and Mode AKI case

In this paragraph, we show the results obtained in the multiclass case. We report the confusion
matrix achieved and the corresponding values of accuracy and kappa. In Table 3.4 is reported the
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3.4. Classification results using all variables

Figure 3.4: Variable importance case severe AKI

Max AKI confusion matrix
Observed

Prediction 0 1 2 3
0 3084 165 52 36
1 11 88 5 7
2 7 6 123 4
3 18 2 6 239

Table 3.4: Confusion matrix: max AKI case using all variables

confusion matrix obtained in the maximum AKI case. The overall accuracy, in this case, is the
following:

• Accuracy: 0.92 (CI: 0.91, 0.93)

• Kappa: 0.71

The variable importance for the maximum AKI case is depicted in Figure 3.5.
More detailed information is reported in A.
In Table 3.5 is reported the confusion matrix obtained in the mode AKI case. The accuracy for

the mode AKI case is the following:

• Accuracy: 0.95 (CI: 0.94, 0.96)

• Kappa: 0.80

The variable importance for the mode AKI case is depicted in Figure 3.6. More detailed infor-
mation is reported in A.
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3.4. Classification results using all variables

Figure 3.5: Variable importance case maximum AKI

Mode AKI confusion matrix
Observed

Prediction 0 1 2 3
0 3232 83 26 43
1 6 76 4 0
2 2 4 136 4
3 15 4 6 213

Table 3.5: Confusion matrix: mode AKI case using all variables
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3.5. Classification results using a subset of variables selected using RFE

Figure 3.6: Variable importance case mode AKI

In both cases, although the result can be considered good, we observe the tendency to confuse
"class 3", corresponding to the most severe stage 3 of AKI, with "class 0". This is a non-optimal
result from a medical point of view.

3.5 Classification results using a subset of variables selected using
RFE

Generally speaking, a simpler model is preferable to respect a complex one if it provides equivalent
performance. From a statistical point of view, it is desirable to reduce the number of input variables
in order to obtain a simpler model, reduce the computational cost of modeling and, in some cases,
improve the performance of the model.

In this paragraph, we present the results obtained using the RFE algorithm.
As described in Chen et al. [2020] and Kuhn and Johnson [2019], variable selection becomes

prominent, especially in data sets with many variables and features. It will eliminate unimportant
variables and improve the accuracy as well as the performance of classification.

RFE is an algorithm for selecting features that are most relevant in predicting the target variable
in a predictive model (either regression or classification). RFE applies a backward selection process
to find the optimal combination of features.

First, it builds a model based on all features and calculates the importance of each feature in
the model. Then, it rank-orders the features and removes the one(s) with the least importance
iteratively based on model evaluation metrics (e.g. accuracy).

In figure 3.7 is shown the first version of this algorithm (Algorithm 1).
To get performance estimates that incorporate the variation due to feature selection, it is sug-
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3.5. Classification results using a subset of variables selected using RFE

Figure 3.7: RFE algorithm 1

gested that the steps in Algorithm 1 be encapsulated inside an outer layer of resampling (e.g. 10-fold
cross-validation). Algorithm 2 shows a version of the algorithm that uses resampling.
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3.5. Classification results using a subset of variables selected using RFE

Figure 3.8: RFE algorithm 2

The results shown below are computed in the following way:

• we use RFE algorithm 2 to select a subset of variables;

• we perform a classification procedure with a random forest algorithm implemented with the
subset of variables identified previously.

Also in this case the performance is calculated on the test dataset not involved in the training
phase. A comparison between the results obtained using RFE and all the variables will be discussed
in the last paragraph of this chapter.

3.5.1 Binary AKI case using RFE

In this section, we show the results obtained by applying RFE in the binary AKI case. In figure
3.7 we show the corresponding values of accuracy obtained using the RFE method. As can be seen
from the trend in the figure the selected number of variables is 15.

In Table 3.6 the list of the top 15 selected variables is inserted.
In Table 3.7 we insert the results obtained by applying the random forest classification algorithm

to the selected subset of variables.
In figure 3.10 we show the obtained variable importance.

3.5.2 Severe AKI case using RFE

In this section, we show the results obtained in severe AKI cases.
In figure 3.11 we show the corresponding values of accuracy obtained using the RFE method.

As can be seen from the trend in the figure the selected number of variables is 10.
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3.5. Classification results using a subset of variables selected using RFE

Figure 3.9: Accuracy plot binary case

Figure 3.10: Variable importance binary AKI case
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3.5. Classification results using a subset of variables selected using RFE

variables
creatinine
basal creatinine
ldh
etacrynic acid
platelets
aPTT_s
hemoglobin
CEC Duration
PIM3
adrenaline
albumin
weight
BE
age
Clamping Duration

Table 3.6: Top 15 variables: case binary AKI

48h binary AKI score using RFE CI
SENS 0.75 0.72-0.78
SPEC 0.98 0.97-0.99
TP 552 -
FP 61 -
TN 3059 -
FN 183 -
AUC-ROC 0.95 0.94-0.96

Table 3.7: 48h classification results via Random Forest using a subset of 15 variables selected using RFE
(binary AKI case)

In Table 3.8 the list of the top 10 selected variables is inserted.
In Table 3.9 we insert the results obtained by applying the random forest classification algorithm

to the selected subset of variables.
Lastly, in figure 3.12 we show the obtained variable importance.
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3.5. Classification results using a subset of variables selected using RFE

Figure 3.11: Accuracy plot severe AKI case

Figure 3.12: Variable importance severe AKI case using the subset of 10 variables selected with RFE.
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3.5. Classification results using a subset of variables selected using RFE

variables
creatinine
basal creatinine
ldh
CEC Duration
platelets
etacrynic acid
aPTT_s
emoglobin
Clamping Duration
PIM3

Table 3.8: Top 10 variables: case severe AKI

48h severe AKI score using RFE CI
SENS 0.89 0.86-0.92
SPEC 0.99 0.99-1
TP 421 -
FP 35 -
TN 3347 -
FN 52 -
AUC-ROC 0.98 0.97-0.99

Table 3.9: 48h classification results via Random Forest using a subset of 10 variables selected via RFE
(severe AKI case)

3.5.3 Max AKI case using RFE

In the paragraph, we show the results obtained in the max AKI case.
In figure 3.13 we show plots with the accuracy obtained using the RFE method. As can be seen

from the trend in the figure the selected number of variables is 4.
In Table 3.12 the list of the top 4 selected variables is inserted.

variables
creatinine
basal creatinine
ldh
CEC Duration

Table 3.10: Top 4 variables: case max AKI

In Table 3.11 the confusion matrix in the maximum AKI case using the identified subset of
variables is shown. The accuracy and the kappa for the max AKI case are the following:

• Accuracy: 0.93 (CI: 0.92, 0.93)

• Kappa: 0.76
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3.5. Classification results using a subset of variables selected using RFE

Figure 3.13: Accuracy plot max AKI case.

Max AKI confusion matrix
Observed

Prediction 0 1 2 3
0 3043 121 29 31
1 50 134 6 5
2 12 6 148 7
3 15 0 3 243

Table 3.11: Confusion matrix: max AKI case using RFE
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3.5. Classification results using a subset of variables selected using RFE

Figure 3.14: Variable importance max AKI case

In figure 3.14 we show the variable importance obtained in this case.
More detailed information is inserted in Appendix B.
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3.5. Classification results using a subset of variables selected using RFE

Figure 3.15: Accuracy plot mode AKI case

3.5.4 Mode AKI case using RFE

In this section, we show the results obtained in the mode AKI case.
In figure 3.15 we show a plot with the accuracy obtained using the RFE method. As can be

seen from the trend in the figure the selected number of variables is 10.
In Table 3.12 the list of selected variables is inserted.

variables
creatinine
basal creatinine
ldh
CEC Duration
platelets
adrenaline
aPTT_s
hemoglobin
PIM3
albumin

Table 3.12: Top 10 variables: mode AKI case

In Table 3.13 the confusion matrix in the mode AKI case using the identified subset of variables
is shown. The overall accuracy for the mode AKI case is the following:

• Accuracy: 0.96 (CI: 0.95, 0.97)

• Kappa: 0.85

In Figure 3.16 we insert the plot of variable importance for the mode AKI case.
More detailed information is inserted in Appendix B.
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3.5. Classification results using a subset of variables selected using RFE

Mode AKI confusion matrix
Observed

Prediction 0 1 2 3
0 3215 59 20 20
1 15 108 1 2
2 6 0 149 10
3 19 0 2 228

Table 3.13: Confusion matrix: mode AKI case using RFE

Figure 3.16: Variable importance mode AKI case using RFE
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3.6. Analysis and comparison of results

3.6 Analysis and comparison of results

In this section, we insert some final and comparative considerations on the results previously in-
serted.

First of all, we observe that both methods, the one that uses all the variables selected on the
basis of the literature and the experience of doctors as potentially connected with the phenomenon
of AKI and the type of pediatric patients of PCICU, and the one that uses a subset of variables,
have good performance in terms of AUC-ROC and Accuracy.

In table 3.14 we show a summary of results with both approaches.

Comparison between results

Model with all variables
Model with a subset of variables
using RFE

binary AKI

AUC-ROC 0.93 (0.92-0.94)

SENS 0.71 (0.68-0.74)

SPEC 0.99 (0.98-1)

AUC-ROC 0.95 (0.94-0.96)

SENS 0.75 (0.72-0.78)

SPEC 0.98 (0.97-0.99)

Severe AKI

AUC-ROC 0.99 (0.98-1)

SENS 0.74 (0.70-0.78)

SPEC 0.99 (0.99-1)

AUC-ROC 0.98 (0.97-0.99)

SENS 0.89 (0.86-0.92)

SPEC 0.99 (0.99-1)

Maximum AKI
Accuracy 0.92 (0.91, 0.93)
Kappa 0.71

Accuracy 0.93 (0.92, 0.93)
Kappa 0.76

Mode AKI
Accuracy 0.95 (0.94, 0.96)
Kappa 0.80

Accuracy 0.96 (0.95, 0.97)
Kappa 0.85

Table 3.14: Comparison between results obtained using the model with all variables and with a subset of
variables selected using RFE algorithm.

Our opinion is that the results obtained using a subset of variables are slightly better and
are preferred as they involve fewer variables and for this reason simpler interpretation by doctors.
Moreover, in multiclass cases starting from the confusion matrix evaluated on the test dataset, we
observe that results obtained after applying RFE tend to confuse less class 3 (the most severe stage
of AKI) with class 0 (a patient without AKI). This aspect is also of potential interest to clinicians.

From the point of view of the importance of variables, we insert in the following figure a com-
parison between the first variables listed by importance in both approaches.

In figure 3.17 we insert a comparison between the first 10 variables in the case of binary AKI.
In figure 3.18 we show the case of severe AKI.
Instead, in the figures 3.20 and 3.19 we present the case respectively of max and mode AKI.
Although there are variations in the positions, we observe a substantial permanence in the first

positions of some variables (for example creatinine, basal creatinine, ldh, etc.).
These encouraging results are believed to need further study and confirmation by applying them

to a broader dataset of patients.
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3.6. Analysis and comparison of results

Figure 3.17: Comparison between the first 10 variables: binary AKI case.

Figure 3.18: Comparison between the first 10 variables: severe AKI case.
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3.6. Analysis and comparison of results

Figure 3.19: Comparison between the first 10 variables: mode AKI case.

Figure 3.20: Comparison between the first 4 variables: max AKI case.
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Chapter 4

Generalized Additive Models applied to
PCICU

4.1 Introduction

After obtaining the results illustrated in the previous chapter, we shifted our reflection to trying to
apply more interpretable models with the aim of eventually providing doctors additional information
on the onset of AKI in addition to prediction and the variable importance. In fact, despite the results
obtained using a Random Forest approach has shown very good results from a forecasting point of
view, they lack interpretability. For this reason, we try to develop different approaches.

In this chapter we show some results obtained with the first chosen approach that is able to
provide more interpretable results: Generalized Additive Models (GAMs).

A generalized additive model is a generalized linear model in which the response variable depends
linearly on the sum of unknown smooth functions of some predictor variables, and interest focuses
on inference about these smooth functions.

GAMs were originally developed by Hastie and Tibshirani [1986], to blend properties of gener-
alized linear models (GLMs) with additive models.

The main idea is related to extending the linear regression model

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi

enabling a non-linear relationship between each variable and the response.
In order to do that each linear component βjxij is replaced with a smooth non-linear function

fj(xij).
According to this, we can write the model as

yi = β0 + f1(xi1) + f2(xi2) + ...+ fp(xip) + εi

or more synthetically:

yi = β0 +

p∑
j=1

fj(xij) + εi.

The additive linear regression model is an example of a generalized additive model.
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4.1. Introduction

As described in Wood [2017], we can write, more generally, the GAM structure for example as:

g(µi) = Aiθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + ...

with µi = E(Yi) and Yi ∼ EF (µi,Φ) where Yi is the response variable, EF (µi,Φ) an exponential
family distribution with mean µi and scale parameter Φ, Ai is a row of the model matrix for any
strictly parametric model components, θ the corresponding parameter vector, and, finally, fi are
smooth functions of covariates xk.

The use of GAMs over time has spread (Hastie [2017], Wood [2017]), they are widely used in
practice (see Hastie and Tibshirani [1987], White et al. [2020], Ruppert et al. [2003]) and their
popularity derives from the availability of smoothing parameter estimation methods statistically
well-founded and numerically efficient (see Wood [2011], Wood et al. [2016]). So it is possible to
estimate how smooth the component functions of a model should be.

As a means of doing this, an important parameter is the effective degrees of freedom (edf)
estimated from generalized additive models; it is used as a proxy for the degree of non-linearity
relationships.

We have that:

• An edf of 1 is equivalent to a linear relationship;

• an 1 < edf ≤ 2 is a weakly non-linear relationship;

• an edf > 2 indicates a highly non-linear relationship.

GAMs can also be used in contexts where y is qualitative. Assuming that y takes on values zero
or one, and let p(x) = Pr(y = 1|x) be the conditional probability (given the predictors) that the
response equals 1, we can adapt the logistic regression model:

log

(
p(x)

1− p(x)

)
= β0 + β1x1 + β2x2 + ...+ βpxp

extending this to take into account non-linear relationships in this natural way:

log

(
p(x)

1− p(x)

)
= β0 + f1(x1) + f2(x2) + ...+ fp(xp)

A similar approach can be used in the multiclass case using multinomial distribution.
GAM is a powerful and flexible model setup since:

• it is interpretable;

• it allows the use of flexible predictor functions able to uncover hidden patterns in the data;

• it avoids overfitting via the regularization of predictor functions.

As reported in Hastie et al. [2001], GAMs has also a limitation, deriving from the characteristic
of an additive model. With many variables, important interactions can be missed. However, as
with linear regression, it is possible to add manually some interaction terms by including additional
predictors of the form Xj ×Xk.

We fit a generalized additive model (GAM) to our dataset with mgcv R package using the same
approach followed by the random forest classification.
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4.2. Results with binary classification

In particular we:

• split the dataset in learning and test (70% for learning and 30% for test); in splitting the data,
we preserve the percentages of each class in train and test sets;

• apply it to all the available variables;

• categorical variables (sex and surgical state) are coded as factors;

• employs GAM for both binary and multiclass classification cases;

• use GAM logistic regression for binary cases and GAM multinomial logistic regression for
multiclass cases;

• selecting smoothing parameters by REML (less prone to local minima than the other criteria
as described in Wood [2017]).

4.2 Results with binary classification

In this paragraph, we present the results in the binary classification case. We show the results using
the approach followed in chapter 3.

• binary AKI case;

• severe AKI case.

We apply the GAM model using all the variables used in the case of random forest.
Further attempts made by eliminating non-significant variables or considering effects due to in-

teractions with the variables (e.g interaction between creatinine and basal creatinine like s(creatinine,
basal creatinine) +s(creatinine)+ s(basal creatinine)) did not improve the results of the classifica-
tion. For this reason, they are not reported here.

4.2.1 Binary AKI case

In this paragraph, we show the results for the binary AKI case using all the variables.
Starting from Table 4.1 it is possible to notice that:

• with the exception of a few (surgical state, ldh, average press, blood input, blood output),
most of the additive components are significant;

• for many additive components the corresponding edf shows a highly non-linear relationship.

The univariate functional form of each additive component is depicted in the Figures: 4.1, 4.2,
4.3, 4.4. In these plots, the vertical axis is converted to the probability scale of developing AKI.

Among the various trends, some lend themselves to interpretations expected or compatible with
the physiology of the AKI.

In particular, we observe that an increase in creatinine is linked to an increased risk of developing
AKI, meanwhile greater values of basal creatinine show a protective effect.

Also in the case of diuresis, the first part of the curve of this variable has a clear interpretation
given that the AKI is basically a kidney problem.
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4.2. Results with binary classification

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -2.199 0.097 -22.733 < 0.001
sexM 0.111 0.087 1.241 0.215
surgical_Surgical 0.065 0.119 0.551 0.582
surgical_Hemodynamic -0.170 0.188 -0.908 0.364
surgical_Medical -0.284 0.197 -1.440 0.150
B. smooth terms edf Ref.df F-value p-value
s(weight) 6.032 7.115 30.139 < 0.001
s(age) 5.820 6.866 50.795 < 0.001
s(basal creatinine) 6.617 7.611 424.422 < 0.001
s(PIM3) 5.679 6.64 41.90 < 0.001
s(Vis Score) 3.919 4.799 11.858 0.033
s(CEC Duration) 7.607 8.454 53.783 < 0.001
s(Clamping Duration) 1.000 1.000 9.999 0.002
s(diuresis) 7.056 7.780 90.234 < 0.001
s(fluid input) 4.773 5.915 43.424 < 0.001
s(fluid output) 6.725 7.439 68.069 < 0.001
s(creatinine) 3.290 3.910 418.703 < 0.001
s(ldh) 2.171 2.685 5.002 0.127
s(albumin) 3.801 4.748 10.715 0.042
s(hemoglobin) 5.088 6.181 16.843 0.011
s(platelets) 4.427 5.471 23.090 < 0.001
s(aPTTs) 4.808 5.873 33.726 < 0.001
s(BE) 2.330 3.031 8.159 0.044
s(Cl) 5.978 7.180 28.598 0.002
s(Lac) 1.873 2.371 8.707 0.024
s(Na) 3.560 4.559 6.441 0.234
s(blood PH) 2.250 2.914 6.953 0.089
s(blood input) 1.001 1.003 0.833 0.362
s(blood output) 2.808 3.476 3.523 0.313
s(systolic press) 6.449 7.634 29.593 0.002
s(diastolic press) 3.651 4.642 10.059 0.053
s(average press) 1.000 1.000 0.759 0.384
s(heart rate) 3.959 4.989 31.373 < 0.001
s(saturation) 3.597 4.513 14.533 0.013
s(adrenaline) 7.286 8.031 43.899 < 0.001
s(furosemide) 3.301 4.106 16.820 0.002
s(ethacrynic acid) 1.001 1.001 23.390 < 0.001
s(milrinone) 2.485 2.872 16.557 0.001
s(levosimendan) 1.129 1.241 10.881 0.003
s(vasopressin) 1.001 1.002 4.622 0.032

Table 4.1: Summary of GAM model (binary AKI case) with all variables
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4.2. Results with binary classification

The classification results, in this case, are shown in Table 4.2 considering the reference class
AKI 1. We obtain:

• AUC-ROC = 0.87

• sensitivity =0.51

• specificity= 0.97

More detailed information on performance is reported in Appendix C.

Figure 4.1: GAM bin AKI (plot1)
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4.2. Results with binary classification

Figure 4.2: GAM bin AKI (plot2)
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4.2. Results with binary classification

Figure 4.3: GAM bin AKI (plot3)
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4.2. Results with binary classification

Figure 4.4: GAM bin AKI (plot4)

48h binary AKI score using GAM CI

SENS 0.51 0.47-0.55

SPEC 0.97 0.96-0.98

TP 375 -

FP 109 -

TN 3011 -

FN 360 -

AUC-ROC 0.87 0.85-0.89

Table 4.2: AUC-ROC of GAM model (binary AKI case with all variables)

4.2.2 Severe AKI case

In this paragraph, we show the results for predicting severe AKI case using all the variables. We
notice that the observations that can be made are similar to the case of binary AKI.

Indeed, starting from Table 4.3 it is possible notice that:
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4.2. Results with binary classification

• with the exception of a few (ldh, average press,Na, blood input, blood output), most of the
variables are significant;

• many additive components show a highly non-linear relationship (edf > 2).

The trend of each variable is depicted in the following Figures: 4.5, 4.6, 4.7, 4.8.
In the case of non-linear variables, a trend similar to that obtained in the case of binary AKI is

confirmed as well as the possible interpretation compatible with the physiology of the AKI.
Also in this case we observe that an increase in creatinine is linked to an increased risk of

developing AKI; meanwhile, greater values of basal creatinine show a protective effect.
Also in the case of diuresis, the first part of the curve of this variable has a clear interpretation

given that the AKI is basically a kidney problem.

56



4.2. Results with binary classification

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -4.148 0.250 -16.575 < 0.001
sexM 0.441 0.138 3.188 < 0.001
surgical_state_Surgical -0.398 0.174 -2.289 0.022
surgical_state_Hemodynamic -0.860 0.285 -3.018 0.003
surgical_state_Medical -0.435 0.299 -1.456 0.145
B. smooth terms edf Ref.df F-value p-value
s(weight) 6.365 7.462 31.101 0.001
s(age) 5.605 6.647 19.288 0.006
s(basal_creatinine) 7.596 8.374 399.493 < 0.001
s(PIM3) 4.525 5.447 41.695 < 0.001
s(Vis_Score) 6.399 6.932 23.263 < 0.001
s(CEC_Duration) 7.530 8.378 49.890 < 0.001
s(Clamping_Duration) 1.440 1.744 0.444 0.68
s(diuresis) 7.124 7.768 124.803 < 0.001
s(fluid_input) 5.367 6.587 28.519 < 0.001
s(fluid_output) 6.566 7.169 73.643 < 0.001
s(creatinine) 4.118 4.534 483.669 < 0.001
s(ldh) 2.902 3.568 8.198 0.049
s(albumin) 6.627 7.574 47.637 < 0.001
s(hemoglobin) 6.541 7.607 35.783 < 0.001
s(platelets) 4.365 5.400 15.544 0.012
s(aPTT_s) 4.367 5.361 46.120 < 0.001
s(BE) 3.685 4.720 7.838 0.148
s(Cl) 5.733 6.902 21.979 0.003
s(Lac) 1.020 1.039 16.286 <0.001
s(Na) 1.000 1.000 0.391 0.532
s(blood_PH) 3.739 4.743 24.856 0.001
s(blood_input) 1.000 1.001 0.287 0.592
s(blood_output) 1.533 1.887 1.124 0.599
s(systolic_press) 1.000 1.000 0.002 0.989
s(diastolic_press) 1.001 1.003 3.475 0.063
s(average_press) 3.213 4.097 12.650 0.014
s(heart_rate) 4.060 5.110 21.256 0.001
s(saturation) 1.000 1.000 4.871 0.027
s(adrenaline) 6.459 7.338 29.622 < 0.001
s(furosemide) 2.157 2.678 3.959 0.264
s(ethacrynic_acid) 1.000 1.000 10.619 0.001
s(milrinone) 2.078 2.562 0.931 0.832
s(levosimendan) 1.000 1.000 17.217 < 0.001
s(vasopressin) 1.000 1.000 3.949 0.047

Table 4.3: Summary of GAM model severe AKI case with all variables
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4.2. Results with binary classification

The classification results, in this case, are shown in Table 4.4 considering the reference class
AKI 1. We obtain:

• AUC-ROC = 0.94

• sensitivity =0.57

• specificity= 0.98

The value of the AUC-ROC is better than the value in the case of binary AKI although lower than
that obtained with the Random Forest classification approach (see 3.6). More detailed information
on the classification performance is reported in Appendix C.

48h severe AKI score using GAM CI
SENS 0.57 0.53-0.62
SPEC 0.98 0.97-0.99
TP 271 -
FP 71 -
TN 3311 -
FN 202 -
AUC-ROC 0.94 0.92-0.96

Table 4.4: AUC-ROC of GAM model (severe AKI case with all variables)
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4.2. Results with binary classification

Figure 4.5: GAM severe AKI (plot1)
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4.2. Results with binary classification

Figure 4.6: GAM severe AKI (plot2)
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4.2. Results with binary classification

Figure 4.7: GAM severe AKI (plot3)
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4.3. Multiclass case: mode and maximum AKI case

Figure 4.8: GAM severe AKI (plot4)

4.3 Multiclass case: mode and maximum AKI case

In this paragraph, we show the results obtained in the multiclass case considering the mode and
maximum AKI case like in 3.4.2.

In this case, we use GAM multinomial logistic regression with class 0 as reference. For this
reason, visualizing the model’s results we obtain three plots for each variable of the model.

For the sake of brevity, we insert in Figure 4.9 an example of plots involving the variables
creatinine, basal creatinine and diuresis considering mode AKI case.

It is interesting to note the variation in the trend of each variable as the AKI class increases
(from the least severe to the most severe).
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4.3. Multiclass case: mode and maximum AKI case

Figure 4.9: GAM mode AKI plot involving creatinine, basal creatinine, and diuresis

We report the confusion matrix achieved and the corresponding values of accuracy and kappa.
In Table 4.5 is reported the confusion matrix obtained in the mode AKI case.

In particular, we have:

• Accuracy= 0.90 C.I. (0.89, 0.91)

• Kappa = 0.59

Mode AKI confusion matrix
Observed

Prediction 0 1 2 3
0 3189 120 77 74
1 12 22 1 4
2 27 10 86 6
3 30 4 11 182

Table 4.5: Confusion matrix: mode AKI case using GAM approach

From the confusion matrix, we can see that the class 1 ( the least worrying from a medical point
of view) is often confused with class 0 (absence of AKI).

In Figure 4.10 we show an example of plot involving the variables creatinine, basal creatinine,
and diuresis considering max AKI case.
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4.3. Multiclass case: mode and maximum AKI case

Also in this case it is interesting to note the variation in the trend of each variable as the AKI
class increases (from the least severe to the most severe).

Figure 4.10: GAM max AKI plot involving creatinine, basal creatinine, and diuresis

In Table 4.6 we report the confusion matrix obtained in the max AKI case.
Concerning Accuracy and Kappa, we have:

• Accuracy= 0.87 C.I. (0.86, 0.89)

• Kappa = 0.54

The results are worse than the previous case and confirm the classification problems of AKI
classes 1 and 2.

Max AKI confusion matrix
Observed

Prediction 0 1 2 3
0 3056 222 82 80
1 14 19 1 2
2 22 11 93 9
3 30 2 9 203

Table 4.6: Confusion matrix: max AKI case using GAM approach
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4.4. Comparison between most important variables using Random Forests and GAMs

As shown in the previous tables, the results are not good enough in discriminating between
classes 1 and 2 for both max and mode AKI cases.

For this reason, the results are reported only in a synthetic way in this paragraph.

4.4 Comparison between most important variables using Random
Forests and GAMs

In this section, we compare the most important variables obtained with the RF classification method
and the p-value of the corresponding variables in the GAMs.

The aim is to verify if there is a correspondence between the most important variables highlighted
with the Random Forest approach and the same variables in the GAMs.

We apply this comparison only in the binary class case.
Table 4.7 is related to the binary AKI case.
We insert:

• the first ten most important variables for both cases: RF with all the variables and RF with
a subset of variables selected using RFE method as reported in section 3.6;

• the corresponding p-value obtained with GAMs.

RF with all variables GAM (p-value) RF with subset via RFE GAM (p-value)
creatinine p < 0.001 creatinine p < 0.001

basal creatinine p < 0.001 PIM3 p < 0.001

platelets p < 0.05 basal creatinine p < 0.001

adrenaline p < 0.001 platelets p < 0.05

ldh p = 0.127 BE p < 0.05

CEC duration p < 0.001 aPTT_s p < 0.001

BE p < 0.05 hemoglobin p < 0.05

Lac p < 0.05 ldh p = 0.127

diuresis p < 0.001 CEC duration p < 0.001

aPPT_s p < 0.001 adrenaline p < 0.001

Table 4.7: Binary AKI case: Comparison between the first ten most important variables in RF, RF with
RFE and corresponding p-value with GAMs

In the binary AKI case, we observe that only the variable ldh is in the list of the most important
variables with a p-value greater than 0.05. We hypothesize that this non-significativity derives from
the additivity constraints of the GAM model which, in this case, does not capture a more complex
structure of interaction between the variables.

Similarly, in Table 4.8 we show the severe AKI case. In this case, the variable BE and clamping
duration are in the list of the most important variables but they have a p-value greater than 0.05.
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4.4. Comparison between most important variables using Random Forests and GAMs

RF with all variables GAM (p-value) RF with subset via RFE GAM (p-value)
creatinine p < 0.001 creatinine p < 0.001

CEC duration p < 0.001 ldh p < 0.05

basal creatinine p < 0.001 platelets p < 0.05

platelets p < 0.05 basal creatinine p < 0.001

lhd p < 0.05 ethacrynic acid p < 0.05

diuresis p < 0.001 CEC duration p < 0.001

ethacrynic acid p < 0.05 aPTT_s p < 0.001

aPPT_s p < 0.001 hemoglobin p < 0.001

BE p = 0.148 PIM3 p < 0.001

Lac p < 0.001 Clamping Duration p = 0.674

Table 4.8: Severe AKI case: Comparison between the first ten most important variables in RF, RF with
RFE and corresponding p-value with GAMs

Another meaningful mirror comparison consists to list the variables with a p-value <0.001 and
see which of these fall within the top 10 most important variables of the classification with Random
Forest.

In this, we compare the most important variables obtained with the Random Forests classifica-
tion method and the variables with a p-value < 0.001 in the GAM model.

In Tables 4.9 and 4.10 we show the results of the binary case and the severe case respectively. In
both cases, we notice that some variables like creatinine, basal creatinine, CEC duration, aPTT_s
are inserted in each column.

GAM (p-value< 0.001) RF RF with RFE
weight
age

basal creatinine basal creatinine basal creatinine
PIM3 PIM3

CEC Duration CEC Duration CEC Duration
diuresis diuresis

fluid input
fluid output
creatinine creatinine creatinine
platelets platelets platelets
aPTT_s aPTT_s aPTT_s
heart rate
adrenaline adrenaline adrenaline

ethacrynic acid

Table 4.9: Binary AKI case: Comparison between most important variable in RF, RF with RFE and
variables of GAM with p− value < 0.001.

It is important to notice that, if we consider the other variables inserted in the first ten most
important variables, we observe that:
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4.4. Comparison between most important variables using Random Forests and GAMs

• in case of RF applied using all variables: all the other variables in the list have a p-value
< 0.05 with the only exception of ldh and BE;

• in case of RF with RFE: all the other variables in the list have a p-value < 0.05 with the only
exception of ldh and clamping duration.

GAM (p-value< 0.001) RF RF with RFE
basal creatinine basal creatinine basal creatinine

PIM3 PIM3
CEC duration CEC duration CEC duration

diuresis diuresis
fluid input
fluid output
creatinine creatinine creatinine
albumin

hemoglobin hemoglobin
aPPT_s aPPT_s aPPT_s

Lac Lac
adrenaline

levosimendan

Table 4.10: Severe AKI case: comparison between most important variable in RF, RF with RFE and
variable of GAM with p− value < 0.001.

67



Chapter 5

Bayesian Network classification

5.1 Introduction

In addition to the previous approach with the GAMs, in this chapter, we explore the possibility
of developing a model which offers the possibility of being more interpretable while keeping a
reasonably high predictive performance using Bayesian Network (BN) classifiers. A BN classifier
allows to bring out the role of the complex dependence structure of the variables that can influence
the outcome more easily than the GAMs. BN classifiers are special types of Bayesian networks
developed for classification problems. In particular, we focus on Bayesian network classifiers in the
discrete domain. As described in Bielza and Larrañaga [2014], Bayesian network classifiers have
several advantages. Among these, we point out the following:

• they provide an explicit, graphical, and interpretable representation of knowledge since they
are an example of the probabilistic graphical model which can be associated with a graph;

• BN classifiers are computationally efficient algorithms, linear on the number of instances and
linear, quadratic, or cubic (depending on model complexity) on the number of variables;

• both the binary and the multiclass cases can be treated with the same theoretical framework;

• many successful real-world applications have been reported in the literature with competitive
performance against state-of-the-art classifiers.

Let Xs = (Xs1, ..., Xsj , ...XsD) be a vector of discrete random variables with Xsj ∈ ΩXj =

{1, 2, ...Rj}, and let Cs be a class (in our case the binary or multiclass AKI stage). Given a random
sample D = (X1, C1), ..., (XN , CN ) of size N , with a (Xs, Cs) , drawn from the joint probability
distribution p(X, C). The classification problem consists in finding a classification model from D
able to assign a class to new data acquisitions given by the value of variables. A Bayes classifier
assigns the most probable a posteriori (MAP) class to a given instance x, that is:

arg max
c
p(c|x) = arg max

c
p(x, c)

. BN classifiers, as shown by Friedman et al. [1997], can approximate p(x, c) with a suitable
factorization according to a Bayesian Network whose structure is a directed acyclic graph (DAG)
with:
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5.1. Introduction

• vertices corresponding to random variables

• arcs encoding (in)dependences among variables.

In particular, each factor is a categorical distribution p(xi|pa(xi)) or p(c|pa(c)), where pa(·) is
a value of the set of variables which are parents of variable Xi or C according to the graphical
structure.

Therefore we have that:

p(x, c) = p(c|pa(c))
D∏
i=1

p(xi|pa(xi))

The simplest and at the same time well-known Bayesian classifier is the naive Bayes one where
all the predictor variables are conditionally independent. In particular, all the Xi are conditionally
independent given C. In figure 5.1 we show an example of a naive Bayes structure described by the
following relation:

p(c,x) = p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c)p(x5|c)p(x6|c)

.

Figure 5.1: Example of naive Bayes structure schema.

In most cases, the naive Bayes approach is a fairly crude approximation. More flexible and hence
more realistic models are One-Dependence Estimators (ODEs). ODEs are similar to naive Bayes
except for the fact that, by relaxing the basic global conditional independence constraint among all
the X’s, each predictor variable is allowed to depend on at most another predictor in addition to
the class c.

Among several possible implementations of ODEs, the tree-augmented network (TAN) (see
Friedman et al. [1997]) maintains the original predictor variables and models relationships of at
most order 1 among the variables. An example of TAN structure is depicted in Figure 5.2 and
described by the following equation:

p(c, x) = p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c, x4)p(x4|c)p(x5|c, x4)p(x6|c, x5)

.
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5.1. Introduction

Figure 5.2: Example of TAN structure schema.

Friedman et al. [1997] developed TAN on the basis of a procedure for learning edges adapting
from a method reported by Chow and Liu (see Chow and Liu [1968]).

Apart from learning the network structure, the probabilities p(xi|pa(xi)) are estimated from D
by standard methods like maximum likelihood or Bayesian estimation. For discrete variables Xi

and pa(Xi), Bayesian estimation can be obtained in closed form by assuming symmetric Dirichlet
priors over the underlying vector of probability masses denoted with θij . With all Dirichlet hyper-
parameters equal to α,

θ̂ijk =
Nijk + α

N·j· + riα
,

where Nijk is the number of instances in D such that Xi = k and, with a slight abuse of notation,
pa(xi) = j, corresponding to the j-th possible instantiation of pa(xi), N·j· is the number of instances
in which pa(xi) = j, while ri is the cardinality of Xi. If in the previous equation, α = 0, which
corresponds to the limit of Bayesian estimation with α tends to zero, we have the case of maximum
likelihood estimation of θijk.

To apply the BN classifier to our dataset we use the bnclassify R package developed by Mihal-
jevi’c et al. [2018]. In order to use this, we have to make some preliminary preprocessing of the
available data in order to fit within the framework of a discrete Bayesian network.

In particular we:

• discretize all the continuous predictor variables using a "quantile-based" approach deciding a
number of intervals nint able to maximize the classification performance;

• Use for each continuous variable a number of intervals equal to nint or the maximum number
of possible intervals until to nint

• Split our data in learning and test (70% for learning and 30% for test) preserving the per-
centages of each class in train and test sets.

• Involve all the variables of the model.

• Use the TAN Bayes structure with α = 0.1; this approach showed the best results in terms of
classification performance.

The discretization was made using the RoughSet R package implemented by Riza et al. [2014].
We have also implemented alternative discretization approaches like intervals with equal width or
using k-means clustering obtaining similar or inferior results.
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5.2. Binary classification case with BN

Instead of defining a priori a constrained structure of the network topology we have considered
leaving the structure completely unspecified and attempted to learn the structure (see Nagara-
jan et al. [2013]) and making classification from this DAG. Although potentially less affected by
constraints such as TANs, this approach gave a much poorer predictive performance and, for this
reason, we do not report them here.

5.2 Binary classification case with BN

In this section we show the results obtained by applying BN classifiers to binary classes in the
following cases:

• binary AKI;

• severe AKI.

For both cases, we obtain the best results with a maximum number of interval discretizations
nint = 17 as described in Figure 5.3.

The results obtained in the binary AKI case are shown in Table 5.1. In particular, considering
the reference class AKI 1, we obtain:

• AUC −ROC = 0.90

• sensitivity = 0.72

• specificity = 0.90

Instead, the results obtained in severe AKI case are shown in Table 5.2. In particular, considering
the reference class AKI 1, we obtain:

• AUC −ROC = 0.97

• sensitivity = 0.82

• specificity = 0.94

Figure 5.3: Plot of AUC-ROC vs max number of intervals: binary and severe AKI case
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5.3. Multiclass case

48h binary AKI score using BNs CI

SENS 0.72 0.69-0.75

SPEC 0.90 0.89-0.91

TP 530 -

FP 323 -

TN 2797 -

FN 205 -

AUC-ROC 0.90 0.88-0.92

Table 5.1: AUC-ROC of BN model (binary AKI case with all variables)

In Figures 5.4 and 5.5 we show the corresponding DAG respectively for binary and severe AKI
cases. Considering the TAN constraints the connection between the variables seems reasonable
(many variables connected with weight, PIM3, pressure, etc...) and similar for both binary and
severe AKI cases. It is important to note that these DAGs have the limitations of deriving from
an ODEs Bayesian structure and only part of them can comply with the dynamics expected by
biological functioning.

48h severe AKI score using BNs CI

SENS 0.82 0.79-0.85

SPEC 0.94 0.93-0.95

TP 389 -

FP 207 -

TN 3175 -

FN 84 -

AUC-ROC 0.97 0.96-0.98

Table 5.2: AUC-ROC of BN model (severe AKI case with all variables)

5.3 Multiclass case

In this section, we show the results obtained in the multiclass case. For both mode and max cases,
we obtain the best results with a maximum number of interval discretizations nint = 27 as described
in Figures 5.6 and 5.7.

In Table 5.3 we show the confusion matrix in the mode AKI case. As a summary score, we
highlight:

• Accuracy= 0.92

• kappa= 0.73

Instead, in Table 5.4 we depict the mode AKI case. In this case, we have:
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5.3. Multiclass case
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5.3. Multiclass case
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5.3. Multiclass case

• Accuracy= 0.88

• kappa= 0.64

If we look at the confusion matrix reported in Tables 5.3 and 5.4, we observe the difficulty in
correctly classifying the class of AKI 1. This problem is related to the fact that AKI 1 is less severe
and therefore more easily confused with the class of AKI 0 (that is, with the status of a healthy
patient).

Figure 5.6: Plot of accuracy and kappa vs max number of intervals: mode AKI case

Figure 5.7: Plot of accuracy and kappa vs max number of intervals: max AKI case
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5.4. Variable selection in the BN case using MXM package

Mode AKI confusion matrix
Observed

Prediction 0 1 2 3
0 3097 62 26 20
1 50 98 7 1
2 54 2 132 10
3 54 5 7 229

Table 5.3: Confusion matrix: mode AKI case using BN approach

Max AKI confusion matrix
Observed

Prediction 0 1 2 3
0 2891 123 41 25
1 105 118 10 5
2 74 13 133 19
3 50 7 2 237

Table 5.4: Confusion matrix: max AKI case using BN approach

In Figures 5.8 and 5.9 we show the corresponding DAG respectively for cases of AKI mode and
AKI max.

Considering the TAN constraints, the connection between the variables seems reasonable (many
variables connected with weight, PIM3, pressure, etc...) and similar to each other and to the
previous binary cases.

5.4 Variable selection in the BN case using MXM package

Also in the case of BN, as in the case of classification with the RF method, we try to identify a
subset of variables that allow fitting a less complex DAG leading to a BN with similar predictive
performance.

The basic idea is that a graph with fewer variables can be interpreted more simply from a
medical point of view.

In order to do this we use the MXM R Package.
As explained by Lagani et al. [2017], MXM, short for the latin ’Mens ex Machina’ [(Human)

Mind from the Machine], is a collection of utility functions for variable selection especially developed
in the case of BNs.

In particular, we use the Max-Min Parents and Children algorithm (MMPC) algorithm. It is
a constraint-based feature selection algorithm that assumes a Bayesian Network for all observed
variables. Parents and Children refer to the fact that the algorithm identifies the parents and
children of the variable of interest.

MMPC algorithm performs multiple conditional independence tests and progressively excludes
irrelevant and redundant variables.
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5.4. Variable selection in the BN case using MXM package
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5.4. Variable selection in the BN case using MXM package

w
ei

gh
t

ag
e

se
x

ba
sa

l c
re

at
in

in
e

P
IM

3

V
is

 S
co

re

C
E

C
 D

ur
at

io
n

cl
am

pi
ng

 D
ur

at
io

n
su

rg
ic

al
 s

ta
te

di
ur

es
is

flu
id

 in
pu

t
flu

id
 o

ut
pu

t

cr
ea

tin
in

e

ld
h

al
bu

m
in

he
m

og
lo

bi
n

pl
at

el
et

s
aP

T
T

_s

B
E

C
l−

La
c

N
a+

bl
oo

d 
P

H

bl
oo

d 
in

pu
t

bl
oo

d 
ou

tp
ut

sy
st

ol
ic

 p
re

ss

di
as

to
lic

 p
re

ss

av
er

ag
e 

pr
es

s

he
ar

t r
at

e

sa
tu

ra
tio

n

ad
re

na
lin

e

fu
ro

se
m

id
e

et
ha

cr
yn

ic
 a

ci
d

m
ilr

in
on

e

le
vo

si
m

en
da

n
va

so
pr

es
si

n

kd
ig

o_
m

ax
_s

hi
fte

d

F
ig
u
re

5.
9:

D
A
G

m
ax

A
K
I
ca
se

78



5.4. Variable selection in the BN case using MXM package

The final variables that have “survived” through all those elimination stages are the MMPC
output signature.

The MMPC algorithm discovers the subset of variables using a two-phase procedure:

• in phase 1, the forward phase, MMPC includes in a set of candidates, denoted as CPC (can-
didate parents and children) the variable with the highest univariate association with the
target variable T . MMPC chooses to include next into the CPC the variable that exhibits
the maximum association with T conditioned on the subset of CPC ;

• in phase 2, the backward phase, MMPC examines whether each variable of CPC can be
d-separated from T by conditioning on all possible subsets of CPC and, in case, removes it.

For details of the algorithm, we refer to Brown et al. [2004] and Tsamardinos et al. [2003].
We proceed with the following steps starting from the discretized dataset:

• identify the subset of the variables using the MMPC algorithm applied to the training dataset;

• apply the BN classifier using the selected subset of variables in the same way as described in
paragraph 5.1.

.
For completeness, we report that we also tested the use of another variables selection algorithm

available in MXM package with the acronyms of IAMB (Incremental Association Markov Blanket)
but, despite the promising performances alleged by the authors, it proved itself less performing than
MMCP.

In the following sections, we show the results obtained in the binary and multiclass cases.

5.4.1 BN Binary case using a subset of variables identified with MMPC

In this paragraph, we show the results obtained by applying BN classifiers to binary class and the
selected subset of variables using MXM package in the following case:

• binary AKI;

• severe AKI.

. For both cases, the number of selected variables is 25.
The list of these variables is reported in Table 5.5. We observe that a large number of variables

(specifically 19) are selected in both cases.
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5.4. Variable selection in the BN case using MXM package

binary AKI severe AKI
creatinine creatinine
basal creatinine basal creatinine
diuresis weight
adrenaline PIM3
weight diuresis
BE ethacrynic acid
PIM3 ldh
furosemide Lac
hemoglobin hemoglobin
platelets blood PH
Cl- systolic press
age platelets
Lac age
blood input adrenaline
fluid output BE
ethacrynic acid CEC Duration
blood output aPTT_s
albumin furosemide
levosimendan blood input
systolic press Vis Score
vasopressin fluid output
clamping Duration albumin
Na+ Cl-
blood PH fluid input
Vis Score levosimendan

Table 5.5: List of variables selected using MXM sorted by highest statistical significance (binary and severe
AKI cases)

In Tables 5.6 and 5.7, we report the results of performance for binary and severe AKI case
evaluated using the test dataset.

From our point of view it is important to notice that we obtain the same AUC-ROC obtained
using all the model variables despite using fewer variables.

In fact, the results are the following:

• binary case: AUC-ROC= 0.90 (0.89-0.91);

• severe case: AUC-ROC= 0.97 (0.96-0.98).

In Figures 5.10 and 5.11 we show the corresponding DAGs. With regard to DAGs obtained
in this case, we observe that in both cases there is a direct link between KDIGO and creatinine.
Previously this connection was made by first passing through the weight variable. This direct
connection has an interpretation closer to what is expected from the point of view of the biological
phenomenon.
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5.4. Variable selection in the BN case using MXM package

48h binary AKI score using BNs with MXM subset CI

SENS 0.73 0.70-0.76

SPEC 0.89 0.88-0.90

TP 536 -

FP 342 -

TN 2778 -

FN 199 -

AUC-ROC 0.90 0.88-0.92

Table 5.6: AUC-ROC of BN model (binary AKI case with MXM subset of variables)

48h severe AKI score using BNs with MXM subset CI

SENS 0.80 0.76-0.83

SPEC 0.95 0.94-0.96

TP 378 -

FP 175 -

TN 3207 -

FN 95 -

AUC-ROC 0.97 0.96-0.98

Table 5.7: AUC-ROC of BN model (severe AKI case with MXM subset of variables)

5.4.2 Multiclass case

Here, we show the results obtained by applying BN classifiers to the multiclass case with a subset
of variables selected using the MMPC algorithm implemented in MXM package.

As before, we have the following case:

• mode AKI;

• max AKI.

. The number of variables selected by MXM was 22 for the mode AKI and 26 for the max AKI.
The list of these variables is reported in Table 5.8. Also, in this case, we observe that a large

number of variables (specifically 21) are selected in both cases. Moreover, we notice that the
variables involved are substantially the same as in the binary case.

In Table 5.9 we show the confusion matrix in the mode AKI case. As a summary score, we
highlight:

• Accuracy= 0.92

• kappa= 0.72
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5.4. Variable selection in the BN case using MXM package
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5.4. Variable selection in the BN case using MXM package

mode AKI max AKI
creatinine creatinine
basal creatinine basal creatinine
PIM3 adrenaline
adrenaline diuresis
diuresis PIM3
weight weight
platelets BE
BE ethacrynic acid
ldh platelets
ethacrynic acid hemoglobin
albumin systolic press
hemoglobin ldh
aPTT_s age
systolic press aPTT_s
age Vis Score
Vis Score blood input
CEC Duration albumin
levosimendan levosimendan
blood input Cl-
Cl- fluid input
blood output furosemide
fluid output CEC Duration

vasopressin
Lac
Na+
blood output

Table 5.8: List of variables selected using MXM sorted by highest statistical significance (mode and max
AKI cases)
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5.5. Overview of comparative performance of alternative classifiers

In Table 5.10 we depict the max AKI case. In this case, we have:

• Accuracy= 0.87

• kappa= 0.63

Also in this case we observe that the final results are substantially the same as those obtained using
all the variables.

According to “Occam’s razor” principle, the advantage of a simpler model compared to a more
complex one is clear, especially as already mentioned, in interacting with doctors.

Mode AKI confusion matrix
Observed

Prediction 0 1 2 3
0 3050 58 20 18
1 84 101 5 1
2 65 5 142 9
3 56 2 5 232

Table 5.9: Confusion matrix: mode AKI case (BN approach with MXM subset of variables)

In Figures 5.12 and 5.13 we show the corresponding DAG respectively for cases of AKI mode
and AKI max.

As for the binary, we observe a direct link between AKI KDIGO and creatinine.
It is confirmed that the connection between the variables seems reasonable (e.g. many variables

are connected with weight or PIM3) and similar to each other and to the previous binary cases.

Max AKI confusion matrix
Observed

Prediction 0 1 2 3
0 2861 121 32 35
1 148 124 10 3
2 62 11 139 11
3 49 5 5 237

Table 5.10: Confusion matrix: max AKI case (BN approach with MXM subset of variables)

5.5 Overview of comparative performance of alternative classifiers

In this section, we insert a comparison of the results of all the previous methods.
In order to do this, we insert in Table 5.11 a summary of the results. In particular, we insert:

• binary case: AUC-ROC value;

• multiclass case: accuracy and kappa.
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5.5. Overview of comparative performance of alternative classifiers
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5.5. Overview of comparative performance of alternative classifiers
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5.5. Overview of comparative performance of alternative classifiers

We observe that the best results are obtained using the RF classification method.
In particular, the RF using a subset of variables obtained using RFE is preferable because it

uses fewer variables.
Despite this, we think that the BN approach is able to provide a model that is interpretable and

provides, at the same time, good results in terms of performance.
In the binary class case, all the results with an AUC-ROC greater than 0.9 are considered very

good from the point of view of doctors.
These results obtained with different methods suggest continuing this analysis with a larger

dataset and, subsequently, evaluating the use of these results in a prospective way.
Multiclass results seem to suggest evaluating a system that makes a classification using only

three classes merging AKI 0 and AKI 1 classes in the "not severe AKI" class.
Moreover, we chose the use of multiple classification techniques in an attempt of searching for

a better understanding of the phenomenon beyond the achievement of the best result in terms of
performance.
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5.5. Overview of comparative performance of alternative classifiers
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Chapter 6

Some insights on the interpretation of
RF for AKI prediction

6.1 Interpretable Machine Learning approach

Recent developments in Machine Learning algorithms have shown great potential for improving the
accuracy of predictions. However, this predictive ability is often not supported by the possibility of
interpreting the developed model.

Hence, there has been a growing interest in developing methods capable of interpreting black
box models (see Molnar [2022]). In fact, the lack of interpretability limits the application of the
model in academia, industry, and, particularly, the medical field.

Methods capable of making a black box more explainable overcome this limitation and, for this
reason, they are of great interest. Among the various possible developments in the literature we
can distinguish between the following approach:

• model-agnostic vs model-specific interpretation;

• global vs local model.

The model-agostic approach differs from the model-specific by the fact that it is model-independent:
it separates the explanations from the machine learning model. As described by Ribeiro et al. [2016b]
the great advantage of model-agnostic interpretation methods over model-specific ones is their flex-
ibility. Machine learning developers are free to use any machine learning model they like when the
interpretation methods can be applied to any model.

Local interpretation methods explain individual predictions for example by replacing the com-
plex model with a locally interpretable surrogate model. In Figure 6.1 we insert an image that
visually describes this method.
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6.1. Interpretable Machine Learning approach

Figure 6.1: Local interpretation methods explained visually

Instead, global interpretation methods replace the complex model with a simpler and globally
interpretable model.

In this chapter, we insert a further analysis of the results obtained with RFs in order to increase
the explainability of these results on behalf of medical experts.

In the next paragraphs we will focus on:

• Partial Dependence Plots (PDPs) of the most important variables;

• Decision Tree Surrogate (DTS) approach.

PDPs are a useful tool for black-box model visualization. DTS is a global surrogate model developed
using decision trees trained to approximate the predictions of a black box model. Both PDPs and
DTS are model-agnostic interpretation methods since they separate the "explanations" from the
machine learning method.

6.1.1 Partial Dependence Plot

The Partial Dependence plot shows the change in the average predicted value as the specified
variable, or set of variables, varies over their marginal distribution.

This idea was originated from Friedman [2001] and was extended by Goldstein et al. [2015].
Let L ⊂ {1, ..., D} and let M be the complement set of L where L and M index subsets of

predictors. Then the partial dependence function of f on xL is given by

fL(xL) = ExM [f(xL,xM )] =

∫
f(xL,xM )dP (xM )

Each subset of predictors L has its own partial dependence function fL, which gives the average
value of f when xL is fixed and xM varies over its marginal distribution dP (xM ). Since neither the
true f nor dP (xM ) are known, we estimate previous equation by computing:

f̂L =
1

N

N∑
i=1

f̂(xL,xMi)

where xM1, ...,xMN are the values of xM observed in the training data.
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6.1. Interpretable Machine Learning approach

Partial dependence works by marginalizing the machine learning model output over the distribu-
tion of the variables (also denoted in the literature as features) in set M , so that the function shows
the relationship between the variables in set L we are interested in, and the predicted outcome.
By marginalizing over the other variables, we get a function that depends only on variables in L,
interactions with other variables included.

The partial function tells us for a given value(s) of variables xL what is the average marginal
effect on the prediction. This is a visualization tool because a set of N pairs (xLl, f̂Ll)

N

l=1 is obtained
when f̂L is evaluated at the xL observed. The resulting graphic is called a Partial dependence plot
and obviously, it has the limitation of being displayed only for 1 or 2 dimensions. As reported in
Goldstein et al. [2015] several supervised learning models have been better-understood thanks to
PDPs. Another limitation is related to the fact that it ignores possible feature interactions and
captures only the marginal effect of the variable: a variable could be very important but the partial
dependence plot could be flat since the variable affects the prediction mainly through interactions
with other variables.

The partial dependence plot is an agnostic and global method; in fact:

• it is applicable regardless of the classification model used;

• it considers all instances and gives a statement about the global relationship of a feature with
the predicted outcome.

6.1.2 Decision Tree surrogate approach

As described in Molnar [2022] and Craven and Shavlik [1995], a way to make models more inter-
pretable is to replace the “black box” model with a simpler (also known as a surrogate) model such
as a decision tree. In figure 6.2 we depict visually this idea. It can be described by the following
steps:

• apply the original model and get predictions;

• choose an interpretable "white box" model (in our case, a decision tree);

• train the interpretable model on the original dataset and its predictions;

• measure how well the surrogate model agrees with the prediction of the black box model.

In iml R package Molnar et al. [2018], R2 is used in order to measure how well the decision tree
approximates the "black box" model. It is calculated in the following way:

R2 = 1−
∑n

s=1(ŷ
(s)
∗ − ŷ(s))2∑n

s=1(ŷ
(s) − ŷ)2

where ŷ(s)∗ is the prediction for the s-th instance of the surrogate model. For the multi-class case,
R2 contains one measure per class.

It is essential to notice that the surrogate model makes statements about the model and not
about the "real world". The interpretation of the surrogate model is not good if the black box
model is bad, because then the black box model itself is not useful.
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6.2. Partial dependent plots applied to RF using RFE

Figure 6.2: Surrogate model schema (image from Molnar [2022]).

As already said in the introduction of this chapter, it is important to notice that, parallel to the
global approaches, there are local approaches. Local agnostic surrogate models are interpretable
models that are used to explain individual predictions of black box machine learning models. A
paper of Ribeiro et al. [2016a] describes the idea of a local interpretable model-agnostic explanation
(LIME). In this case, the authors propose a concrete implementation of local surrogate models
trained to approximate the predictions of the underlying black box model. Instead of training
a global surrogate model, LIME focuses on training local surrogate models to explain individual
predictions. Local surrogate models have not been analyzed in this work.

6.2 Partial dependent plots applied to RF using RFE

In this section, we insert some examples of the partial dependent plot obtained in the binary
classification case for the variable creatinine and basal creatinine which are in the top five most
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6.2. Partial dependent plots applied to RF using RFE

important variables for both binary and severe AKI classification cases.

Figure 6.3: PDP of creatinine variable (binary AKI case)

Figure 6.4: PDP of creatinine variable (severe AKI case)

From Figures 6.3 6.4 we observe that as the creatinine value increases, the possibility of being
classified as class 1 increases. This nonlinear trend agrees with what was obtained using the GAM
model.

Figure 6.5: PDP of basal creatinine variable (binary AKI case)
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6.2. Partial dependent plots applied to RF using RFE

Figure 6.6: PDP of basal creatinine variable (severe AKI case)

Some reflections can also be made in the case of the basal creatinine variable. As shown in
Figures 6.5 and 6.6, we have a nonlinear trend; moreover, we observe that, if the analysis is limited
to the first part of the graph where the amount of data is more consistent, as the basal creatinine
value increases, the possibility of being classified as class 0 increases.

A similar nonlinear trend is observed also in the multiclass case where we have a plot for each
of the four classes. In Figures 6.9 and 6.10 we show the results of mode and max AKI case for the
creatinine variable. Instead in Figures 6.9 and 6.10 we insert the results of basal creatinine variable.
Also in this case it is possible to observe some similarities with what was observed in the case of
GAMs

Figure 6.7: PDP of creatinine variable (mode AKI case)
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6.3. Decision tree surrogate applied to RF using RFE

Figure 6.8: PDP of creatinine variable (max AKI case)

Figure 6.9: PDP of basal creatinine variable (mode AKI case)

Figure 6.10: PDP of basal creatinine variable (severe AKI case)

6.3 Decision tree surrogate applied to RF using RFE

In this paragraph, we illustrate the results obtained using the decision tree surrogate approach
applied to:

• binary case;
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6.3. Decision tree surrogate applied to RF using RFE

• multiclass case.

In order to maximize the prediction results we apply the DTS to the training dataset and
evaluate the performance on the test set varying the maximum depth of the tree. A greater depth
obviously corresponds to a more complex structure of the tree to the detriment of interpretation.
For the binary class we use the AUC-ROC; starting from Figures 6.11 and 6.12 we notice that the
best results are obtained with a max depth of 10.

Figure 6.11: Tree model surrogate: AUC-ROC vs max depth (binary AKI case)

Figure 6.12: Tree model surrogate: AUC-ROC vs max depth (severe AKI case)

For the multiclass case we use as measures of performance accuracy and kappa; The values of
these measures computed varying the max depth are shown in Figures 6.13 and 6.14.

We notice that the best results are obtained using:

• mode AKI case: max depth=11

• max AKI case: max depth=13
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6.3. Decision tree surrogate applied to RF using RFE

Figure 6.13: Tree model surrogate: accuracy and kappa vs max depth (mode AKI case)

Figure 6.14: Tree model surrogate: accuracy and kappa vs max depth (max AKI case)

As for classification performance, we obtain:

• Binary AKI: AUC-ROC: 0.88

• Severe AKI: AUC-ROC: 0.95

• Mode AKI: Accuracy 0.88, Kappa 0.51

• Max AKI: Accuracy 0.85, kappa 0.45

These results are lower than those obtained with the random forest classification method.
For this reason, the Decision Tree Surrogate method, with the possible exception of the severe

AKI case, cannot be considered an alternative to RFs but rather a tool that supports, together with
the PDPs, the interpretation of the results under discussion with the doctors.
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Chapter 7

Final discussion

This dissertation represents one of the first attempts to investigate and exploit the enormous infor-
mation provided by the EMRs acquired in the PCICU of "Ospedale Pediatrico Bambino Gesù".

In particular, following the literature and the doctors’ instructions, we focused on the possibility
of predicting the AKI stage during the patient’s stay in the intensive care unit.

In this section, we try to summarize what has been achieved by highlighting the aspects which,
to the best of our knowledge, are significant and innovative compared to other studies.

Although the PCICU dataset has unique characteristics and the studies in the literature often
apply to different types of patients and therefore are not directly comparable, we believe it is possible
to bring out these aspects.

We try to point out these by retracing the main phases of the work presented in the thesis.
In the first phase, we approach the large size of information provided by the EMRs. This phase

took a long time because a long preliminary work of knowledge and exploration of the database was
necessary to identify the variables to extract. In this phase, the discussion with the doctors and with
the IT staff of the company that provides the IT service of EMR was fundamental. Unfortunately,
the pandemic period has made this part more complicated from a logistical point of view.

Characteristics of this phase were the choices to make a forecast over time of the stage of AKI
which was not only binary but also multiclass. This multiclass prediction of max AKI and mode AKI
in a given interval ∆t is little explored in the literature but may offer complementary information
to the binary one to support physicians’ decisions.

Another important decision was to consider also the dosage of some therapies among the vari-
ables. In most of the studies we analyzed, therapies are generally not present or are present only
in a qualitative way (for example presence or absence of some typology of drugs such as vasoactive
ones). The extraction of the dose of therapy administered in the time interval ∆t involved a further
phase of comparison with doctors and IT staff.

The second phase focused on predicting the state of AKI using the RF classification. As far as
we know, this is the first time that this kind of result is obtained in a PCICU. This attempt involves
specific variables (e.g. PIM3, clamping duration) characteristics of this particular type of patient
that differs from adult patients admitted to the intensive care unit and it has been found sometime
as an important predictor. Moreover, as far as we know, our work is one of the first studies applied
to the ICU dataset provided by the EMRs in Italy.

This result was by no means obvious given that we were starting from a dataset that had never
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been exported with this detail with all the difficulties deriving from the interaction with the doctors
and the IT staff of the company that manages the database.

The performance reported in terms of AUC-ROC and accuracy for respectively binary and mul-
ticlass classification is very good and comparable, if not superior, with those present in the literature
although those studies applied to different types of patients. The RFE algorithm applied to the
dataset has allowed the possibility restrict the attention to a smaller number set of variables offering
physicians further possible insight and cues. Doctors could consider, also, making mandatory the
acquisition of some of these sets of variables at every established interval completely avoiding the
problem of possible missing or infrequent data for these measurements.

Also, the list of the most important variables was very interesting because it highlighted:

• the presence at the top of the list of some variables expected by doctors such as creatinine,
basal creatinine, and ldh. This fact could be considered a further indirect confirmation of the
results;

• the presence in the top ten list of the important variables of quantities specific to the PCICU
case as PIM3, CEC duration shows the necessity of a specific model developed for pediatric
cardiac patients;

• the presence in some cases of some therapies (adrenaline, ethacrynic acid) confirms the added
value of choosing to use these quantities.

In the third phase, we move on to an analysis that relies on interpretable statical models: GAMs
and BNs. Although the performances of these models are lower than those obtained with RF, they
are nonetheless comparable to those presented in published studies and cited in the review made in
the first chapter. The results obtained with the GAMs confirm the importance of some variables for
the prediction of AKI as, for example, in the case of creatinine, basal creatinine, diuresis, aPPT_s,
and moreover show a graphical trend consistent with a possible medical explanation. In the case of
BN we obtain performance, especially in the severe AKI case, quite close to those of the RF with
the benefit of a DAG that, taking into account the TAN constraints, shows a reasonable connection
between many of the variables from a medical point of view. Further explanatory observations
can be provided for medical reflection by the use of partial dependence plots as indicated in the
chapter dedicated to the reflection on global methods related to the interpretable machine learning
approach. The example of PDP of creatinine and basal creatinine, although they contain different
information than the plots in the case of GAMs, are compatible with a possible medical explanation.

Unfortunately, the COVID pandemic has made more difficult interaction with hospital facilities.
As it is well known, medical structures, especially a structure of excellence such as the "Bambino
Gesù" hospital, have had to face unforeseen difficulties by limiting the time availability of doctors
in projects such as this.

Based on the considerations made above, despite the difficulties derived from working on a new
type of data and those deriving from the pandemic, the results confirm the possibility of making an
accurate prediction of the AKI.

In fact, having obtained with different methods the result of predicting the future stage of the
AKI with a set of variables that proved to be quite stable with the different methods is, in our
opinion, a further confirmation of this possibility.
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Moreover, we believe it is important to make a further observation: all the developed models
are able to be presented to doctors using a web interface to complement or, in perspective, to be
integrated into the EMR of PCICU. This tool would allow the doctors to predict the patient’s stage
of AKI and evaluate how to intervene if necessary.

Of course, to proceed with this, it would be necessary for the future to work, always retrospec-
tively, on the export of the new data that has been acquired in PCICU.

Following this, a prospective study could be considered. Moreover, as shown in the literature,
with the same EMR data it could be possible to analyze other medical problems.

My hope is that this study can be continued by following this path of collaboration between
hospitals and universities that started during my Ph.D. This hope is confirmed by the fact that
the need for technology transfer is increasingly widespread and our study could be considered an
example of technology transfer in an intensive care unit, conveying in our case the methodology
developed in the statistical and machine learning field to the data acquired using the EMRs.
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Appendix A

Classification results using RF with all
variables

A.1 Binary case

In this section, we insert the classification results in the case of the RF model with all the variables
in more detail. These results are obtained using MLeval R package (see John [2020]).

Table A.1: 48h classification results via Random Forest with therapies (binary AKI case)

48h binary AKI score all variable CI

SENS 0.712 0.68-0.74
SPEC 0.986 0.98-0.99
MCC 0.773 -
Informedness 0.697 -
PREC 0.921 0.9-0.94
NPV 0.936 0.93-0.94
FPR 0.014 -
F1 0.803 -
TP 523 -
FP 45 -
TN 3075 -
FN 212 -
AUC-ROC 0.93 0.92-0.94
AUC-PR 0.87 -
AUC-PRG 0.6 -
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A.1. Binary case

Table A.2: 48h classification results via Random Forest with therapies (severe AKI case)

48h severe AKI score all variable with therapies CI

SENS 0.74 0.7-0.78
SPEC 0.994 0.99-1
MCC 0.818 -
Informedness 0.734 -
PREC 0.946 0.92-0.96
NPV 0.965 0.96-0.97
FPR 0.006 -
F1 0.83 -
TP 350 -
FP 20 -
TN 3362 -
FN 123 -
AUC-ROC 0.99 0.98-1
AUC-PR 0.93 -
AUC-PRG 0.8 -
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A.2. Multiclass case

A.2 Multiclass case

In this section, we insert the classification results in the multiclass case in more detail.

Table A.3: 48h confusion matrix max AKI classification results with all variables
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A.2. Multiclass case

Table A.4: 48h confusion matrix mode AKI classification results with all variables
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Appendix B

Classification results using a subset of
variables via RFE

B.1 Binary case

In this section, we insert the classification results obtained in the binary case using a subset of
variables selected using RFE in more detail.

Table B.1: 48h classification results via Random Forest using a subset of variables selected with RFE
method: binary AKI case

48h binary AKI score using RFE CI

SENS 0.751 0.72-0.78
SPEC 0.98 0.97-0.98
MCC 0.786 -
Informedness 0.731 -
PREC 0.9 0.87-0.92
NPV 0.944 0.94-0.95
FPR 0.02 -
F1 0.819 -
TP 552 -
FP 61 -
TN 3059 -
FN 183 -
AUC-ROC 0.95 0.94-0.96
AUC-PR 0.88 -
AUC-PRG 0.65 -
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B.1. Binary case

Table B.2: 48h classification results via Random Forest with RFE (severe AKI case

48h severe AKI score 10 variables selected using RFE method CI

SENS 0.89 0.86-0.92
SPEC 0.99 0.99-1
MCC 0.894 NA
Informedness 0.88 -
PREC 0.923 0.9-0.94
NPV 0.985 0.98-0.99
FPR 0.01 -
F1 0.906 -
TP 421 -
FP 35 -
TN 3347 -
FN 52 -
AUC-ROC 0.98 0.97-0.99
AUC-PR 0.92 -
AUC-PRG 0.85 -
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B.2. Multiclass case

B.2 Multiclass case

In this section, we insert the classification results obtained using RFE for the multiclass case in
more detail.

Table B.3: 48h confusion matrix mode AKI classification results obtained using a subset of variables
selected via RFE
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B.2. Multiclass case

Table B.4: 48h confusion matrix max AKI classification results obtained using a subset of variables selected
via RFE
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Appendix C

Classification results using GAMs

C.1 Binary case

In this section, we insert the classification results obtained using GAMs in the binary case in more
detail.

Table C.1: 48h classification results of GAM model with all variables (binary AKI case)

48h binary AKI score all variable CI

SENS 0.510 0.47-0.55
SPEC 0.965 0.96-0.97
MCC 0.563 -
Informedness 0.475 -
PREC 0.775 0.74-0.81
NPV 0.893 0.88-0.9
FPR 0.035 -
F1 0.615 -
TP 375 -
FP 109 -
TN 3011 -
FN 360 -
AUC-ROC 0.870 0.85-0.89
AUC-PR 0.700 -
AUC-PRG 0.300 -
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C.1. Binary case

Table C.2: 48h classification results of GAM model with all variables (severe AKI case)

48h binary AKI score all variable CI

SENS 0.573 0.53-0.62
SPEC 0.979 0.97-0.98
MCC 0.637 -
Informedness 0.552 -
PREC 0.792 0.75-0.83
NPV 0.942 0.93-0.95
FPR 0.021 -
F1 0.665 -
TP 271 -
FP 71 -
TN 3311 -
FN 202 -
AUC-ROC 0.940 0.92-0.96
AUC-PR 0.760 -
AUC-PRG 0.410 -
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C.2. Multiclass case

C.2 Multiclass case

In this section, we insert the classification results obtained using GAMs in the multiclass case in
more detail.

Table C.3: 48h confusion matrix mode AKI classification results obtained using GAM
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C.2. Multiclass case

Table C.4: 48h confusion matrix max AKI classification results obtained using GAM
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Appendix D

Classification results using BN classifiers

D.1 binary case

In this section, we insert the classification results obtained using BN with all the variables in the
binary case in more detail.

48h binary AKI score with BN CI
SENS 0.721 0.69-0.75
SPEC 0.896 0.89-0.91
MCC 0.584 NA
Informedness 0.618 NA
PREC 0.621 0.59-0.65
NPV 0.932 0.92-0.94
FPR 0.104 NA
F1 0.668 NA
TP 530 NA
FP 323 NA
TN 2797 NA
FN 205 NA
AUC-ROC 0.900 0.88-0.92
AUC-PR 0.740 NA
AUC-PRG 0.370 NA

Table D.1: AUC ROC binary AKI case
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D.1. binary case

48h severe AKI score with BN CI
SENS 0.822 0.79-0.85
SPEC 0.939 0.93-0.95
MCC 0.691 NA
Informedness 0.761 NA
PREC 0.653 0.61-0.69
NPV 0.974 0.97-0.98
FPR 0.061 NA
F1 0.728 NA
TP 389 NA
FP 207 NA
TN 3175 NA
FN 84 NA
AUC-ROC 0.970 0.96-0.98
AUC-PR 0.820 NA
AUC-PRG 0.530 NA

Table D.2: AUC ROC severe AKI case
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D.2. Multiclass case

D.2 Multiclass case

In this section, we insert the classification results obtained using BN in the multiclass case in more
detail.

Table D.3: 48h confusion matrix mode AKI classification results obtained using BN with all the variables.
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D.2. Multiclass case

Table D.4: 48h confusion matrix max AKI classification results obtained using BN with all the variables.
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Appendix E

Classification results using BN classifier
and MXM subset of variables

E.1 Binary AKI case

In this section, we insert the classification results obtained using BN and MXM subset of variables
in the binary case in more detail.

48h binary AKI score with BN and MXM subset CI
SENS 0.729 0.7-0.76
SPEC 0.890 0.88-0.9
MCC 0.580 NA
Informedness 0.620 NA
PREC 0.610 0.58-0.64
NPV 0.933 0.92-0.94
FPR 0.110 NA
F1 0.665 NA
TP 536 NA
FP 342 NA
TN 2778 NA
FN 199 NA
AUC-ROC 0.900 0.88-0.92
AUC-PR 0.730 NA
AUC-PRG 0.340 NA

Table E.1: BN AUC-ROC bin AKI with MXM subset
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E.1. Binary AKI case

48h severe AKI score with BN and MXM subset CI
SENS 0.799 0.76-0.83
SPEC 0.948 0.94-0.96
MCC 0.700 NA
Informedness 0.747 NA
PREC 0.684 0.64-0.72
NPV 0.971 0.96-0.98
FPR 0.052 NA
F1 0.737 NA
TP 378 NA
FP 175 NA
TN 3207 NA
FN 95 NA
AUC-ROC 0.970 0.96-0.98
AUC-PR 0.820 NA
AUC-PRG 0.550 NA

Table E.2: BN AUC-ROC severe AKI with MXM subset
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E.2. Multiclass case

E.2 Multiclass case

In this section, we insert the classification results obtained using BN and MXM subset of variables
in the multiclass case in more detail.

Table E.3: 48h confusion matrix mode AKI classification results obtained using BN with a subset of
variables selected using MXM.
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E.2. Multiclass case

Table E.4: 48h confusion matrix max AKI classification results obtained using BN with a subset of variables
selected using MXM.
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