157,300 research outputs found

    Development of a novel forward dynamic programming method for weather routing

    Get PDF
    This paper presents a novel forward dynamic programming method for weather routing to minimise ship fuel consumption during a voyage. Compared with traditional weather routing methods which only optimise the ship's heading, while the engine power or propeller rotation speed is set as a constant throughout the voyage, this new method considers both the ship power settings and heading controls. A float state technique is used to reduce the iterations required during optimisation and thus save computation time. This new method could lead to quasiglobal optimal routing in comparison with the traditional weather routing methods

    Effective link operation duration: a new routing metric for mobile ad hoc networks

    Get PDF
    The dynamic topology of mobile ad hoc networks (MANETs) is caused by node mobility and fading of the wireless link. Link reliability is often measured by the estimated lifetime and the stability of a link. In this paper we propose that the stability of a link can be represented by the time duration in which the two nodes at each end of a link are within each other’s transmission range and the fading is above an acceptable threshold. A novel routing metric, called effective link operation duration (ELOD), is proposed and implemented into AODV (AODV-ELOD). Simulation results show that proposed AODVELOD outperforms both AODV and the Flow Oriented Routing Protocol (FORP)

    The role of angularity in route choice: an analysis of motorcycle courier GPS traces

    Get PDF
    The paths of 2425 individual motorcycle trips made in London were analyzed in order to uncover the route choice decisions made by drivers. The paths were derived from global positioning system (GPS) data collected by a courier company for each of their drivers, using algorithms developed for the purpose of this paper. Motorcycle couriers were chosen due to the fact that they both know streets very well and that they do not rely on the GPS to guide their navigation. Each trace was mapped to the underlying road network, and two competing hypotheses for route choice decisions were compared: (a) that riders attempt to minimize the Manhattan distance between locations and (b) that they attempt to minimize the angular distance. In each case, the distance actually traveled was compared to the minimum possible either block or angular distance through the road network. It is usually believed that drivers who know streets well will navigate trips that reduce Manhattan distance; however, here it is shown that angularity appears to play an important role in route choice. 63% of trips made took the minimum possible angular distance between origin and destination, while 51% of trips followed the minimum possible block distance. This implies that impact of turns on cognitive distance plays an important role in decision making, even when a driver has good knowledge of the spatial network

    Traveller Behaviour: Decision making in an unpredictable world

    Get PDF
    This paper discusses the nature and consequences of uncertainty in transport systems. Drawing on work from a number of fields, it addresses travellers’ abilities to predict variable phenomena, their perception of uncertainty, their attitude to risk and the various strategies they might adopt in response to uncertainty. It is argued that despite the increased interest in the representation of uncertainty in transport systems, most models treat uncertainty as a purely statistical issue and ignore the psychological aspects of response to uncertainty. The principle theories and models currently used to predict travellers’ response to uncertainty are presented and number of alternative modelling approaches are outlined. It is argued that the current generation of predictive models do not provide an adequate basis for forecasting response to changes in the degree of uncertainty or for predicting the likely effect of providing additional information. A number of alternative modelling approaches are identified to deal with travellers’ acquisition of information, the definition of their choice set and their choice between the available options. The use of heuristic approaches is recommended as an alternative to more conventional probabilistic methods

    Guidelines for assessing pedestrian evacuation software applications

    Get PDF
    This paper serves to clearly identify and explain criteria to consider when evaluating the suitability of a pedestrian evacuation software application to assess the evacuation process of a building. Guidelines in the form of nine topic areas identify different modelling approaches adopted, as well as features / functionality provided by applications designed specifically for simulating the egress of pedestrians from inside a building. The paper concludes with a synopsis of these guidelines, identifying key questions (by topic area) to found an evaluation
    corecore