12 research outputs found

    Preconditioners for nondefinite Hermitian Toeplitz systems

    Get PDF
    This paper is concerned with the construction of circulant preconditioners for Toeplitz systems arising from a piecewise continuous generating function with sign changes. If the generating function is given, we prove that for any Σ > 0, only Ο(log N) eigenvalues of our preconditioned Toeplitz systems of size N x N are not contained in [-1- Σ, -1+Σ]U [1-Σ, 1+Σ]. The result can be modified for trigonometric preconditioners. We also suggest circulant preconditioners for the case that the generating function is not explicitly known and show that only Ο(log N) absolute values of the eigenvalues of the preconditioned Toeplitz systems are not contained in a positive interval on the real axis. Using the above results, we conclude that the preconditioned minimal residual method requires only Ο(N log² N) arithmetical operations to achive a solution of prescribed precision if the spectral condition numbers of the Toeplitz systems increase at most polynomial in N. We present various numerical tests

    Recursive-Based PCG Methods for Toeplitz Systems with Nonnegative Generating Functions

    Get PDF
    In this paper, we consider the solutions of symmetric positive definite, but ill-conditioned, Toeplitz systems An x = b. Here we propose to solve the system by the recursive-based preconditioned conjugate gradient method. The idea is to use the inverse of Am (the principal submatrix of An with the Gohberg--Semencul formula as a preconditioner for An. The inverse of Am can be generated recursively by using the formula until m is small enough. The construction of the preconditioners requires only the entries of An and does not require the explicit knowledge of the generating function f of An. We show that if f is a nonnegative, bounded, and piecewise continuous even function with a finite number of zeros of even order, the spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers. Hence the conjugate gradient method, when applied to solving the preconditioned system, converges very quickly. Numerical results are included to illustrate the effectiveness of our approach.published_or_final_versio

    A preconditioned MINRES method for nonsymmetric Toeplitz matrices

    Get PDF
    Circulant preconditioning for symmetric Toeplitz linear systems is well established; theoretical guarantees of fast convergence for the conjugate gradient method are descriptive of the convergence seen in computations. This has led to robust and highly efficient solvers based on use of the fast Fourier transform exactly as originally envisaged in [G. Strang, Stud. Appl. Math., 74 (1986), pp. 171--176]. For nonsymmetric systems, the lack of generally descriptive convergence theory for most iterative methods of Krylov type has provided a barrier to such a comprehensive guarantee, though several methods have been proposed and some analysis of performance with the normal equations is available. In this paper, by the simple device of reordering, we rigorously establish a circulant preconditioned short recurrence Krylov subspace iterative method of minimum residual type for nonsymmetric (and possibly highly nonnormal) Toeplitz systems. Convergence estimates similar to those in the symmetric case are established

    A preconditioned MINRES method for optimal control of wave equations and its asymptotic spectral distribution theory

    Full text link
    In this work, we propose a novel preconditioned Krylov subspace method for solving an optimal control problem of wave equations, after explicitly identifying the asymptotic spectral distribution of the involved sequence of linear coefficient matrices from the optimal control problem. Namely, we first show that the all-at-once system stemming from the wave control problem is associated to a structured coefficient matrix-sequence possessing an eigenvalue distribution. Then, based on such a spectral distribution of which the symbol is explicitly identified, we develop an ideal preconditioner and two parallel-in-time preconditioners for the saddle point system composed of two block Toeplitz matrices. For the ideal preconditioner, we show that the eigenvalues of the preconditioned matrix-sequence all belong to the set (−32,−12)⋃(12,32)\left(-\frac{3}{2},-\frac{1}{2}\right)\bigcup \left(\frac{1}{2},\frac{3}{2}\right) well separated from zero, leading to mesh-independent convergence when the minimal residual method is employed. The proposed {parallel-in-time} preconditioners can be implemented efficiently using fast Fourier transforms or discrete sine transforms, and their effectiveness is theoretically shown in the sense that the eigenvalues of the preconditioned matrix-sequences are clustered around ±1\pm 1, which leads to rapid convergence. When these parallel-in-time preconditioners are not fast diagonalizable, we further propose modified versions which can be efficiently inverted. Several numerical examples are reported to verify our derived localization and spectral distribution result and to support the effectiveness of our proposed preconditioners and the related advantages with respect to the relevant literature

    Preconditioned fast solvers for large linear systems with specific sparse and/or Toeplitz-like structures and applications

    Get PDF
    In this thesis, the design of the preconditioners we propose starts from applications instead of treating the problem in a completely general way. The reason is that not all types of linear systems can be addressed with the same tools. In this sense, the techniques for designing efficient iterative solvers depends mostly on properties inherited from the continuous problem, that has originated the discretized sequence of matrices. Classical examples are locality, isotropy in the PDE context, whose discrete counterparts are sparsity and matrices constant along the diagonals, respectively. Therefore, it is often important to take into account the properties of the originating continuous model for obtaining better performances and for providing an accurate convergence analysis. We consider linear systems that arise in the solution of both linear and nonlinear partial differential equation of both integer and fractional type. For the latter case, an introduction to both the theory and the numerical treatment is given. All the algorithms and the strategies presented in this thesis are developed having in mind their parallel implementation. In particular, we consider the processor-co-processor framework, in which the main part of the computation is performed on a Graphics Processing Unit (GPU) accelerator. In Part I we introduce our proposal for sparse approximate inverse preconditioners for either the solution of time-dependent Partial Differential Equations (PDEs), Chapter 3, and Fractional Differential Equations (FDEs), containing both classical and fractional terms, Chapter 5. More precisely, we propose a new technique for updating preconditioners for dealing with sequences of linear systems for PDEs and FDEs, that can be used also to compute matrix functions of large matrices via quadrature formula in Chapter 4 and for optimal control of FDEs in Chapter 6. At last, in Part II, we consider structured preconditioners for quasi-Toeplitz systems. The focus is towards the numerical treatment of discretized convection-diffusion equations in Chapter 7 and on the solution of FDEs with linear multistep formula in boundary value form in Chapter 8

    Preconditioned fast solvers for large linear systems with specific sparse and/or Toeplitz-like structures and applications

    Get PDF
    In this thesis, the design of the preconditioners we propose starts from applications instead of treating the problem in a completely general way. The reason is that not all types of linear systems can be addressed with the same tools. In this sense, the techniques for designing efficient iterative solvers depends mostly on properties inherited from the continuous problem, that has originated the discretized sequence of matrices. Classical examples are locality, isotropy in the PDE context, whose discrete counterparts are sparsity and matrices constant along the diagonals, respectively. Therefore, it is often important to take into account the properties of the originating continuous model for obtaining better performances and for providing an accurate convergence analysis. We consider linear systems that arise in the solution of both linear and nonlinear partial differential equation of both integer and fractional type. For the latter case, an introduction to both the theory and the numerical treatment is given. All the algorithms and the strategies presented in this thesis are developed having in mind their parallel implementation. In particular, we consider the processor-co-processor framework, in which the main part of the computation is performed on a Graphics Processing Unit (GPU) accelerator. In Part I we introduce our proposal for sparse approximate inverse preconditioners for either the solution of time-dependent Partial Differential Equations (PDEs), Chapter 3, and Fractional Differential Equations (FDEs), containing both classical and fractional terms, Chapter 5. More precisely, we propose a new technique for updating preconditioners for dealing with sequences of linear systems for PDEs and FDEs, that can be used also to compute matrix functions of large matrices via quadrature formula in Chapter 4 and for optimal control of FDEs in Chapter 6. At last, in Part II, we consider structured preconditioners for quasi-Toeplitz systems. The focus is towards the numerical treatment of discretized convection-diffusion equations in Chapter 7 and on the solution of FDEs with linear multistep formula in boundary value form in Chapter 8

    On Vector Sequence Transforms and Acceleration Techniques

    Get PDF
    This dissertation is devoted to the acceleration of convergence of vector sequences. This means to produce a replacement sequence from the original sequence with higher rate of convergence. It is assumed that the sequence is generated from a linear matrix iteration xi+ i = Gxi + k where G is an n x n square matrix and xI+1 , xi,and k are n x 1 vectors. Acceleration of convergence is obtained when we are able to resolve approximations to low dimension invariant subspaces of G which contain large components of the error. When this occurs, simple weighted averages of iterates x,+|, i = 1 ,2 ,... k where k \u3c n are used to produce iterates which contain approximately no error in the selfsame low dimension invariant subspaces. We begin with simple techniques based upon the resolution of a simple dominant eigenvalue/eigenvector pair and extend the notion to higher dimensional invariant spaces. Discussion is given to using various subspace iteration methods and their convergence. These ideas are again generalized by solving the eigenelement for a projection of G onto an appropriate subspace. The use of Lanzcos-type methods are discussed for establishing these projections. We produce acceleration techniques based on the process of generalized inversion. The relationship between the minimal polynomial extrapolation technique (MPE) for acceleration of convergence and conjugate gradient type methods is explored. Further acceleration techniques are formed from conjugate gradient type techniques and a generalized inverse Newton\u27s method. An exposition is given to accelerations based upon generalizations of rational interpolation and Pade approximation. Further acceleration techniques using Sherman-Woodbury-Morrison type formulas are formulated and suggested as a replacement for the E-transform. We contrast the effect of several extrapolation techniques drawn from the dissertation on a nonsymmetric linear iteration. We pick the Minimal Polynomial Extrapolation (MPE) as a representative of techniques based on orthogonal residuals, the Vector ϵ\epsilon-Algorithm (VEA) as a representative vector interpolation technique and a technique formulated in this dissertation based on solving a projected eigenproblem. The results show the projected eigenproblem technique to be superior for certain iterations
    corecore