2,267 research outputs found

    Predictable Implementation of Real-Time Applications on Multiprocessor Systems on Chip

    Get PDF
    Worst-case execution time (WCET) analysis and, in general, the predictability of real-time applications implemented on multiprocessor systems has been addressed only in very restrictive and particular contexts. One important aspect that makes the analysis difficult is the estimation of the system\u27s communication behavior. The traffic on the bus does not solely originate from data transfers due to data dependencies between tasks, but is also affected by memory transfers as result of cache misses. As opposed to the analysis performed for a single processor system, where the cache miss penalty is constant, in a multiprocessor system each cache miss has a variable penalty, depending on the bus contention. This affects the tasks\u27 WCET which, however, is needed in order to perform system scheduling. At the same time, the WCET depends on the system schedule due to the bus interference. In this context, we present an approach to worst-case execution time analysis and system scheduling for real-time applications implemented on multiprocessor SoC architectures. We will also address the bus scheduling policy and its optimization, which are of huge importance for the performance of such predictable multiprocessor applications

    A real-time virtio-based framework for predictable inter-VM communication

    Full text link
    Ensuring real-time properties on current heterogeneous multiprocessor systems on a chip is a challenging task. Furthermore, online artificial intelligent applications –which are routinely deployed on such chips– pose increasing pressure on the memory subsystem that becomes a source of unpredictability. Although techniques have been proposed to restore independent access to memory for concurrently executing virtual machines (VM), providing predictable inter-VM communication remains challenging. In this work, we tackle the problem of predictably transferring data between virtual machines and virtualized hardware resources on multiprocessor systems on chips under consideration of memory interference. We design a "broker-based" real-time communication framework for otherwise isolated virtual machines, provide a virtio-based reference implementation on top of the Jailhouse hypervisor, assess its overheads for FreeRTOS virtual machines, and formally analyze its communication flow schedulability under consideration of the implementation overheads. Furthermore, we define a methodology to assess the maximum DRAM memory saturation empirically, evaluate the framework's performance and compare it with the theoretical schedulability.Accepted manuscrip

    Run-time Spatial Mapping of Streaming Applications to Heterogeneous Multi-Processor Systems

    Get PDF
    In this paper, we define the problem of spatial mapping. We present reasons why performing spatial mappings at run-time is both necessary and desirable. We propose what is—to our knowledge—the first attempt at a formal description of spatial mappings for the embedded real-time streaming application domain. Thereby, we introduce criteria for a qualitative comparison of these spatial mappings. As an illustration of how our formalization relates to practice, we relate our own spatial mapping algorithm to the formal model

    Time-predictable Chip-Multiprocessor Design

    Get PDF
    Abstract—Real-time systems need time-predictable platforms to enable static worst-case execution time (WCET) analysis. Improving the processor performance with superscalar techniques makes static WCET analysis practically impossible. However, most real-time systems are multi-threaded applications and performance can be improved by using several processor cores on a single chip. In this paper we present a time-predictable chipmultiprocessor system that aims to improve system performance while still enabling WCET analysis. The proposed chip-multiprocessor (CMP) uses a shared memory with a time-division multiple access (TDMA) based memory access scheduling. The static TDMA schedule can be integrated into the WCET analysis. Experiments with a JOP based CMP showed that the memory access starts to dominate the execution time when using more than 4 processor cores. To provide a better scalability, more local memories have to be used. We add a processor local scratchpad memory and split data caches, which are still time-predictable, to the processor cores. I

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo

    Real-Time Task Migration for Dynamic Resource Management in Many-Core Systems

    Get PDF

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    A real-time asymmetric multiprocessor-reconfigurable system-on-chip architecture

    Get PDF
    We propose an asymmetric multi-processor SoC architecture, featuring a master CPU running uClinux, and multiple loosely-coupled slave CPUs running real-time threads assigned by the master CPU. Real-time SoC architectures often demand a compromise between a generic platform for different applications, and application-specific customizations to achieve performance requirements. Our proposed architecture offers a generic platform running a conventional embedded operating system providing a traditional software-oriented development approach, while multiple slave CPUs act as a dedicated independent real-time threads execution unit running in parallel of master CPU to achieve performance requirements. In this paper, the architecture is described, including the application / threading development environment. The performance of the architecture with several standard benchmark routines is also analysed
    corecore