10,144 research outputs found

    On Model Based Synthesis of Embedded Control Software

    Full text link
    Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for control software. Given the formal model of a plant as a Discrete Time Linear Hybrid System and the implementation specifications (that is, number of bits in the Analog-to-Digital (AD) conversion) correct-by-construction control software can be automatically generated from System Level Formal Specifications of the closed loop system (that is, safety and liveness requirements), by computing a suitable finite abstraction of the plant. With respect to given implementation specifications, the automatically generated code implements a time optimal control strategy (in terms of set-up time), has a Worst Case Execution Time linear in the number of AD bits bb, but unfortunately, its size grows exponentially with respect to bb. In many embedded systems, there are severe restrictions on the computational resources (such as memory or computational power) available to microcontroller devices. This paper addresses model based synthesis of control software by trading system level non-functional requirements (such us optimal set-up time, ripple) with software non-functional requirements (its footprint). Our experimental results show the effectiveness of our approach: for the inverted pendulum benchmark, by using a quantization schema with 12 bits, the size of the small controller is less than 6% of the size of the time optimal one.Comment: Accepted for publication by EMSOFT 2012. arXiv admin note: substantial text overlap with arXiv:1107.5638,arXiv:1207.409

    Diagnosis and Repair for Synthesis from Signal Temporal Logic Specifications

    Full text link
    We address the problem of diagnosing and repairing specifications for hybrid systems formalized in signal temporal logic (STL). Our focus is on the setting of automatic synthesis of controllers in a model predictive control (MPC) framework. We build on recent approaches that reduce the controller synthesis problem to solving one or more mixed integer linear programs (MILPs), where infeasibility of a MILP usually indicates unrealizability of the controller synthesis problem. Given an infeasible STL synthesis problem, we present algorithms that provide feedback on the reasons for unrealizability, and suggestions for making it realizable. Our algorithms are sound and complete, i.e., they provide a correct diagnosis, and always terminate with a non-trivial specification that is feasible using the chosen synthesis method, when such a solution exists. We demonstrate the effectiveness of our approach on the synthesis of controllers for various cyber-physical systems, including an autonomous driving application and an aircraft electric power system

    Temporal Stream Logic: Synthesis beyond the Bools

    Full text link
    Reactive systems that operate in environments with complex data, such as mobile apps or embedded controllers with many sensors, are difficult to synthesize. Synthesis tools usually fail for such systems because the state space resulting from the discretization of the data is too large. We introduce TSL, a new temporal logic that separates control and data. We provide a CEGAR-based synthesis approach for the construction of implementations that are guaranteed to satisfy a TSL specification for all possible instantiations of the data processing functions. TSL provides an attractive trade-off for synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard temporal logics, is undecidable in general. On the other hand, however, synthesis from TSL is scalable, because it is independent of the complexity of the handled data. Among other benchmarks, we have successfully synthesized a music player Android app and a controller for an autonomous vehicle in the Open Race Car Simulator (TORCS.

    A Refinement Calculus for Logic Programs

    Get PDF
    Existing refinement calculi provide frameworks for the stepwise development of imperative programs from specifications. This paper presents a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specification constructs such as general predicates, assumptions and universal quantification. A declarative semantics is defined for this wide-spectrum language based on executions. Executions are partial functions from states to states, where a state is represented as a set of bindings. The semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and refinement laws for developing programs are introduced. The refinement calculus is illustrated using example derivations and prototype tool support is discussed.Comment: 36 pages, 3 figures. To be published in Theory and Practice of Logic Programming (TPLP

    A Map-Reduce Parallel Approach to Automatic Synthesis of Control Software

    Full text link
    Many Control Systems are indeed Software Based Control Systems, i.e. control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of control software. Available algorithms and tools (e.g., QKS) may require weeks or even months of computation to synthesize control software for large-size systems. This motivates search for parallel algorithms for control software synthesis. In this paper, we present a Map-Reduce style parallel algorithm for control software synthesis when the controlled system (plant) is modeled as discrete time linear hybrid system. Furthermore we present an MPI-based implementation PQKS of our algorithm. To the best of our knowledge, this is the first parallel approach for control software synthesis. We experimentally show effectiveness of PQKS on two classical control synthesis problems: the inverted pendulum and the multi-input buck DC/DC converter. Experiments show that PQKS efficiency is above 65%. As an example, PQKS requires about 16 hours to complete the synthesis of control software for the pendulum on a cluster with 60 processors, instead of the 25 days needed by the sequential algorithm in QKS.Comment: To be submitted to TACAS 2013. arXiv admin note: substantial text overlap with arXiv:1207.4474, arXiv:1207.409

    Logical Concurrency Control from Sequential Proofs

    Full text link
    We are interested in identifying and enforcing the isolation requirements of a concurrent program, i.e., concurrency control that ensures that the program meets its specification. The thesis of this paper is that this can be done systematically starting from a sequential proof, i.e., a proof of correctness of the program in the absence of concurrent interleavings. We illustrate our thesis by presenting a solution to the problem of making a sequential library thread-safe for concurrent clients. We consider a sequential library annotated with assertions along with a proof that these assertions hold in a sequential execution. We show how we can use the proof to derive concurrency control that ensures that any execution of the library methods, when invoked by concurrent clients, satisfies the same assertions. We also present an extension to guarantee that the library methods are linearizable or atomic
    corecore