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ABSTRACT

On Vector Sequence Transforms and Acceleration Techniques

Steven Lee Hodge

O ld Dominion University, 1989 

Director: Dr. W illiam  D. Lakin

This dissertation is devoted to the acceleration of convergence of vector se

quences. This means to produce a replacement sequence from  the original se

quence w ith  higher rate of convergence.

I t  is assumed that the sequence is generated from  a linear m atrix iteration 

xi+ i  =  Gxi +  k where G is an n x n  square m atrix and x I+1 , x,-, and k are n  x 1 

vectors. Acceleration o f convergence is obtained when we are able to resolve 

approximations to low dimension invariant subspaces of G which contain large 

components of the error. When this occurs, simple weighted averages of ite r

ates x,+|, i  =  1 ,2 ,.. .  k where k <  n  are used to produce iterates which contain 

approximately no error in  the selfsame low dimension invariant subspaces. We 

begin w ith  simple techniques based upon the resolution o f a simple dominant 

eigenvalue/eigenvector pa ir and extend the notion to higher dimensional invari

ant spaces. Discussion is given to using various subspace iteration methods and 

their convergence. These ideas are again generalized by solving the eigenele- 

ment problem for a projection of G onto an appropiate subspace. The use of 

Lanzcos-type methods are discussed for establishing these projections.

i
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We produce acceleration techniques based on the process o f generalized inver

sion. The relationship between the m inimal polynomial extrapolation technique 

(MPE) for acceleration o f convergence and conjugate gradient type methods is 

explored. Further acceleration techniques are formed from  conjugate gradient 

type techniques and a generalized inverse Newton’s method.

An exposition is given to accelerations based upon generalizations of rational 

interpolation and Pade approximation. Further acceleration techniques using 

Sherman-Woodbury-Morrison type formulas are formulated and suggested as a 

replacement for the E-transform.

We contrast the effect of several extrapolation techniques drawn from  the 

dissertation on a nonsymmetric linear iteration. We pick the M in im al Polyno

mial Extrapolation (MPE) as a representative of techniques based on orthogonal 

residuals, the Vector e-Algorithm (VEA) as a representative vector interpola

tion technique and a technique formulated in this dissertation based on solving a 

projected eigenproblem. The results show the projected eigenproblem technique 

to be superior for certain iterations.

ii
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Chapter 1

Introduction

Mathematicians in the 18th century did not concern themselves w ith  the conver

gence or divergence o f series, which led to contradictions tha t were not resolved 

un til 1821 when A.L. Cauchy gave firm  definitions of the notion o f convergence. 

W ith  this definition, they concerned themselves mostly w ith  convergent series; 

however, divergent series continued to arise in many problems in analysis. This 

fomented a systematic study of methods for the summation of divergent series, 

known as summability techniques or sequence transforms, by mathematicians in 

the la tte r 19th century.

Getting usable replacement sequences from divergent sequences is certainly 

valuable enough to have spawned a branch of mathematics whose general foun

dation is now the theory o f linear transformations, but summability techniques 

have an additional practical use in  the “acceleration” of the convergence of the 

partia l sums of a convergent series. “Acceleration” means to produce a replace

ment sequence w ith  a higher rate of convergence. I f  a sequence is thought of as 

the partia l sums of some series, then a summability technique can be used for 

the acceleration of the convergence of a sequence.

Most summability techniques, including the so-called “nonlinear” summa

b ility  techniques such as the classical A itken’s 62 technique, involve a weighted

1
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average of partia l sums of members o f the sequence. In  this case, a distinc

tion  should be made between classical linear methods where (1) the weights 

are chosen in  advance and whose ab ility  to  converge sequences is subject to 

the guidelines o f Toeplitz-Schur type theorems; (2) methods such as A itken ’s 62 

which are nonlinear weighted averages in  tha t the weights are nonlinear func

tions of the iterates (the process, nonetheless, amounts to  a weighted average of 

the iterates); and (3) “ tru ly  nonlinear” methods which differ from  the former 

two. T ru ly  nonlinear methods are not dealt w ith  in  this dissertation. In  keeping 

w ith  modern notions of error analysis the first method (weights in  advance) w ill 

be known as an a’ priori method and the second method (weights determined 

from  the particular sequence) w ill be known as an a’posteriori method.

Both a’p rio ri and a’posteriori methods are attractive summability techniques 

for vector sequences. They can be applied “globally” — each component of the 

given vectors in a weighted sum use the same weight— as opposed to “ locally” 

where each component of a vector is regarded as a different sequence and 

summed w ith  different weights. There is no distinction between local and global 

techniques in a’priori techniques. This dissertation w ill be concerned w ith  their 

use in the context of summing vector sequences. A ’p rio ri techniques have been 

used for years w ith  good effect. A  well known example is the Chebychev acceler

ation technique for linear m atrix iterations (cf. chapter five). These techniques, 

in the ir purest form, do not take advantage o f the developments in the sequence 

as the iteration progresses (“ finely tuned”  ones don’t  need to), but often require 

some advance information tha t may be expensive or d ifficu lt to  obtain accu

rately. In  the case of the Chebychev acceleration accurate estimates are needed 

on the spectrum of the iterative m atrix  in  order for it  to be effective. A ’posteriori 

techniques, such as Shank’s transform of chapter four, are adaptive to changes in 

the sequence and work better for certain sequences than the a’p rio ri techniques,

2
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but they are generally more expensive to  implement. They also require more 

memory, bu t have one great advantage in  that a correctly applied a’posteriori 

technique is able to  produce remarkable acceleration unobtainable by a’p rio ri 

techniques. Another intermediate approach is to  apply combinations o f both 

techniques to  the same sequence in some methodical fashion.

This dissertation contains a theoretical and numerical investigation of a’posteriori 

techniques for certain types of problems tha t commonly arise in  numerical anal

ysis. A  contribution here w ill be a theoretical investigation oriented toward a 

linear algebraic aspect in the formulation of a’posteriori techniques.

Let B be a Banach space and s a sequence in B . Many acceleration techniques 

have the characteristic o f making an in itia l assumption about the error structure 

of the sequence and then algebraically combining sequence members in order to 

eliminate or m inimize all or part o f the error. For example, suppose tha t sn is 

a Laplace moment sequence:

=  s* +  J™ e -la+n* f { t ) d t ,  3la  >  0. (1.1)

In a particu lar case, W im p [35] has shown tha t under the conditions tha t 

the set

S =  { m [ / (m) 7^0,0 < m < r  — 1} (1.2)

is not empty and /  €  I 2(0,oo), /M ( it)e -au €  i 2(0,oo), tha t there is a lower 

triangular array of weights U  =  (//fJ) such that the sequence

n

=  )  ] l^ni 
»=1

is accelerated at the rate

Sn -  s* =  n?~2r~x̂ 0  (s" -  s*) (1.4)

where j  =  in f S. This remarkable acceleration, coupled w ith  the added bonus

that the weights satisfy a four term  recurrence relation, make the summability

3
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method very useful for sequences w ith  error ( l . l ) .  I t  has been shown tha t no 

other m atrix  o f weights U  w ill improve convergence more than U  [35].

A  disadvantage o f summability techniques starting from  a specified error 

structure comes in  the lim ita tions o f the error structure itself, not the technique. 

In  certain situations the error structure is not known or too general to be of 

any practical use. (The rule o f thumb is tha t less definite error structures 

produce less effective summability methods. See the paper by Brezinski [7] 

fo r inform ation on the general theory of summation.) I f  no more information 

is availiable about the error structure at the onset, there is lit t le  tha t can be 

done except to  wait for terms of the sequence to reveal more about the error 

than was known in the beginning. This is the approach that w ill be considered 

in  this dissertation: Get an approximation to  the error in the sequence and 

then use a summability technique based on elim inating the error approximation. 

The effectiveness o f the extrapolation depends on the effectiveness of the error 

approimation.

The linear algebraic aspect w ill be in the consideration o f dominant “eigen- 

spaces” . Assume tha t the sequence is generated by a linear operator P and 

resolve the error by, in the words of Peter Henrici, “quantifying the continuity 

[of P\ in the area of spectral analysis, tha t is (to use a less fashionable term), to 

consider an eigenvalue problem for P.”  Among the tools used for resolving the 

error w ill be the numerical techniques developed during the 1960’s and 1970’s 

by the ablest numerical analyists o f tha t time. O f prim ary interest w ill be se

quences which have “ dominant invariant subspaces” . To explain what is meant 

by this, suppose tha t a sequence s„ in  the complex iV-space C N is to be summed. 

This is a situation where the numerically largest component of the error lies in 

a proper subspace o f dimension K  N . In  this way, most of the error can be 

found by solving a more economical lower dimension problem. These tools of

4
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eigenvalue estimation w ill be augmented by the use o f methods for projecting 

m atrix  problems, including eigenvalue problems, onto proper subspaces o f C N.

This adaptive approach applied to  summation o f convergent vector sequences 

is o f use for complicated sequence generators for which litt le  analysis can be 

done to  determine the error structure. These types of sequences appear often 

in  the form  of large codes in scientific computing for solving large systems of 

nonlinear partia l differential equations. There is enough d ifficu lty in form ulating 

the codes themselves and getting them to converge than to worry about the 

awesome task of finding the error structure. Fortunately, the error sometimes 

has a dominant component which depends on a lim ited number of parameters 

that can be detected by a good extrapolation routine.

Chapter two involves the form ulation of summability methods from  the tools 

developed for the eigenelement problem. Methods that s tric tly  employ eigen

value approximation and methods tha t also incorporate projections w ill be de

veloped. Tried and true eigenelement algorithms w ill be the build ing blocks 

for many o f the sequence transforms. I t  can be argued tha t this highly devel

oped resource has not been adequately exploited before. In  justifica tion o f this 

point, a contrast between the methods of chapter three w ill be drawn, espe

cially in terms of computational efficiency. In summary, a unifying framework 

for the construction of vector acceleration techniques w ill be discussed from the 

viewpoint o f eigenelement/projection techniques.

Chapter three discusses generalizations of the M in im al Polynomial Extrap

olation (MPE) of Cabay and Jackson [9] and produces some generalizations. I t  

is shown that these techniques are essentially implementations o f a projection 

technique of chapter two. These techniques turn out to be highly successful in 

the experiments of chapter five. There is also a discussion of the conjugate gra

dient technique and the planar conjugate gradient technique. I t  is shown these 

techniques can be used to produce extrapolations. In particular, the use o f the

5
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planar conjugate technique has not been suggested before.

Chapter four w ill provide a review of certain modern sequence transforms 

w ith  an emphasis on the Shank’s transform and the Brezinski-Haive generaliza

tion o f it ,  known as the B-H protocall or the E-transform [34]. In  deference to its 

inventors (Brezinski and H&ive), i t  w ill be referred to as the B-H  protocall here. 

A  discussion o f the e-algorithm and its vector version is presented. Motivated 

by the B.H. transform we suggest a related transform in section 4.3 based upon 

a sparse linear system solver.

Chapter five of this dissertation w ill involve a short exposition o f the formu

lation of iterative methods from the viewpoint o f solving an ordinary differential 

equation. More importantly, i t  provides a convenient way to  generate realistic 

iterative methods that w ill test various sequence transforms produced in this 

dissertation. A  main contribution here is a comparison of the M PE method and 

the vector e-algorithm.

I t  is hoped tha t the examples from  this chapter, along w ith  the generality of 

the approach considered in this dissertation, w ill convince the working numerical 

analyst tha t vector sequence transforms are a simple, effective too l in optim izing 

the convergence rate of a wide variety of iterative methods.

1.1 N o ta tio n

1.1.1 Spaces

Hilbert space 

B: Banach space 

S': dual space

B (B ,B ') :  space of all bounded linear mappings o f B into S'.

6
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|3 1 :

| r | = s u p | r ( x ) | , T e f l , x e S
ixISl

A T is the tranpose of A, A H is the conjugate transpose AT. The spectral radius 

o f a m atrix  A  is denoted by p{A ) .

1.1.2 Real and Complex Numbers

Cp space of ordered complex p-tuples, p >  1

C complex numbers

Rp space of ordered real p-tuples, p >  1

R real numbers

R° nonnegative real numbers

R + positive reals

Z  integers

Z° nonnegative integers

Z + positive integers

m ,n ,k ,  r, t, j  generally denote integers

1.1.3 Sequences

Sequences w ill be denoted by simple variables s, t etc. . Individua l mem

bers w ill have indices s,-, etc. . L im it points w ill usually be Sqq, U n fty .

A,: a space of sequences

7
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Special Sequences

n
A : A sn =  3n+1 — sn, n >  1 : I f  A x 0 =  ®o> we have tha t s„ =  ^  A xk

k=0

e: en — sn — s, s =  lim  sn
n—♦ oo

8
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Chapter 2

M atrix Eigenvalue and  

Projection Techniques for 

E xtrapolation

Let i  be a sequence in  a Banach space 8 which converges to x ^ .  This chapter 

w ill be devoted to the formulation of vector sequence transforms of a segment

^ t + l j  % k + 2 i  ' ' " j x k + n  (2 -1 )

of the sequence x, where k ,n  >  0 based upon the assumption that, over the 

segment [k ,k  +  n], the error en =  xn — x ^  is well approximated by a m a trix  i t 

eration e,+1 =  G ti where G is a square m atrix  w ith  no generalized eigenvectors,

i.e. G is nondefective. The set o f nondefective matrices is dense in the set o f all 

matrices. So in assuming tha t the sequence error is generated by a m atrix, it  is 

not unreasonably restrictive to make the m atrix  nondefective. Extrapolations 

w ill be considered from  the viewpoint of removing components of error in dom

inant eigenspaces; tha t is, removing the component of error belonging to the 

eigenspace associated w ith  a subset of eigenvalues Ai, A2 , • • ■ , Ar of the spectrum

9
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of G, where r  K  =  order(G) and

|A i| >  |A2 | >  |AS| >  • • • >  |Ar |. (2 .2 )

Assume now that we have distinct eigenvalues >  f i2 >  • • • >  where K  <  K ,

and define M i =  K er(G  — P il) .  Decompose the real if-space RK into the direct

sum M i and let P, be the projection onto the eigenspace M i along ©j^,- M j.

Then, w ith  the reasonable assumption that the in itia l error e,- has a component

in each eigenspace, at the t + 1 step the error has decomposition

K
Ci+J =  53 (2-3)

k=l

Hence even i f  the error e,- has largest component in a subdominant eigenspace

M j where j  >  1, i t  is expected tha t further errors e,-+j w ill have their largest

component o f error in the dominant eigenspace M i,  the ir next largest in M 2, 

and so forth . Moreover, these dominant eigenspaces are the subspaces easiest to 

identify during the iterative process by the power method and other equivalent 

eigenelement or projection techniques to be discussed here.

Consider a m atrix iteration Xi+1 =  Gxi +  k which approximates a sequence 

x over the range [k, k +  n]. Two approaches for extrapolation w ill be considered 

in this chapter:

1. Use approximations to eigenelements of G to form  an extrapolation based 

upon removal of components o f error in the approximant dominant eigen

spaces. This w ill be called an annihilating polynomial approach.

2. Project the problem

{ I - G ) e t  =  ru (2.4)

where r,- =  ( I  — G)xi +  k or some other related problem, onto an ap

proximant dominant eigenspace, “Solve” the projected problem for e,- to 

produce approximant solution e;-, and produce an approximation to of 

the form  xTO =  — e;- «  x ro. This is the error equation/residual approach.

10
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We start w ith  the first approach in  the simple case o f a single dominant 

eigenvalue. Consider a m atrix  iteration

x ,-+1 =  Gx{ +  k (2.5)

where G is an n x  n  m atrix. I f  the dominant eigenvalue /ai has modulus stric tly  

greater than the m oduli o f the subdominant eigenvalues, it  can be well approx

imated as a byproduct of the iteration o f several methods which fa ll under the 

class o f simultaneous iteration techniques. One of the simplest such techniques 

w ill now be applied to (2.5). Other more elaborate simultaneous iteration tech

niques w ill be discussed later.

Assume for sim plic ity that xq =  0 and let A  x,- =  xt+x — x,-. Consider (2.5) in 

the form

A x ,+i  =  GAx,- 

Xt+2 =  ® t+ l "I- A ^ i+ l  (2 .6 )

Let (/Ax, t i i)  be the dominant eigenvalue-normalized eigenvector pa ir and assume 

x,- • u i 7^ 0. I t  is well known that as * —► oo, tt,- =  A x ,/||A x ,| tends to the 

normalized dominant eigenvector u and that for 1 <  k <  n  the ratios

or Rayleigh quotients

/tj =  u fG u i (2.8)

tend to Hi at a rate 0  ^ ({^ lj) )  w^ ere ^ 2  is the next largest eigenvalue in mod

ulus. I t  is not necessary for (2.5) to be convergent to get good approximations 

to the eigenvalues and eigenvectors. I f  the m atrix  G is Herm itian (G =  GT), 

then the eigenvalue convergence becomes quadratic 0  ( j^ j )  when using the 

Rayleigh Quotient. For details see Golub and VanLoan [14].

11
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We now consider the error in the extrapolation

(2.9)
1 -  Ml

Assume tha t Mi 7^ 1 and let x* =  ( I  — G) 1k. Then

xi+1 -  fiiX i -  0  ((JJ t})’ )  * 1

X *  — X .  =  x *  —

e«+i ~  Mi*. 0  
I - H i

c«'+i — Ml , .. (2.10)
1 -  Ml

where e, is the component o f e, in { u i } x o f smallest £2 norm. Generally this 

quantity w ill be 0 (|M2 p)> however, this tends to  be a large overestimate for 

large sparse m atrix  iterations where the eigenvalue is close to Hi- In  this case 

it  may happen that the quantity

c«+i ~  Mi*»
1 -  Mi

(2.10) may be equal to

Ci+l — Ml*!
1 ^  ^1 -  Mi

where e* for k =  i , i + l  is in  { u l 5 where u2, M2 is the second eigenpair and 

Hz is the th ird  eigenvalue. O f course this argument may be extended for any 

number of clustered eigenvalues, essentially we expect the error to be 0 (|m*|*) 

where Hk is the first numerically significant eigenvalue away from  Hi-

The stability o f the extrapolation is closely related to the stability o f the 

eigenvalue problem for Hi- Consider the eigenvalue Hi to be simple and pick a 

left eigenvector V>i of G normalized so that flujU =  i p iU i  — 1. \\i/j i | may be large

12
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i f  G is nonhermitian. Assume a perturbation H  o f G such tha t G' — G +  H  

and ||ff||2 <  e where e is small and set e' =  J /f |2 so tha t e' <  e. The following 

theorem is well known (see, for instance, [10]).

Theorem  1 I f  e is small enough, there exists a simple eigenvalue p [ of G' with 

an eigenvector u \ normalized by =  1, such that

Mi =  Mi +  i ’ lH u !  +  0  (e2) (2.11)

u\ =  Ui — S H u i - f 0(e2). (2.12)

where S =  ((G  — A ^ i ) 1 [ I  — P) and P  =  UiV>^.

From equations (2.11) and (2.12) it  is seen that the s tab ility  o f the eigenvalue

P i is dependent on the dominant left hand eigenvector rpi and the stability of

the eigenvector is dependent on the generalized inverse o f A — p i l  relative to 

the spectral projection P  =  Ui 4>h , namely the operator S. For information on 

generalized inverses see [5] or the introduction in chapter 3 o f this dissertation.

Theorem  2 For the case of a single dominant eigenpair ( p i , u i )  the extrapola

tion  (2.9) is stable i f  the eigenvalue problem fo r G is stable.

Proof. Assume fo r sim plicity tha t inner products have been accumulated 

w ith  enough accuracy so tha t the round-off error in  the iterates xo,xi... are 

negligible. For small enough e =  JfT|, there is a separated simple dominant 

eigenpair [p '^u 'j). Let p \ be the power iteration approximation to the dominant 

eigenvalue of G' after the t’th  iteration:

Mi — Mi +  0
/4
Mi

where p'2 is the next closest eigenvalue in modulus. Check the first coefficient in 

the extrapolation (2.9):

13
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i  — A. 1 - A 1 ( i  — A i) ( i  — A i)

= 4 HH u 1 +  0 (  m a x I g M ^ I O

1 +  ipHH u i +  n iii2 +  0(m ax{|^|'',|J?|*})

The s tab ility  is now evident for large enough i. Sufficiency for the other coeffi

cient
Ai

1 - A i

follows in the same fashion. I

This method of accelerating convergence by explic itly approximating the 

dominant eigenvalue seems to be due to Lusternik [13], and has been rediscovered 

many times.

2.1 E xten d in g  L u s te rn ik ’s M e th o d  to  a Sub

space

To describe the extension of Lusternik’s method to subspaces, the notation of 

subspace convergence needs to be defined. Given a subspace Y  C CN, where 

d im y  =  r , Y  is an JV x r m atrix whose columns are a basis of Y . The basis of 

Y  is completed by the N  — r columns of Z into a basis of CN . Given a subspace 

Xk of CN, dim  Xk <  r , X *  is an N  x r  m atrix  whose columns span Xk-

D e fin it io n  1 (P a r le t t  and Poole [26]) Given a sequence X k of subspaces 

of Cn of a vector space where d im X * >  r  fo r a ll k, Xk converges to Y , denoted 

Xk —► Y , as k  —► oo i f  and only i f  there exists, fo r large enough n, matrices 

of column vectors X *  ,Y ,  Z and matrices Ak (square, invertable r  X r )  and 

Bk ((r* — r) x  r) such that

14
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X * = Y j1* +  ZB*.

where —> 0  as k —> oo.

Let the eigenvalues o f G be ordered by decreasing modulus |/ii| >  |ms| > 

|/x3| >  .. >  \pr \ >  |/xr+1| >  >  |^*| where there is a strict separation in the rth

spot. Suppose tha t G has a spectrum w ith  a gap in  modulus between the rth  

and (r - f l)s t  eigenvalues, l/Xxl >  \p2\ >  ••• >  |Mr| > |/V n l ^  and that M

=  span (f>r}  where fa is the normalized eigenvalue associated w ith

the eigenvalue Pi. The following theorem due to Parlett and Poole [26] describes 

when subspace convergence w ill occur.

T he o re m  3 Suppose that there is a separation in  the spectrum of G. Let U be 

an arbitrary matrix o f vectors [u i, i t2, ...ur] and P  be the projection onto the domi

nant space M  parallel to the space o f subdominant eigenvectors { fa + l, fa +2..., (/>,}. 

Then GkU =  span(Gkfa) 1=1>r converges to M  i f  and only the set {P u ,} ,=1 r is 

linearly independent.

Note that theorem 3 is a statement about a dominant eigenspace, that is, 

the subspace which dominates the iteration. When a good approximation to 

the error on the dominant eigenspace is found, an extrapolation may be formed 

by removing this component o f the error from the approximate solution (see 

section 2.2). Suppose that the column vectors of G *U  are linearly independent, 

but some of them are close enough to each other such that for some i  >  k, 

GkU  has columns tha t are linearly dependent when represented in the floating 

point precision of a computer. This phenomena of ill-conditioning leads to no 

convergence or convergence to a lower order dominant eigenspace— the former 

being disasterous, the latter wasteful. Further iterations may also produce fur

ther dependencies. So it  is wise from  a numerical viewpoint to produce column

15
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vectors o f moderate size that are as orthogonal as possible and span the the 

subspace G ^U before performing further iterations.

This can be accomplished by producing an orthonormal basis B  from the 

columns of G *U  and considering a new subspace iteration

Gk B  As =  1 ,2 ,.... (2.13)

I f  the orthonormal basis is recomputed after each iteration, the classical or

thogonal iteration method is produced. The orthogonalization is usually accom

plished by means o f Householder transformations or the modified Gram Schmidt 

orthogonalization [14]. The former method is unconditionally stable; the la tter 

is simpler, cheaper and stable enough when the number of iterations is restricted 

to  be under t/ lo g 1 0(||G|| ||G-1 ||) where t is the maximum number o f significant 

figures allowed to be lost [31].

The actual a lgorithm  is a straight forward generalization o f the power method. 

Let p be a chosen integer satisfying 1 <  p <  n. Given a n n x p  starting m atrix 

Qo w ith  orthonormal columns, a sequence of matrices {Q * }  € Cnxp is generated 

as follows:

For k — 1,2,

=  A lkQh- i  (2.14)

QkRk = Zk (QR factorizaton)

where /*, is some integer picked at the kth  step. Note tha t the QR factorization 

is applied to Z*, a n n x p  m atrix, which is not expensive when p is small enough.

Recall tha t the subspace G *U  converges i f  and only i f  the starting vectors 

u \,u 2,...Uk are such that P u i,P u 2,...Puk  are linearly independent. When this 

occurs, some of the column vectors may converge to eigenvectors. The conver

gence is guaranteed in the ith  column i f  |p,-+i| >  |p, | upon which the “rate of

16
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inconvergence” w ill be 0  • “Rate o f convergence”  is defined precisely i

Definition 2 p.22 following. The constant in 0  depends greatly on the

degree o f norm ality of G and \fik+i — M*|- The convergence can be quite slow 

i f  the gap between fik+ i and p-k is not sufficiently wide. We illustrate this more 

precisely in  the following w ith  results from  Golub and Van Loan [14].

F irs t we need a framework which describes the sensitivity o f invariant sub

spaces of a m atrix. I t  should be noted tha t it  is possible for sensitive eigenvectors 

(eigenvectors unstable under m ild  perturbations of the m atrix), to span a sub

space insensitive to  m ild  perturbations! (see Golub [14] p .199 ff.) To analyze 

the behavior of orthogonal iteration, we use the classical Schur decomposition 

[1 0 ] which is proved by induction:

T he o re m  4 (S ch u r D e co m p o s itio n ) I f  A  E CnXn then there exists a unitary 

Q E CnXn such

Qh AQ =  T  =  D  +  N

where D  =  d iag (\i, A2 , . . .  An) and N  E Cnxn is stric tly  upper triangular. Fur

thermore, Q can be chosen so that the eigenvalues A,- appear in  any order along 

the diagonal.

Suppose that

Qh AQ =  T  =  diag(At-) +  N , |Ai| >  |A2| >  . . .  >  |An| (2.15) 

is a Schur decomposition of A E Cnxn and partition  Q, T , and N  as follows:

T 11 T 12

t =  0 r 22

P n - p

Q =
[Qoti Qp]
p n — p

p

n — p (2.16)

N  =

N u  N n  

0  N 22

p n — p

P

n — p

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I f  |AP| >  |Ap+i|,  then the subspace D P(A) defined by

DP{A) =  R (Q a)

is a dominant invariant subspace. I t  is the unique invariant subspace associated 

w ith  the eigenvalues A * , A p. The following theorem shows tha t w ith  reasonable 

assumptions, the subspaces R(Qk) generated by (2.14 ) converge to  D P(A) at a 

rate proportional to |Ap+1 /Ap|fc. F irst, a defin ition is needed:

D efinition 2 Let | • ||f denote the Frobenius norm defined by

1/2

\M f =  E E k - l
>=i ,-=i

where A  G Cmxn. We define the separation between two square matrices A  and 

B  by
t i  n , . \ \A X - X B \ \ f 

M A , B )  =  mm  W r

fo r a ll compatible X  and define for subspaces Si and S2 the distance to be

dist(P,Q) =  17Ti -  tt2 J2 (2.17)

where n,• is the orthogonal projection on 5,-.

sep(i4,B) describes the relative distance between A  and B  modulo sim ilarity 

transformations which, in effect, describes a distance between p{A) and p(B) 

[14]. I t  estimates the smallest singular value of the transformation

X  -y A X  -  X B .

T heorem  5 Let the Schur decompositon of A  £  C nx* be given by (2.16) and 

(2.17). Assume that |AP| >  |Ap+i| and that 0 >  0 satisfies

( l  +  0) \ \ r \ > \ N t r .

18
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I f  Qo E  C nxp has orthonormal columns and

d =  dist[Dp(AH),R {Q 0)] <  1,

then the matrices Qk generated by 1.15 satisfy 

dist[£>p(i4),J2(Q*)] <

( 1  +  0
n-2

1 + \ \ T n \ \

sep (T ii,T 22)

When 6 is large enough, the theorem essentially shows that

dist[Dp(ji) , JZ(Qfc)] <  c|Ap+1/A,

where d depends on sep(Tn, T22) and A's departure from  normality. The con

vergence can be very slow if  the gap between |AP| and |Ap+i|  is not sufficiently 

wide. However, i t  can be seen from the above that w ith  a poorly conditioned set 

of eigenvectors w ith  only moderate eigenvalue separation an invariant subspace 

may s till show up.

2.1.1 Remarks on Methods Based upon  
Resolving Eigenspaces

As has been shown by Parlett and Poole [26], the subspace iterations accom

plished by most of the methods tried in chapter 5, including simultaneous iter

ations and the QR iteration, are the same in one im portant aspect:

•  The sequences of subspaces generated by these methods are the same, dif

fering only in  the basis in  which they are represented.

Of course the basis representation is very im portant in the numerical com

putations w ith  the goal being to avoid the tendency toward ill-conditioning that 

a prim itive  power iteration produces by forcing every starting vector not w ith in

19
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a subdominant eigenspace toward the most dominant eigenvectors. Moreover, 

the QR approach to simultaneous iteration converges quadratically for smaller 

eigenvectors when combined w ith  shifts.[25]

As w ith  the transformation (2.9), the effectiveness o f the more general ex

trapolations w ill be dependent on both (1) the convergence of approximating 

subspaces to the dominant subspace and (2) the stab ility  o f the projected eigen

value or error/residual equation.

The extrapolations used so far w ill not be effective for m a trix  iterations w ith  

a large number of equimodular (but not equal) eigenvalues unless an inordinately 

large number of simultaneous iterates are taken. When all are equimodular, 

subspace convergence, i f  it  takes place at all, is usually too slow to allow for 

an effective extrapolation [26], When there are a large number o f equimodular 

eigenvalues, we w ill reduce expenses by relying on a projection technique that 

depends upon subspace convergence. I t  should be noted in closing tha t this ap

proach is necessary because solving the complete eigenelement problem is often 

a hazardous undertaking. For example, when a m atrix  is derogatory, i.e. has ei

genvalues w ithout un it geometric m ultip licity, companion m atrix  decomposition 

is inadvisable. Similarly, Jordan decomposition is a formidable step beyond the 

real Schur decomposition that makes it  impractical in  numerical analysis. For 

details see Golub and Van Loan [14].

2.2 P roducing  an E x tra p o la tio n  M e th o d  from  
the  S im ultaneous Ite ra tio n  Technique

Consider a m atrix  iteration x ,-+ 1  =  +  k where G is n  X n and n  is large.

Consider U  =  span{Ax0> A x i,  A x 2, ...Axr}  and the subspace iteration 

GnU, n =  1,2,3,.... Recall Lusternik’s method: Let Ps denote a projection into 

a subspace S. I f  there is a single dominant eigenvalue A w ith  associated eigen-

20
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space M , then PmU+1 =  ^PmU and hence P \ { X k  =  ^ >Af3:* + 1— j n 0 th er
JL /

words, the extrapolation is (in theory) exact on the dominant eigenspace. In
j    As?!

reality, the quantity ------—- =  y0 is computed and there becomes a concern
J. A

as to the size o f the quantity Qn ^+ i  — ^Q n î where Qn  is the projection onto 

the subdominant eigenspace (J — Pm)C" =  N  parallel to M . There is the pos

s ib ility  of amplifying the component of error in  subdominant eigenspace. This 

amplification may be accceptable, however, i f  the iterative m atrix  has the effect 

of dim inishing error in the subdominant eigenspace relatively fast compared to 

the dominant eigenspace.

Consider now the iterative scheme y,-+i =  Gy,- +  k and associated error e,-+x =  

G‘ e,-, £i =  y i — £oo. In  theory ||Gei| =  ||Q^(G 6,-)||; in  practice, however, there 

w ill always be round-off error that w ill cause the reappearance o f a component 

of error in  the dominant eigenspace. Assume fo r now tha t the round-off error 

in the dominant eigenspace remains negligible (w ith in  a reasonable number of 

iterations). Then the error that is o f most concern in further iterations lies in 

the subdominant eigenspace. Assume that there are separations between the 

largest subdominant eigenvalue and further elements of the spectrum

l/^ll >  N  > M  >  \Pi\ >  -  >

The error iteration e,-+i  =  Ge0 has the form cn \ +  d n \ +  0  ( /4 )v  where c, d  and 

v  are vectors. I t  is assumed tha t c was 0 to machine accuracy, hence the term 

d / 4  w ill dominate the iteration if  there is large enough separation between |//2| 

and |/t3|. I t  is easily seen by the argument sim ilar to  (2.10) that the eigenvalue 

estimates (2.7) and (2.8) w ill approximate /t2 to  0  ^ in the nonhermitian

case and 0  ( ( { g j ) ) 2‘ in the hermitian case when the Rayleigh quotient is used.) 

Consequently, we expect the extrapolation

y i + 1 -  f a V i
w i  =  — z------ ;—

1 -  Mi
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sim ilar to  (2.9), where fa  is the numerical approximation to the second eigen

value, to  have convergence rate close to  0 (/z3) i f  the eigenproblem is stable. 

This corresponds to  the process o f “deflation”  in  the classical power method for 

eigenvalues and eigenvectors of a square m atrix, (see W ilkinson [33]).

I f  the m a trix  G is herm itian and the spectrum of G has the form  |/ix| >  

\fi2\ >  — >  |mn|> the above method extends easily to  simultaneous iteration 

because of the convergence of the orthogonal set of spanning vectors to the 

actual eigenvectors o f G and, consequently, the convergence of the eigenvalues 

which can be calculated by various ratios, including those described earlier. 

(Rayleigh quotient and the I method). To implement the extrapolation, we 

notice tha t the iterated polynomial

(G — Mn)(G — f in- i) - - (G  — fii)eo (2.18)

has the effect of taking out successive error components in the spans of the 

eigenspaces associated w ith  the eigenvalues 2,/Lt3, There is in  theory

no specific order in  which the factors may be applied since G obviously commutes 

w ith  itself; however, in practice it  seems more stable to  use the order given above. 

The extrapolation then has the form

-  - f f  '">
n

where p(fa =  [ I  (m — Pi) and use has been made of the fact that e,+i =  Ge,.
«=o

Again i t  must be noted tha t the extrapolation is not exact on subdominant 

subspaces and, as can be seen from (2.6) and (2.9) an amplification of the error 

can happen there unless the eigenvalues are tigh tly  clustered. This amplification, 

when controlled, is often only temporary and may even be beneficial in producing 

eigenvalue estimates for further extrapolations. Figure 2 . 1  on the next page is 

a suggested algorithm  for eigenvalue extrapolation.
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Figure 2.1: A lgorithm  for Selective Eigenvalue Extrapolation

1. Generate a number of terms of the base sequence

•En+l j x n + 2 " - x n + k

2 . Perform subspace iteration w ith  number of iterates.

3. I f  there is no convergence, exit or go to larger basis and return 

to step 1 .

4. I f  there is convergence, detemine eigenvalues and extrapolate 

using

pfG)
V i— p [I}  Xn+* * — 0 ,1 ,2 ,....

23
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I t  may be advantageous to  apply a further extrapolation to  the sequence. In 

fact, to  minimize computations the same polynomial may be used, especially if 

i t  in it ia lly  gave a good drop in  the norms of the residuals | | ( I— G )xi — fc|| =  fl Ax,-|| 

and i t  has certain properties which w ill now be described . Consider p(G)e„. 

p(G) has the same invariant subspaces as G w ith  corresponding eigenvalues, 

p (fii), i  =  1,2, ...n <  N . I f  the error p(G)e„ s t ill has its dominant component 

in  the dominant invariant eigenspace associated w ith  the base sequence, then it  

is appropriate to consider p(G)p(G)en. The transformation now has the form

=  p(G)2x „+t- t =  0 , 1 , 2 ,.... (2 .2 0 )

Schematically, we have

xn 

xn+i 

X n + 2

X n + k   ► I/O

I " +W‘ V‘  (2 .2 1 )
X n + k + 2   *■ V 2

X n + k + 3   ► 2/3

x n + 2  Jfc -> 2I k  --* W o

x n + 2 k + l  *■ V k + 1  -----------^1

X n + 2 k + 2   > V k + 2  ------* w 2

Note that each vector in the second column is composed of a “window” 

average of k +  1 (fixed) vectors in the previous column. This corresponds to a
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summability method w ith  a m atrix  of fixed bandwidth. The polynomial p can 

be used as long as i t  is effective and enough storage exists to hold r ( k + 1 ) vectors 

where r  is the number o f columns in the schematic. I f  there is a A; such that 

to =  p(G )fcen has a dominant error component in  a subdominant eigenspace, it  

is time to compute a new polynomial r(G ) and consider (r(G ))*f0, I  =  1 , 2 ,.... 

The polynomial w ill likely be of different degree since we are working w ith  a 

different subspace. In  practice, there is no way to check the actual error; the 

residuals or some other approximate error measure is used instead. A  general 

form of these eigenvalue type extrapolations has the form

=  II (Pt(G) ) fc,In+i- (2 .2 2 )
i

2.3 E x tra p o la tio n  w ith  P ro jec tion  M ethods

2.3.1 Introduction

The invariance of dominant eigenspaces leads to the idea of using projection 

techniques. The basic idea behind projection methods is to approximate the 

solution to a “ large” dimension problem by solving a lower dimensional problem. 

Consider the example of the representation of a transformation G w ith  respect 

to a decompositon M j 0  M 2 € CN where M i =  M  is the approximate dominant 

eigenspace and M 2 is some orthogonal complement of M  chosen, if  i t  can be 

done to make the projection problem well conditioned. Let m i =  d im M  and 

m 2 =  dimAf2. Then m i +  m 2 =  N  and the transformation G may be w ritten 

w ith  respect to the ordered decomposition M i  0  M 2 as

G n G 12 

G2i G22

Here G,y (*,jT =  1,2) is an m,- x my m atrix  that represents the transformation 

■P|G|jvf;- : M j —> M i where P, is the projector on M i along Ms-,-. Note that

25
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Pi +  P i =  I .  In  particular, a projection on Af; along Af2 has the form

\ I  X
(2.24)

0  0

and a projection o f M 2 along M \ has the form

0 Y '

°  I

I f  the space M i =  M  is invariant, the m a trix  (2.23) has the form

(2.25)

(2.26)

I f  the space A f2 is invariant, which w ill be the case i f  M 2 is the orthogonal 

complement o f M ,  the m atrix has the form

and, finally, i f  both M i and M 2 are invariant, the m atrix  has the form

and we see tha t ( /  — G)e,- =  r,- has been decoupled into two problems. This

jections onto eigenspaces along complementary eigenspaces) and w ith  orthogonal 

projections when the subspace being projected upon is G-invariant.

In  simultaneous iteration it  is unlikely, especially w ith  reorthogonalization 

for a nonsymmetric m atrix iteration, tha t the spanning vectors w ill converge 

to  eigenvectors. Consequently, i t  is d ifficu lt to  find accurate eigenvalues to use 

in the extrapolation (2.20). However, a single eigenvalue extrapolation is often 

cheap enough tha t i t  is worth a try , especially in  a large sparse linear iteration 

w ith  a tigh tly  clustered spectrum.
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G 11 0

0 G22

(2.28)

complete decoupling can be accomplished w ith  both spectral projections (pro-

26



Another recourse is to t ry  solving a projected eigenvalue problem. Here the 

eigenproblem is projected onto a subspace and then the projected eigenproblem 

is solved completely. Consider a simultaneous iteration GkU  where U  is a span of 

column vectors. Usually U  w ill have dimension n  much smaller than N  =  order 

(G). Often i t  consists of spans of successive m atrix  iterates or some algebraic 

combination of them, making i t  a Krylov type method. Consider a m a trix  irn of 

orthogonal projection o f Cn onto U  so that we have a low dimension problem

find values //„  and 6n ^ 0  € G kU

such tha t (2.29)

* n{GOn -  fxn0n) =  0.

In  terms of actual matrices in  the hermitian case, this is accomplished by picking 

an orthonormal basis B  o f GkU  forming a m atrix  Pn, whose columns are the 

elements of the basis, and then solving

{P ?G P k - n P ? P k) t n = 0 .  (2.30)

The m atrix  Pj^GPi is o f “small”  dimension k x  k which makes the solution 

o f (2.25) computationally practical. A  th ird  recourse to  be explored is the 

projection of the residual equation

7rn( ( J -  G)e, -  n)

upon some subspace.

2.3.2 Avoiding Amplification by the 
Incorporation of Eigenvectors

First, projections w ill be accomplished w ith a direct incorporation o f approxi

mate eigenvectors. Consider the iteration x,+i =  Gx{ +  k where G is square. 

Suppose tha t G is nondefective and that an approximate eigenvalue f i and ei

genvector 0 have been found. The calculation of the approximate eigenvectors
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is often a necessary part o f the method, such as in the simultaneous iteration 

methods and the ir projected versions. They may also be obtained at a reason

able cost by extensions of various methods such as a projected version of the 

well known QR  algorithm  or Stewart’s algorithm [31] where the eigenvectors are 

computed by the method of shifted iteration or shifted inverse iteration [14].

Let M =  span {0 }. Assuming the invariance o f M ,  an approximation to

is given by the — -— , which can be regarded as a single element 
1  — n

m atrix  w ith  respect to the basis {0 }. Let r,- =  ( /  — G)x,- — k and e,- =  x,- — 

where =  G z *  +  k. Then e* =  ( I  — G)_1r,-. When the m atrix is Herm itian, 

in which case the subdominant eigenspace is M 1 , the residual is projected onto 

M  by using the orthogonal m atrix  projection associated w ith  the normalized 

0, namely the m atrix  60H. W rite r,- =  00^ r ,  +  m  where m £ M 1 . Then 

e,- =  (r,-0H)0 /(  1 — fi) +  ( I  — G)~l m  or

Zoo =  Xi +  ^  -  +  ( I  -  G)~l m. (2.31)
1 — f i

The iteration ( I  — G) _ 1  =  m  w ill not necessarily have a faster asymp

to tic rate o f convergence than the iteration x,-+ l =  Gx, +  k, but if  G is close 

to a Herm itian m atrix , i t  can be expected to  have a reasonable improvement 

in convergence rate, at least for a while. W ithout considering the accuracy of 

the eigenvalue, the expression (2.31) is accurate to 0 (||(J  — 00ff)x||) where x  

is the actual dominant eigenvector o f G (Chatelin [1 0 ] p.53). The expression 

( /  — G )-1m must be evaluated. One of the many possible approximations is the 

partia l sums of a series solution to (I  — G)_1m w ith , perhaps, further extrapo

lations performed on it.

Now a generalization of (2.31) w ill be presented for hermitian matrices. Sup

pose tha t a k-vector simultaneous iteration has been performed to produce ap

proximate eigenvalues to exact eigenvalues /x1 ,/x2 , / i3 , .../xfc, and
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appropriate approximate normalized eigenvectors

0in),02n),03n),"-0 ln) (2.32)

to exact normalized eigenvectors 9i, 02,9s, .-9k- I t  is known tha t the herm itian 

property o f the m atrix  and a separation in the spectrum |^*| >  |/in+ i| are suffi

cient conditions to get this convergence. Let M =span Decompose

the residual into approximant dominant and subdominant eigenspace compo

nents:

k
r n — ^2  9i0?rn +  m m eM x . (2.33)

« = i

then, sim ilar to (1.26)

goo =  xn +  1  - f l f  rn +  ( /  -  G )-1m  (2.34)

As before the actual extrapolation results from  making an approximation to 

( I  — G )- 1m. Let An(G) be an approximation to ( I  — G ) - 1  which depends on 

the iteration. Then a sequence transform is

yn =  xn +  Y ,  T ~ — +  A n{G)m  (2.35)
-  m  '

A sim ilar transform may be applied to the sequence yn in (2.35) to produce a 

multilevel transform sim ilar to (2 .2 1 ).

When the m atrix G is nonhermitian and is not close to a herm itian m atrix, 

a different approach is needed.

Let v  be the number o f vectors in the orthogonal iteration and consider the 

projected problem

{Q?GQv -p iQ Hv Qv) r i=  0 (2.36)

formed from  a sim ilarity transformation by the n x v  m atrix  Qv whose columns 

are the orthonoralized vectors for the iteration. This problem is to be solved
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completely. In  general, eigenvalue methods for determining the eigenvalues of 

a general nonsymmetric m atrix  cost 0 (m3) floating point operations (flops) 

where m  is the order o f the m atrix. To solve for additional selected eigenvectors 

(generally by the method of inverse iteration) requires 0  (m2) flops per eigen

vector. I f  the Jordan structure of the m atrix  is not easily discernable, which 

sometimes happens w ith  matrices o f large defect, i t  may become impractical 

to determine the eigenvectors and generalized eigenvectors. In this extreme, 

eigenvalue extrapolations become impractical; however, a dominant eigenspace 

may be revealed upon which to project the error/residual equation. Some de

tails, mostly theoretical, for establishing a projection w ill be summarized here. 

We also summarize some well known methods in which the projections o f the 

matrices are represented in  convenient m a trix  forms (such as the Lanzcos tr id i-  

agonalization). We give another related formulation, in the form of the “M PE” 

method, o f effectively establishing a projection onto an approximant dominant 

eigenspace in the next chapter. Here, as before, we force the residual o f the ex

trapolation to be orthogonal to a subspace, but in this situation a linear variety 

( a translate of a subspace) is considered directly and the actual subspace is 

determined indirectly. This formulation turns out to  be the most stable o f the 

projection accelerations on the moderate size vector sequences of chapter 5.

Suppose tha t a dominant eigenspace M  has emerged during the course of an 

iteration x , +1  =  Gx,- +  k. I t  is desirable to  construct a well conditioned basis B  

for M .  To accomplish this, i t  may be necesssary to factor the m atrix consisting 

of the columns of simultaneous iterates into a product o f an orthogonal m atrix  

Q and a m atrix

0

where Rx is upper triangular. Common methods for this are Householder or

thogonalization and the modified Gram-Schmidt methods. As an added bonus
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the Householder method also provides a basis for the orthogonal complement 

M x. (See Golub and Van Loan [14] for details). Now the problem

( I - G ) e i =  ri (2.37)

is to  be projected onto M .  Suppose tha t a well conditioned basis B' has been 

picked to represent Gn. The basis B' can be orthonormalized cost effectively 

to  a basis B for small dimension dominant invariant subspaces. The projected 

m atrix  problem is find e,- £  X , =  span B such that

7r ,( ( /  -  G)e,- -  f i)  =  0 (2.38)

where 7r* is the orthogonal projection onto X ,=  span B. The actual m atrix 

problem is formulated by picking a m atrix  o f orthogonal projection onto B, 

namely wn =  QQH where the columns of Q (or the rows of QH) are the elements 

of B. Applying to (2.37) and invoking linear independence of the elements of B 

leads to  the system

QH{ { I -G )Q rU - Q Hri) =  0. (2.39)

Let B =  QH(I  — G)Q and f,- =  QHu so tha t the system (2.39) is expressed 

as Brii =  f i.  We then have tha t e,- =  Qrji is the approximation to 6 j from  the 

subspace X,-. An extrapolation then is formed from

Xoo ~  Vi =  %i ~  €«■ (2.40)

which is exact on the dominant invariant subspace. Further extrapolations take 

the form

®oo «  Vj =  Xj +  G,_ ,et-. (2.41)

The relation (2.39) is not exact on subdominant invariant subspaces and ampli

fications of error may result there.

The inverse computed in (2.39) could also be reused to  produce an extrapo

lation
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Vi =  Xj +  Q (B ) 1QHrj . (2.42)

There are many variations o f the extrapolations (2.41) and (2.42) above. For

instance, in (2.42) the extrapolation may proceed in the fo rm  described or at

some point, a new extrapolation

v>i -  Vi +  Q{B)~1QHsj  (2.43)

where Sj =  k — ( I  — G)y}-.

Schematically, the extrapolation can be represented by the following:

Xi — > Vi — ► tVi

x i + l  *■ J/i+1 ► Wi+1

x i+2 Vi+2 * W i+ 2

x i + 3 ------------► Vi+ 3 --------* W i+ 3

In  contrast to scheme (2 .2 1 ), this extrapolation needs only a certain number of 

“ startup”  iterates upon which it  may proceed along any path in  the schematic.

2.3.3 On Approximate Eigenelements from 
Projections

As was done in the presence o f a simple eigenvalue/eigenvector pair, the ef

fectiveness o f extrapolations based on more elaborate spectral approximations 

w ith  and w ithout the use o f projection techniques can be deduced form  pertur

bation and truncation error results which are well known. Perturbation results 

describe the sensitivity of the eigenvalue problem or error/residual equation to 

natural machine errors and are generally dependent on the conditioning of the 

eigensystem and the geometric and algebraic m ultiplicities o f the eigenvalues.
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I t  was shown by Golub and Wilkinson in [15] tha t small geometric w ith  large 

algebraic m ultip licities can cause severe problems which makes the computation 

of the Jordan canonical form  (or other canonical forms) an impractical proce

dure in general. Truncation error results are im portant because of the realities 

of computation: Numerical methods for eigenelements tend to  be iterative pro

cesses which must be stopped by some criteria. In  the case o f the QR  algorithm, 

for example, it  is by the closeness of the iterative m a trix  to  an upper diagonal 

m atrix. In  general, we expect the extrapolation to  be stable i f  the associated 

eigenproblem or error/residual equation is stable and the accuracy is o f the same 

order as those given by the truncation error results for the associated problem.

The following theorems from [10] describe the relationship between eigen

values o f projected problems and the eigenvalues themselves in terms of the 

closeness o f the in itia l subspace U. By irn we mean the orthogonal projection 

onto U.

T he o re m  6  Let P  be the spectral projection upon a dominant invariant eigen

space o f dimension r  and suppose that the r  vectors {P x ,} ,= i>r are independent. 

Then fo r any eigenvector 0 of G there exists a particular UidJ such that Put =  0,- 

and

l ( / -».)*(!« <IA-«<I» +

where en —> 0  as n  —> oo.

I f  G is Herm itian, ||0,- — u,]^ =  tan©,- where ©,- the acute angle between 0, 

and u,-. Consider the subspace Xk =  GkU  and the eigenproblem

Gty(«) -  pM(f>W±Xk.

i.e. the problem has been projected orthogonally in to Xk. Let P* be a projection 

onto an orthonormal basis of Xk and pick such tha t <f>^ — Pk(k- Then &
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is a solution of

P ?{G P k - n W p k) t k =  0.

In  other words, { & }  and pW  are eigenvalues and eigenvectors of the m atrix 

Pj*GPic. As k —*■ oo, Pj^GPk —> P h G P  where P HG P  is the restriction o f G 

to M  expressed in terms of a basis of the dominant eigenspace. Hence the *th 

eigenpair <£,- (̂1 <  * <  r) converges to (1 <  t <  r ) . The follow

ing theorem is relevant to convergence and rate of convergence o f the Galerkin 

method. In  particular, we state a theorem sim ilar to theorem 4 for the eigen

value/eigenvector via a projected m atrix  iteration.

T he o re m  7 (C h a te lin -S a a d  [10 ]) I f  the vectors P x i, 1 <  i  <  r, are inde

pendent and \pr \ >  |fir+ 1 1> the method o f orthogonal iteration is convergent. If, 

moreover, the ith  dominant eigenvalue is simple, the rate of convergence of the 

ith  eigenpair is o f the order \pr+i / p r \, fo r i  =  1,2, . . . , r .  I f  A  is hermitian, the 

rate o f convergence is squared to \pr+i / p r \2.

As before, subspace convergence, not necessarily simple eigenspace conver

gence, is being described here. Spectral decompositions of matrices are in general 

more expensive than L-U  decompositions, so for eigenvector/eigenvalue extrap

olations to be more useful than error/residual extrapolations, the size of the 

subspace for the projection should be small or the extrapolations reiterated be

fore recomputing.

2.4 Extensions to  Lanczos typ e  m ethods

Assume tha t G is herm itian o f order N . Up to now, fixed subspaces of the form 

GnU  where U  is a subspace spanned by an in itia l set of column vectors has 

been considered. The dimension o f the subspaces GnU  are fixed and equal to 

the dimension o f U. In  the generalized Lanczos idea, an increasing sequence of
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subspace, X n =  span {U ,G U , ...,G n~l U }, n  =  1,2,3, ...,v  <  N ,  is considered for 

projecting the m atrix  G  onto.

Consider firs t a single vector x  and X n — span {x ,G x ,.. . ,G n~1x }  for n  =

l,2 , . . . ,v  <  N . The Lanczos algorithm is an iterative method for representing 

the orthogonal projection onto X n o f G\x„ in  terms of a tridiagonal m a trix  w ith  

respect to an orthonormal basis. In  N  iterations then, the m atrix  G would be 

tridiagonalized. Generally the Lanczos methods have a problem w ith  numeri

cal round-off, so often the Householder method in used in  conjunction w ith  the 

Lanczos method to reorthogonalize the basis in  case o f a loss of orthogonality. 

For purposes here, however, the method w ill be used w ith  a small number of 

steps for projection extrapolations. In  particular, the estimated eigenvalues can 

be found by applying one of several well known algorithms to the herm itian 

tridiagonal m atrix. These include the method of bisection, the quotient differ

ence algorithm  and the symmetric QR  algorithm. For purposes of extrapolation 

the Lanczos method is useful in estimating a number no o f the larger eigenvalues 

o f G.

A  brie f summary of the idea behind the Lanczos method and the accuracy o f 

the approximations for the eigenelements and solution o f linear systems obtained 

after n <  N  steps w ill now be given. This method is used for a small number of 

steps because of strong sensitivity to a gradual accumulation of round off error 

tha t results in a loss o f orthogonality. Its most attractive feature here is its 

iterative means for computing an orthogonal projection o f G onto the increasing 

sequence of K ry lov subspaces X n =  {x ,G x ,G 2x ,...,G nx } .  I f  at any stage it  is 

decided th a t the subspace X n is large enough for some u =  n0 <  N , a switch 

may be made to  a fixed size subspace iteration. Figure 2 . 2  on the next page has 

a sequence transfrom version of the Lanczos method.

F irst, we treat convergence of eigenelements. The convergence of the eigen

values depends, not surprizingly, on the choice of the starting Krylov vector x.
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Figure 2.2: Lanczos Method

1. Generate a subspace X ^  =  {x , Gx, G2x , . . . ,  GMx }  f i <  N  — 1.

2. Set v i =  a:/||a:||2, a i =  v^G v i,  6 i  =  0,

3. for j  =  1 ,2 , . . . ,  n <  n  — 1, do

Xjf+x =  Gvj  — dj — bjVj - i ,  fcy+i =  135j + 112?

Vy+1 =  Xy+ 1 / f x y + i | 2, ffly+1 =  vf+1Gvy+ 1 .

3a. (Polynomial Acceleration) Determine the eigenelements o f the 

m atrix  TM w ith  diagonal elements a,-, t =  1 , . . .  ,/z and off- 

diagonal elements 6 j, i  =  2 , . . . ,  n. Use 2.19 or 2.31.

3b. (E rror Equation Acceleration) Solve the projected problem

( I - T ll)V =  QHr i 

and update using x x =  x 0 +  Qtj.
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The Lanczos process itself amounts to an approximation of the eigenelements of 

a, k x k m atrix  w ith  respect to  an orthonormal basis A ' representing A\e where 

E  is the subspace spanned by (0^x)$ i for t =  1, A: and 0, is the tth  normalized ith  

eigenvector of G. The eigenelements of G' are simple because of the tridiagonal 

nature o f the construction [10]. The following theorem is adapted from  [29].

T h e o re m  8  I f  {0?x)0i ^  0 then 0  <  //, -  <  k/3fn and ||0,- — 0,-"̂  ||2 <  k(3in

where 0,-" ,̂ is the ith  simple eigenvector, eigenvalue of A ', k is a constant 

and

K i
Pin =  tan(0 ,-, x)

I1 + 2; S £ : )

K i =
1  i  =  1

ni - l  Mj-fimin 1
;= l 1 >  1

and Pi is the ith  Chebychev polynomial on [—1,1].

From the previous theorem it  can be seen that the eigenelement bounds may 

be weakened in  the case of tig h tly  clustered eigenvalues. One way to get around 

this in the case of herm itian m atrix  iterations is the block-Lanczos technique 

which w ill now be described.

In  the Block Lanczos technique an in itia l subspace U  spanned by k orthog

onal vectors x i , x 2,x 3, x4, ...x^ replace x in the Lanczos algorithm. Hence an 

increasing sequence of subspaces

X lt =  {U ,A U 1...A'*U}

is considered in analogy w ith  the Kyrlov subspace {x , A x , A vx }  o f the Lanc

zos method. The block-Lanczos technique iteratively produces a projecton of G
□

onto Xu in the form of a block triangular m atrix w ith  respect to an orthonor

mal basis which spans X^. The difference is that the orthonormal matrices are 

now produced in blocks as opposed to individually as in the Lanczos method.
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The block-Lanczos method has an advantage over the unblocked version in 

the situation when repeated eigenvalues arise, in  which case Lanczos would have 

convergence problems. This is analogous to what happens w ith  respect to single 

vector and simultaneous iteration. The algorithm  is quite sim ilar to  the Lanczos 

algorithm  (see figure 2.3 next page). We do not worry here about the situation in  

which an exact invariant subspace is computed, since this is unlikely when these 

techniques are used as extrapolators and the m aterial is adequately covered in 

[14] and [10]. The convergence rates of the block Lanczos method are derived 

sim ilar to those o f the Lanczos method.

T he o re m  9 (U n d e rw o o d  [14]) Let A  be a n n x n  real symmetric matrix with 

eigenvalues Ai >  A2 , >  . . . , >  A„ and corresponding orthonormal eigenvectors

91, 02, . . . ,  6n. Let p i >  f i2 > , . . . ,  >  fip be the p largest eigenvalues of the matrix 

T j obtained after j  steps of the block Lanzcos iteration. I f  Z \ =  [z i,z2, . . .  ,zp\ 

and cos(^p) =  op( Z lX i )  >  0 , then fo r k =  1 , . . .  ,p

h > P k > h ~  e2k (2.45)

where
2 _  (^ i ~  ^ k) tan(0p) _ Ak — Ap + 1

M ^ ) f  A‘ “ A"
and Py_i(z) is the (j  — l) s f  Chebychev polynomial.

Careful examination of theorem 8  and theorem 9, especially the constants 

<7 k above reveals the superior convergence of the block method when there are 

clustered eigenvalues. In  particular the following results follow [14]:

a. the amount of work required to compute T j is proportional to  p2; and

b. the overhead associated w ith  a Lanczos step from  T j to T J+i does not 

increase much w ith  increased p.
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Figure 2.3: Block Lanczos Method

1. Generate a subspace X M — {U ,G U ,G2 U , . . . , G*1}  /j, <  N  — 1 

from  a starting orthonormal set U =  { x i , x 2, . . . x r}  r  <C N . 

Let Qo be the N  x r  m atrix  (x, x2, . . . ,  xr ).

2 . Set A i=  Qo GQ0; B i=  0 .

H
3. For j  =  1 ,2 , . . .  ,n  -  1  do D j =  G Q j- i -  Q j-x  Gy -Q y - 2  By ;

perform the orthonormalization o f By, By =  Q jR j, where By is
□ □

an f i x  n  regular triangular m atrix; and set B y + i=  By, G y + i=  

Q fG Q j.

3a. (Polynomial Acceleration) Determine the eigenelements o f the
□ □ 

m atrix  w ith  diagonal blocks Ai, i =  1 , . . .  , f i  and off- diag-
□

onal blocks B,-, i  =  2 , . . . ,  n. Use 2.19 or 2.31.

3b. (E rro r Equation Acceleration) Solve the projected problem

( I - T ll)V =  QHri 

and update using Xi =  x 0 +  Qr\.
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Figure 2.4: A rnold i Method

1 . Generate a subspace X ^ =  {x , Gx, G2x , . . . ,  G**} ft <  N  — 1.

2. Set v i =  a:/la:l2 , h u  =  v iG v i, h2i  =  0,

3. for j  =  1 ,2 , . . . ,  f i <  n  — 1, do

-Ej+l = G V j  — 2i=x h i]*)]j h j + l j  =  I2 i

V j +1 =  x j+1/ \ x j+1l2, h i i i + 1 =  vf+1Gvj+1 for i < j  +  1..

3a. (Polynomial Acceleration) Determine the eigenelements of the 

upper-hessenberg m atrix H Use 2.19 or 2.31.

3b. (E rror Equation Acceleration) Solve the projected problem

(I - H ft)V =  QHr i 

and update using x \ =  x0 +  Qt/.

Use w ith  the extrapolation is summarized in table 2.3.

Generalizing the Lanczos method to  non-hermition matrices leads to  the 

A rno ld i algorithm. Like the Lanczos algorithm  , the A rno ld i method realizes a 

projection of G onto the Krylov subspace X n =  {x ,G x ,.. . ,G n~1x }  in which G 

is represented by an upper hessenberg m atrix H n =  (h,; ), h ij =  0  * >  j  +  1 , 

w ith  respect to  an orthonormal basis {g,}"=1. As in  the Lanczos method, the 

basis {<7i}"=1 and m atrix  I I n are computed iteratively. Again, we do not worry 

about small degree m inim al polynomials because the ir existence is unlikely. The 

algorithm  for the A rno ld i method is given in figure 1.4.

Complete analysis of the rate of convergence of the A rnold i method is a diffi-
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cult problem in complex approximation theory and the theory is not as complete

as for the Lanczos and block Lanczos methods. The degree of convergence of

the eigenelements o f the orthogonal projection Gn o f a nonhermitian m atrix

G, which the Arnold i algorithm  realizes, can be bounded by the constant cef1̂

where =  m in max|p(/x,)| when the problem is not too i l l  condi- 
pep„-1. P(w)=i i #  3

tioned. (See Chatelin [10]). A  block Arnoldi method is also possible for the case 

when the eigenvalues o f G are clustered much in  the same way the block Lanc

zos method was used to resolve tigh tly  clustered eigenvalues for the Herm itian 

m atrix  iterations.

To understand when the Arnoldi method w ill be effective, let 7r„ be the 

orthogonal projection onto X n =  {x ,G x , ...Gkx } .  Such a projection is formed 

im p lic itly  by the A rno ld i method. The problem

7rn(J -  G )xn =  Tfnk (2.47)

is solved for xneXn. Let A  =  I  — G and x<*, =  A ~ l k. To bound the error x n — x ^ ,  

note tha t xn — (7rnA |x „ )_1 7rn& and x ^  =  iTnX^ +  ( I  -  ir^Xoo- Hence,

•Efi Zoo [ K 4 X-J ^r»A TTn [ I  7Tn)j %oo

=  [ ( ^ n A . | X n )  7Tn A  ( /  7Tn ) ( /  7Tr»)j - ^ o o

=  [ ( ( 7 T f iA | x n ) - 1  7Tn A  — / ) ( /  — 7 T „) j X o o

Hence,

|Zn -Zoo ||2 <  WHTTnAlxJ^TrnA ~  I )\\2 dist (Xoo,Xn) (2.48)

where dist ( x ^ X * )  =  m in |x  -  x ^ .  I f  ||7rn(A |x n) “ 1 7rnA ||2 <  M , which says
ZCsCn

roughly that 7r„A  should not differ greatly from 7r„Ann, then

flzn -  Z00I 2 <  (1 +  M )  dist (xoo,X„). (2.49)

An advantage of the Lanczos and Arnoldi methods for extrapolations is the 

convenient form in which the m atrix projections are represented. This leads to
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highly efficient LU  decompositions for solving the projected linear systems. For 

all methods, the projections are used in a very incomplete form -the order o f X n 

does not get close to the order o f the system.

In  summary, the projections all have the form

H nxn =  ( Q Z ( I - G ) Q n)x n =  Q%k

or

(H n -  f i)x n =  (Q%(G -  n)Q n)xn =  0

where H n is tridiagonal (upper Hessenberg) in the Lanczos (Arnoldi) case. In  the 

blocked versions the matrices are blocked. When a system is solved, an appro

priate lower upper L U -type or iterative method is used which takes advantage 

of the special forms. The situation is sim ilar for the eigenelement extrapola

tions. For more details of the Lanczos methods for linear symmetric systems see 

Golub and Van Loan [14] where it  is also shown that the Lanczos method for 

a symmteric positive definite system is equivalent to the well known conjugate 

gradient technique. This algorithm requires a m atrix  m ultip lication and 5n flops 

per iteration, which makes it  highly efficient. The A rnold i algorithm, w ith  its 

greater range of application, w ill cost more storage and flops.

The methods considered so far were all orthogonal projection methods. When 

( I  — G) or (G — f i l ) is nonhermitian, non-orthogonal (or oblique) projections 

can be considered as well. The problems can be presented in an abstract setting 

as follows. Given two sequences of subspaces X n and Yn w ith  d im X „ =  dimY„ 

approximate the problems by

1. F ind n  G C, where 0 ^  <j>n G X n such tha t

G<f>n — nn<f)n is orthogonal to  Yn (2.50)

or
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2. F ind e„ G C, where 0 ^  e„ G X n such that

( I  — G)en — rn is orthogonal to  Yn. (2.51)

A classic example o f an oblique projection method is the incomplete biorthog- 

onalization method o f Lanczos. In this method, given i  and y such tha t xHy =  0, 

the subspaces used are X n — { x , B x , . . .  B n~l x }  and Yn =  {y , B Hy , . . .  (B ^ )n-1y} 

where B  =  G or B  =  (I —G). Matrices generated are tridiagonal in th is case and 

a projection can be accomplished in  an iterative scheme sim ilar to the Lanczos 

method.

To understand the m atrix  problem for oblique projections, let QnQ „ be the 

m atrix  of orthogonal projection onto X n and PnPn be the m atrix  o f orthogonal 

projection onto yn. Then the m atrix  version of the problem is

Find /z„ G C and 0 ^  £n G Cv such that

PnGQn^n ~ UnP^QkZn =  0. (2.52)

I f  (PnQ n)~ l exists, the problem may be reformulated as

{P^Q n)~xP ” GQni n - n n =  0. (2.53)

Methods for solving the generalized eigenproblem (2.52), including the stan

dard Q Z  algorithm, are described in Golub and Van Loan [14].
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Chapter 3 

Extrapolations Based on 
G eneralized Inverses

To this point, the methods were considered based upon (1) determination of 

eigenelements, (2) determination o f eigenelements of a projected problem upon 

a space spanned by dominant eigenelements or (3) solving a projected residual 

equation on a dominant eigenspace. Approaches (2) and (3) were essentially 

least squares type approaches. In this chapter we are concerned w ith  the m inimal 

polynomial extrapolation technique (MPE) due to  Cabay and Jackson [9] and 

improved by Sidi, Sm ith and Ford [30] which uses a different approach tha t is 

more concerned w ith  the sequence of iterates. When £2 m inim ization is used, 

it  is equivalent to a projection of chapter 2; however, the form  of this method 

makes is much easier to extend to norms other than £2.

3.1 T h e  M P E  M e th o d

Essentially, the M PE technique is a futile  attempt to find an annihilating poly

nomial o f a vector Xq w ith  respect to  the m atrix  G; tha t is, a polynomial p{z) 

such that
r

p{G )x0 =  ^ c . G ’ z 0 =  0, c0 =  1. (3.1)
«=i

In most circumstances, factoring such a polynomial does not in general pro

duce accurate estimates o f the eigenvalues (see W ilkinson [33]). The purpose of
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finding such a polynomial can be illustrated by considering the m atrix  iteration

Xi+ i =  G%i +  k i  =  1,2 (3.2)

w ith  fixed point

(3.3)

Let ~  Xi — Zoo and Ax< =  x<+1 — Xj.

D e fin it io n  3 The annihilating monic polynomial p(z) of G with respect to a 

vector v0, i.e. p(G)v0 =  0, o f smallest degree w ill be called the m inimal polyno

m ial o f G w ith  respect to v0.

I t  is easily shown that the m inimal polynomial is unique.

The following theorem is well known (see for instance Sidi, Smith and Ford

T h e o re m  10 The m inim al polynomial of G with respect to  Ax,- and e, are the 

same.

P ro o f  (I  — G ) e =  A x h e n c e  P(G)Ax< =  0 o  P(G)ei =  0 since G commutes 

w ith  (I  — G) and ( I  — G )-1 . I

In  general m atrix iterations, the vectors Ax,- are known quantities while 

the vectors e,- are unknown. The M PE technique consists of determining the 

coefficients o f p(z) by “solving” the (usually overdetermined) system

and then extrapolating by solving p(G)e0 for xx  (note that Ge,- =  e,+1):

[30]). Since the m atrix iterations considered here are nonsingular, assume that 

zero is not a root of p(z).

p(G) Axq =  0 (3.4)

(3.5)
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where p ( l)  is p(z) evaluated at the scalar value 1. Unfortunately, for the large 

vector iterations found in the numerical examples in  chapter 5 of this disserta

tion, it  is unlikely tha t there is any polynomial p(z) o f reasonably small degree 

such that

p{G) A x 0 =  0. (3.6)

So in keeping w ith  the classical idea o f Lanzcos, Cabay and Jackson recommend 

finding a polynomial o f the form

p(G )A x0 =  S (3.7)

where 6 is some small vector quantity. This is just a linear system

[g *A x 0, G*-1 A x 0, • • ■, A x 0] c =  6 (3.8)

where c are the coefficients of the polynomial. Keep in  m ind tha t the system is 

not necessarily square. In the underdetermined case, this may be accomplished 

by finding

mm ||p(G) A x 0|| (3.9)
peP (r)

where J ■ fl some norm (usually £2) and P(r) is the set o f polynomials w ith  

complex coeficients of degree less than r. Generally r  is not so large as to  make 

the problem impractically expensive. We start w ith  the £2 and the vector of 

coefficients [ l , c i , c 2, ..., cr] w ill be the vector among those that solve (3.7) w ith  

m inimal £2 norm.

Sidi, Smith and Ford solve (3.7) by considering a solution of m inimal £2 norm 

which minimizes

IIGc -  6[| (3.10)

where G =  [A x j, A x 2, ..., A x r], c =  [ci, c2, ...cr]T and 6 =  Axo. Actually any

vector Ax,- for t =  0 ,1 , . . . r  may be isolated as the 6 term  and it  may be

advantageous to minimize

\G d - S \  (3.11)
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where G =  [Axo, Ax,-, ...A xr_ i], c =  [di, d2, ■••,dr ]T and 6 =  — A x r. Since in 

many sequences the la tter terms are smaller and more likely to be sim ilar, this 

approach would tend to avoid rank deficiency in the m atrix  G.

Once the polynomial p(z) is found, the assumption p{G)e =  0 is made and 

the extrapolation is made by solving p(G)e =  0 for x^, to  produce in actuality 

an approximation y, to x«,:

y< =  ^ l X i  =  9 ( G ) x *'- I 3 - 1 2 )
P i1)

Since the extrapolated vectors y,- are linear combinations of the iterates, y,- lies 

in the K rylov subspace {x,-,Gx,-,G2x,-, ...,G rx,-} and one would suspect tha t if  

p(z) is an approximate minimal polynomial for x,- — t =  0 ,1 ,2  then it  also 

be an approximate m inimal polynomial for y,- -X o ,  i  =  0 ,1 ,2 ,... . Hence the 

extrapolation may be reapplied to y< to produce

*  =  k ( G)] Vi =  <t{GY xi (3-13)

Figure 3.1 on the next page describes the extrapolation. Three columns are used 

for sim plicity; however, the actual extrapolation has no such lim itations.

A t any po in t in the iteration, an extrapolant, say 2 *, may be used as a 

starting vector for the iteration

x,+i  — G n  "H A. , xq — (3.15)

I t  has been found that it  is beneficial to do this un til (1) there is an increase 

in some norm o f successive residuals or (2) storage lim ita tions become a factor. 

For further analysis, an explicit representation of the transform (3.11) minimized 

w ith  £2 norm is needed. Let (M  A- 5) denote the m atrix  M  w ith  its zth column 

replaced by S. Solving |Gc — <5|| gives

c 0  =  1

d e t(M 4 -« )  . , x
*  =  4 5 *  , =  1’ -  <3-16>
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Figure 3.1; Repeated Application of MPE

(3.14)

where

M  =

(A z i,A x i)  (A x i, A x 2) ••• ( A x i,A x r)

(A x 2, A x i)  ( A x 2, A x 2) ••• (A x 2, A x r)

(A x r,A x i)  (A x r,A x 2) ••• (A x r,A x r)

and

S =  [(A x l5 A x r+1), ( A x 2, A x r+1) , . . . ,  (A x r , A x r+1)]T. 

Hence in (3.11)

?(*) =  7. =  ^ —  i  =  0 , . . . , k
i = 0 l~>k= lc k
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and

Vi =  ^ In X n + i. (3.18)
n=0

D(xn, Xn+lt • • • i  Xn+r) 
........

where

° \  °2

1*1,1 u l,2 

«2,1 **2,2,

**r,l **r,2

**l,r+ l

**2,r+l

u r , r + 1

(3.19)

where u,,j =  (Arc,-, Axy). Starting at the n th  term  of the sequence, using r 

vectors, the transform  is easily generalized to

V {xn, X n + l i  • • • j  - E f i+ r )
2/n,m,r — (3.20)

where

£>(ai,er2, . . . , o r ) =  det

0\ <72

**m,m

**m +l,ni **m +l,m +l

t tm ,n + r

**m +l,m +r . (3.21)

* * m + r-l,m  * * m + r -l,m + l * * m + r-l,m + r

This interesting determinantal form  turns up again in the next chapter. In fact, 

for certain symmetric matrices U  =  (u, j ) ,  these are just Pade approximants of 

a certain formal power series!

Sidi has done a direct and extensive convergence analysis for a single column 

M PE method applied to the vector sequence { x n}  over a general complex inner

product space B  which has an asymptotic expansion of the form.

00

xn ~  s +  ^ 2  Vi\™ as m  —> oo,
i= i
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where the A,- are scalar quantities and the rest are vector quantities and |Ai| >

IA2 I >  IA3 I >  ... .

The convergence analysis consists o f w riting  the extrapolation in the form  of 

a ra tio  of two determinants

_  D (x nx n+i , . . . ,£ n+r) nn\

0 (1 , 1 . . - l )  (3'22)

and then doing an extensive analysis using the m ultilinearity  of the determinants 

and Hadamard type inequatities on the error

_   D [x n — Zoot^n+ l Xqo, — Xoo) nr,\
~  £>(1, 1, 1, 1) • (3-23)

His analysis showed that MPE is an accelerator where

(3.24)
II Sn,k -  S 1| =  Q [Kf]F«+fcf 1 “  sll

when there is a separation in  the spectrum |A*| >  |Ajt+1|. Also in this paper is 

a stab ility  analysis tha t shows that the coefficients of the semi-iterative method 

produced by MPE have a bounded absolute sum for a fixed value of k as n —> 0 0 . 

That is, the extrapolation sn>k is weighted average of a k +  1 length window of 

sequence values:

and £ } =ot}" ,*) =  1 (3.25)

and “stability” is shown be bounding

k
suP E h i " ,A:) < 0 0 . (3.26)

n  j' = o

This is roughly equivalent to showing one of the regularity conditions in the

Toeplitz theorem [34]. I t  is apparent tha t this definition o f stability is the

adequate definition for the description of the evolution o f small perturbations 

in x n, X fj+ i,..., xn+k.
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Usually, the regularity over all Cs, points out a lim ita tion  of the sequence 

transfrom. Again it  is the old addage: Transforms which are highly stable tend 

to  be lim ited in their effectiveness on particular types of error structures because 

of the ir broad scope. Borderline stable techniques or even unstable transforms, 

the “vio lent” summability techniques in the term inology of G.H. Hardy, tend to 

produce more dramatic results on the sequences for which they are intended. I t  

is apparent that for most residuals Ax,- for converging iterative methods that 

we have —► 0 as A; —► oo, so that MPE behaves as a regular transform.

I t  is apparent that the reextrapolation based upon the coefficients determined 

from  (5.7) w ill also be stable, but there is no evidence to  indicate that there w ill 

be an improved rate o f convergence. In fact, one would be lead to believe the 

opposite in  the case o f m atrix  iterations: I f  the component of error has been 

taken out in dominant eigenspace for which the coefficients were determined, 

then one would hardly believe the same coefficients would be adequate for error 

in  the sub-dominant eigenspaces. An example o f this would be A itken’s method 

on a scalar sequence x „  o f the form

£n =  Zoo +  cp*. (3.27)

A single extrapolation gives the fixed point x  w ith in  a certain accuracy, while 

further extrapolations on the sequence of extrapolants would consist o f inner 

products of numerical “noise” , and likely to produce ridiculous numbers. For 

details of this situation, see Graves-Morris [17]. However, i f  the polynomial 

produced by the method is a good polynomial, but only removes part o f the 

error, then we would expect reextrapolations to work.

We close this section w ith  a formulation of the M PE method as a summability 

technique. We also show the close sim ilarity between the projection methods 

of chapter 2, where a problem was completely on to a subspace, and the M PE 

method where we look for elements of m inimal norm in a linear variety.
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Let Xi be a given vector sequence and consider a summability method

I
X{ =

i=l

where =  1- Then the error in  the sum is given by

t
=  Y ,  V i j t j  =  p {G )ex  

i=i

where p(-) is a polynomial such tha t p ( l)  =  1. Let r,- =  -A x ,-. Applying 

( I  — G )_1 to both sides gives the residual r,- o f the summability technique:

t
r, =  ] 0 v i j r j  =  p[G )r0 =  apa{G )r0 

j= i

where pa has leading coefficient 1. The question now is the choice o f the poly

nomial p(G). The M PE method is formed by minimizing p(G)ro or equivalently 

pa(G )r0 in t 2. The equivalence o f these statements follows form  different but 

equivalent versions o f the projection theorem [22]. In  other words the residual r,- 

is in the linear variety V  =  {r | r  =  £ j.=1 and £ }= i =  1}. and therefore

orthogonal to the subspace M  =  V  — r, r E  V  implied by the linear variety V . 

Hence we finding x  in  span{xi, x 2, £*} such that ( ( /  — G)x — k )± M .

3.2 A  G en era liza tio n  o f M P E

In the previous section we used the residual A x j o f a m atrix  iteration for deter

m ination of an annihilating polynomial. This is the “residual”  polynom ial ap

proach [6]. The presence of the so-called residual polynomial dominates Krylov 

subspace type methods such as the conjugate gradient method and its general

izations to be discussed.

Residual polynomial methods often seem to lose their effectiveness when 

the direction o f the residual is not a good approximation to the direction of the 

error, which would happen in  iterative schemes when the m atrix  is nonhermitian,
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nondefinite, or defective. This is because a small norm of rn =  Pn(G)ro does not 

im ply a small norm of e„ — Pn(G)e0. So it  may be o f benefit to consider vectors 

other than the residuals for extrapolation.

A  generalization of M PE can be made by considering the solution of

= m  ( 3 - 2 8 )

where r  and s are unknown polynomials (for computational reasons); f ,g  are 

m atrix  functions and g is chosen so tha t the formal quantity l/s (g (G )) is easily 

determined, they may be projections o f sorts; h is a m a trix  or vector function and 

6(e.) is a known quantity which we w ill call the iteration generalized residual; 

and g, which we w ill call the generalized extrapolation residual, is a (usually 

small) vector or m atrix  quantity determined to make (3.28) exact after r  and s 

are chosen. (Warning: g corresponds to the “residual” o f the M PE least squares 

problem (3.11) and is not equivalent to  the iteration generalized residual we are 

considering).

Generally, an extrapolation is obtained via some algebraic relation between 

(5(e,) =  6(xi — Zoo) and g. For example, in MPE, we let <5(et) =  Ax,-; g fc  =  

x ,-+ 1 — Xi where x< is the z'th MPE extrapolation, and r ( /(G ))/s (g (G ))  =  p[G) 

where p is a polynomial of degree k <  i. For systems Ax — b where A  is 

symmetric positive definite, a method based on the case pn{A )r0 =  r n of (3.28) 

where pn is chosen at the reth step to minimize the “energy” norm of the error, 

Em =  r ^ A -1rm =  emAem leads to the conjugate gradient method [6].

W ith  conjugate gradient methods, (3.28) can be solved w ith  short recursions 

to produce the extrapolation because the polynomials are picked a’p rio ri to be 

orthogonal polynomials over the region containing the spectrum of A. W ith  

MPE (3.28) leads to a system

Ac =  A x n +  A (3.29)
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which we solve by the method of least squares. When solving (3.29) we obtained 

a solution

c =  A?(Axn +  A) (3.30)

where f  denotes the pseudoinverse of A. This is a part of the area of generalized 

inversion which we now elaborate on. Three suggestions for generalized residuals 

6, in increasing level of generality are

1 <5(e,) =  - A Xi =  ( I  — G )xi — k =  ( I  — G)(ef ). (The fam ilia r residual).

2 fi(e,-) =  7rne,- where nn is a projection (orthogonal or oblique) onto some 

subspace. Here, as in approach (2) page 11, we solve a projected residual 

equation 5(e,) =  QH( I  — G)QQHei.

3 5(e,) =  /(e j) where /  : Z n —»■ Rv and u < n .

3.2.1 On Generalized Inversion

The theory of generalized inverses is well developed, as is evidenced by the 1,775 

articles in Nashed [24]. One approach to  generalized inversion is to characterize 

properties o f m atrix inverses which may be satisfied by singular or non-square 

matrices. Perhaps the nicest characterization for a generalized inverse, the pseu

doinverse was summarized by Roger Penrose in four remarkably symmetric con

ditions. Penrose [27] showed that for every finite m a trix  of real or complex 

elements there is a unique m atrix  X  satisfying the equations

C l .  A X  A  =  A,

C2. X A X  =  X  

C 3. (A X ) h  =  A X  

C4. {X A )H =  X A
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where AH denotes the conjugate transpose of A. This m atrix X  is commonly 

known as the Moore-Penrose generalized inverse (or pseudoinverse) and denoted 

by Ah These conditions amount to the requirement that AA* and A M  be or

thogonal projections onto 11(A) and 1Z(AH), respectively, and, consequently, is 

the solution to

min \A X  — Im\\F- (3.1)
cnxm v

where “ F ” denotes the Frobenius norm. If A is nonsingular it  can be shown that

Figure 3.2: The Pseudoinverse

A f

( tW j A In w ^ j

t

o o

A* =  A ~h In general, a m a trix  X  which satisfy conditions ( i) ,  ( j ) , . . . , ( / )  among 

C l,C 2,C 3,C 4 w ill be called a (?), (j ) , . . . ,  (Z)-inverse and denoted by ylh'MD.-.th}_ 

The set of such matrices is denoted by A { ( i) ,  ( j ) , . . . ,  ( I ) } .  When i t  is not necessary 

to specify the type o f generalized inverse, we revert to  A h
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The following theorem ([5] p .103 ff.), is relevant to  the M PE method, and 

other pseudoinversion techniques where the arguments are vectors, when an 

overdetermined system of the form

| | A c - %  c,6(=C m

is solved.

T h e o re m  11 Let A G CnXm, 6 G Cm. Then || Ac — A| is smallest when x  =  A*1,3̂  

where A*1’3) G A {1 ,3 }. Conversely, i f  X  G Cnxm has the property that, fo r a ll 6, 

|d — AcJ is smallest when c =  XS, then X  G A {1 ,3 }.

C o ro lla ry  1 A vector 8 is a least-squares (I2)  solution of Ac =  6 i f  and only i f

Ac =  Pr(a )8> =  AA{llS}£.

Moreover, the general least-squares solution is

x =  A{1's}6 +  ( / „  -  A{1's}A)y

where A^1'3̂  G v l{ l ,  3} and arbitrary y G Cn.

I t  can be shown that the least-squares solution of m inimal I2 norm is the 

Moore-Penrose generalized inverse. Furthermore, the generalized inverse is 

unique only when A  has fu ll column rank [5|.

3.2.2 Weighted Generalized Inverses

Very often, extrapolations give an inordinate amount of weight to the most 

recent iterates produced [34]. To attem pt to avoid this in generalized inverse 

extrapolations, we may choose to give different weights to different components 

o f the the generalized residual in (3.28). A further generalization which encom

passes this [5] is the m inimization of a give positive definite quadratic forms in 

the generalized residuals, i.e. the m inim ization of

\\6l =  6h W6 (3.32)
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where W  is a given positive definite m atrix.

Let U  be another positive definite m atrix. I f  A  is not o f fu ll column rank, 

the problem (3.32) does not have a unique solution for x, so generally we choose 

a solution which has m inim al U- norm, i.e. among the x  which solve (3.32), we 

pick the one such tha t

|x||y =  i  HUx. (3.33)

is smallest. In  summary, we have the problem

a. M inim ize ||£|^ w ith  the constraint that

b. |x |y  is m inimal.

Since every inner product (•, •) in C" can be represented as x*U y  for some positive 

definite m a trix  U and every positive definite m a trix  has a square root [4], we 

w ill show tha t the problem of minimizing (3.32) and (3.33) is equivalent to a 

problem standard least squares problem. Given positive definite H , denote by 

H 1/2 the unique m atrix  K  such that K 2 =  H . (H l l 2) 1 w ill be denoted by 

i f -1/2. Introducing the transformations

A =  W 1I2AU~1' 2, x =  U l !2x, b =  W l ! \

it  can be shown [5] tha t

||6 -  A x \w =  1 Ax -  6||2

and

M u  =  l*|a-

The following result can be shown in a straightforward manner [5]:
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T heorem  12 Let A  € Cmxn, b e Cm, and let W e Cmxm and U  € CnXn be 

positive definite. Then, there is a unique m atrix

X  =  G A {  1 ,2} (3.34)

satisfying

(W A X )”  =  W A X , ( t fX A ) *  =  U X A . (3.35)

Moreover, |6 — Ax||jy assumes its m inimum value fo r x  =  Xb, and in  the set of 

vectors x  fo r which this m inimum value is assumed, x =  X b is the one fo r which 

|x |{/ is smallest.

I f  Y  G c nxm has the property that, fo r a ll b, x =  Yb is the vector of Cm fo r

which |x||u is smallest among those fo r which ||6 — A x\w  assumes its m inimum
f l 2) • • •value, then Y  =  A ^ j j y  -4s before, i f  the system is overdetermined, the solution

is unique.

3.3 Pseudoinversion and Descent M ethods

The M PE acceleration was evaluated by a derivative o f the Gram-Schmidt pro

cess, the Modified Gram Schmidt process. This naturally leads to  the question 

whether a class o f processes related to the Gram-Schmidt process, so-called con

jugate direction methods for the m inim ization o f functionals, can be adapted for 

use as extrapolations. Here we prescribe a simple way of doing so. First we give 

a brie f explanation o f the methods. The methods w ill be presented, for clarity, 

in the ir norm ally given formulation as direct solvers. The ir adaptation into ex

trapolations is accomplished quite easily, both theoretically and computationally. 

Roughly the idea is to replace the direct m atrix  A  by the iterative m atrix I  — G 

(in  the iterative scheme x,+i =  Gx, +  k). W ith  gradient methods, the m atrix  is 

treated indirectly through m ultip lication w ith  a vector in a K rylov span, so the 

process is iterative. The same holds for I — G since there is no difference between
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the spans K  =  {x 0, Gxo,. . . ,  G^x0}  and K — {x 0, ( I  -  G )x0, . . . , ( / -  G)Mx0}. 

Vectors determined by the gradient method w ill be new guesses to place in the 

iteration x l+i  =  Gx< +  k. One way o f changing direct method for A x  =  6 to  an 

extrapolation for an iteration x1+i  =  Gx, +  A: is to make the substitution

xn i— ► PV-1xnj A *— *W ~ 1{ I - G ) W ,  rB i— (3.36)

and then m u ltip ly  the recurrence relation by W , the preconditioner. More gen

erally, we make the substitution

x n t— >W xxn, A i— ► W * [I  — G)W, rn t— * W %an. (3.37)

where J denotes a generalized inverse and then m ultip ly the recurrence relation 

by W , the pseudo-preconditioner. I t  is usually a small m atter to adapt existing 

codes for direct descent methods in to extrapolations. W ith  more work, more 

efficiency may by obtained by careful recombination of the terms; however, here 

we prefer to sacrifice some efficiency to keep the programs modular. Note the 

the substitution A  i— * W *(I -  G )W  in  (3.37) includes orthogonal and oblique 

projections o f (I  — G) onto subspaces specified by the generalized inverse. Often 

when using fu ll inverses (3.26), the m atrix  W  is chosen from  a part of a m atrix 

sp litting  of A  [2].

3.3.1 Descent Methods for Extrapolation

The in troductory parts o f this section are adapted from the excellent book of 

Luenburger [22]. In descent methods an optim ization problem is solved by iter

ating from  a starting point x0 in such a way as to decrease a “cost”  functional 

from  one step to  the next. When the functional is positive definite, global con

vergence can be insured. As a general framework for the method, assume that 

we seek to  minimize a functional /  and tha t an in itia l point x,- is given. Iterations 

are constructed according to the equation

Zn+1 =  Xn +  a np n (3.38)
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where a „  is a scalar and pn is a search direction vector. The procedure for 

selecting the vector pn varies from technique to technique, but, ideally, once it  is 

chosen the scalar an is selected to minimize f ( x n +  apn) (regarded as a function 

of a). Most often a direction of descent is chosen so tha t f ( x n +  <*Pn) <  f { x n) 

for small positive a. The scalar an is often taken as the smallest positive root 

of the equation

^ - / ( i n +  ap„) =  0. (3.39)

In  practice i t  is rarely possible to find the m inim izing a  exactly. Instead, 

some iterative search or approximation is required. The essential point, however 

is tha t after an an is computed, we must verify tha t /  (z „ +  anpn) is evaluated 

to verify tha t the objective has in fact decreased from  / ( s „ ) ;  otherwise, a new 

an is chosen.

The descent process can be visualized in  a Banach space X  where the func

tional /  is represented by its contours. Starting from a point x x, one moves 

along the direction vector p i un til reaching, as illustrated in figure 3.3, the first 

point where the line x x +  ap\ is tangent to  a contour of / .  Alternatively, the 

method can be visualized, as shown in  figure 3.4, in  the space R  x  X ,  the space 

containing the graph of / .

I f  /  is bounded below, it  is clear that the descent process defines a bounded 

decreasing sequence of functional values and that the sequence / „  =  f ( x n) tends 

toward a lim it The difficulties remaing are those of insuring tha t is, in 

fact, the minimum of / ,  that the sequence of approximations xn converges to 

a minimizing vector, and finally, and most d ifficu lt, tha t convergence is rapid 

enough to  make the whole scheme practical. Practical schemes are then con

verted to practical extrapolations.
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Figure 3.3: The Descent Process in  X

3.0.1 The Steepest Descent Procedure

The widely used descent procedure for m in im izing a functional / ,  the method o f 

steepest descent, is applicable to functionals defined on a H ilbe rt space H.  In this 

method the direction vector pn at a given point xn is chosen to be the negative o f 

the gradient o f /  at x n. I f  7i  is not a H ilbert space, the method can be modified 

by selecting pn at a given point x n to be aligned w ith , or almost aligned w ith , the 

negative gradient.

Generally the method is used for the m inim ization o f a quadratic functional

f { x )  =  ( x ,Q x )  — 2(6, x)

where Q is a self-adjoint positive-definite operator on a H ilbe rt space 7~L. If the 

Rayleigh quotients

* I* (*G J . rm - in t —------ r -  and M  - sup —------
[ x ^ X J  x ^ O  \ X X
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are positive, fin ite  numbers, find ing a unique solution Xoo to Qx =  b is equiv

alent to  the m in im iza tion  of / .  I f  r  =  b — Qx,  then i t  is easily shown that 2r  is 

the negative gradient o f /  at the po in t x.  Consequently, the method of steepest 

descent takes the form  ([22]) x n+\ =  x n +  a nr n, where a n is chosen to minimize 

f { x n+1) and can be found to  be a n =  ( rn, r n) / { r n, Q r n).

Note tha t, according to  Theorem 13 below and seen from  figure 3.3, the rate of 

convergence depends on the eccentricity o f the e llip tica l contours o f / .  For m — M ,  

the contours are circu lar and convergence occurs in one step. The steepest descent 

procedure b lind ly plods in the direction o f the residual-the direction o f steepest 

descent-and then on ly changes direction when a lowest a ltitude  is reached. So 

when there is a high degree o f e llip tic ity , the procedure w ill likely bog down (cf. 

figure 3.4).

F igure 3.4: When Steepest Descent Fails

The following theorem gives the details [22].

T h eo i'em  13 For any  x0 £ 'hi, the sequence x n defined by

I “ +' _ X " + ( L " b r ! ) r " ( 3 ' 4 0 )
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converges to the unique solution Xgo of Qx =  b. The rate of convergence satisfies 

where c =  m /M .

3.3.3 Conjugate Direction and Conjugate 
Gradient M ethods

Conjugate Direction Methods are a notion from  the theory o f Fourier series in 

an inner product space where the inner product is defined by <  •, G- >  where 

G is symmetric and positive definite. For clarity, the procedures are considered 

for a linear system A x  =  b in a H ilbert space M.

Consider a quadratic functional

f { x )  =  {x ,A x) -  2(x,b),

where A  is a self adjoint linear operator on a H ilbert space M which satisfies

(x ,A x ) <  M (x ,x )  (3.42)

(x, Ax) >  m (x ,x )  (3.43)

where m ,M  >  0 are squares of the smallest and largest singular values of A 

[14]. Under these conditions the unique vector Xoo minimizing /  is the unique 

solution of the equation A x  =  6.

The problem is equivalent to minimizing

X  —  X o o Ia -

This can be accomplished by m inim izing ||x — Xoo||  ̂ sequentially over a span 

of linearly independent vectors {p i,P 2 , • • •}• Suppose the sequence members 

Pi,p2, . . . are orthogonal w ith  respect to the inner product (•, Q-). I t  is o f benefit

to do this because of a nice three term  relationship tha t exits among the p.-’s
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(see Theorem ?). Since (•,•) is an inner product, the error is decreased most 

at the n th  step by picking x „  =  x  to be the Fourier series expansion of xM. 

I f  the sequence is complete, the process converges to  x ^ .  Even though the 

quantity xq is not known, we can compute the appropiate inner products for the 

expansion because (p,-, A x ^ )  =  (p,-,6). More generally, a direction A-orthogonal 

to the error is orthogonal to  the residual because (p, , Qei) =  (p,-, r,-). A  algorithm 

which accomplishes this orthogonalization, the Method of Conjugate Directions, 

is given in figure 3.5.

_____________ Figure 3.5: The Method of Conjugate Directions______

Let {p ^  be a sequence in H such that (p<, Apj) =  0, t ^  j .  Then 

for any x \ £  M, the sequence generated by the recursion

1. %n=l — %n ~t" &nPn

2. 0Cn =  (Pm rn)/(p n, Apn)

3. rn =  b A x „

Because of a nice three term  recurrence relation for A-orthogonal vectors in 

U which span the Kry lov subspace { x x, A xx, . . . ,  A "x }, there is no need to resort 

to a Gram-Schmidt type process to generate the vectors p,-. The A-orthogonal 

sequence is generated by the algorithm shown in figure 3.6 on the next page. 

The Hermitian property o f B  is needed in only one small part o f the proof for 

the three term  recurrence (see [11] or [22]), which is unfortunate; for otherwise, 

we would have a three term  recurrence for orthogonalizing all K ry lov subspaces.

Consider again the conjugate direction method. I f  the Q-orthogonal sequence 

of directions is generated from  the Krylov subspace K =  { r x, A rx, . . . ,  A l/r x}  by
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Figure 3.6: Three Term Recurrence for A-Orthogonal Vectors

Denote the inner product (-, -A-) by [•,•] and consider for 

some self adjoint operator B  the Krylov subspace K =  

{ x i , B x i , . . . , B vx }. Then K  is spanned by a A-orthogonal se

quence {p i,p 2 j • • • >Pi/} generated by the following algorithm:

1. p i = x

2  • f t  =  b Pi  -  ig j f j j i , ,

3- -  f c S l 1*  -  f c & K .  (» a

the three term  recurrence in fig. 3.6, the conjugate gradient method of figure 

3.7 on page 70 is obtained. For many “practical”  variations o f this method the 

interested reader m ight consult Hestenes [20]. I t  is shown in [14] tha t

where c =  m /M .  This is improved convergence, but there is more computational 

complexity in trade.

3.4 A  M o re  Sophisticated G rad ien t E x tra p o la 
tion

Much effort has been devoted to extending the conjugate gradient (CG) and 

conjugate direction (CD) methods to nondefinite quadratic and nonquadratic 

functionals. The number is extensive, so a reader wishing to see a semblance of 

the fu ll spectrum should cite the book of Hestenes [20].

Heuristically, the need for these extensions comes when the the m atrix  sep

arating the error from  the residual, namely (I  — G) in ( I  — G)e,- =  r,-, has a
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wide spectrum or is quite nondefinite. Traditionally, the approach has been to 

precondition ( I  — G), which is done in  equation (3.36). Here instead we adopt 

the approach tha t the sequence is being generated by nondefinite symmetic ma

tr ix  iteration. This is not a bad “ local”  approach because the set of symmetric 

matrices is dense in the H ilbert space o f matrices.

3.4.1 Planar Conjugate Gradient Acceleration

This modification o f the CG-algorithm enables us to  obtain a critica l point 

loo of a quadratic function F (x )  =  (1/2)x HA x  — bHx  +  c whose Hessian A  is 

nonsingular. A  is possible indefinite. When A  is definite, x x  is an extreme 

point; when indefinite, a saddle point. E ither way, Xoo is a critica l point and a 

solution to

F '(x )  =  Ax — b =  0. (3.44)

Before proceeding, i t  should be mentioned tha t the point Xqo is also the m inimum 

point o f the quadratic function

F(z) =  ± \F > ( z ) \ '= 1- \ h - A x \ K  (3.45)

and the CG-method could be applied directly to  this functional since i t  is 

quadratic.

However, when CG is applied directly to F , the a lgorithm  may fail when A 

is indefinite. In  CG successive critica l points x0, X i , . . .  o f F  were obtained on 

m utually conjugate lines x  =  Xk +  apk (k = 0 , l, . . . ) .  I f  in  the fcth step a situation 

in which r  — k =  —F'(xk) ^  0 and d* =  p^Apk =  0, then F  has no critical point 

on the line x  =  X* +  op* and the algorithm terminates prematurely. We see how 

this may be caused in the case o f indefiniteness. In th is event we proceed by 

finding the critica l point of F  on the two dimensional plane x =  x* +  a* +  /3Apk. 

So we modify the CG-algorithm incorporating this account of the indefinite 

case. Details on the justification o f this algorithm are given in [20]. A  suggested
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formulation from [20] is given in figure 3.8 on page 71. A  m atrix  form  of the 

algorithm  is given in  [20].

3.5 A  G eneralized  Inverse E x tra p o la tio n  
Based on N e w to n ’s M e th o d

A generalized inverse can be used to obtain a modifications of the Newton

Method for extrapolations. Newton’s method for solving a system o f m  equations

in n  variables

/ i ( x i , . . . , x n) =  0 (3.46)

h { x u . . . , x n) =  0 (3.47)

i (3.48)

=  0 (3.49)

or

f ( x )  =  0

is given by, for the case m =  n,

x i+1 =  Xi -  / '( x , ) _1/(z . )  ( *  =  0 ,1 ,. . .) ,  (3.50)

where

/'(*.) = 3 / i ,  > (3.51)

We not allow the possibility tha t /  is a projection or a derivative of the 

residual and, hence, nonsingularity may not be assumed.

A  natural extension is then to inquire whether a generalized inverse may be 

applied in (3.50 ), so that we have the iteration

**+ i =  * *  ~  ( / '( * * ) ) * / ( * * )  (3.52)
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which converges to Xoo, where J denotes pseudoinversion, which converges to x ^ .  

Note tha t th is is a nonlinear generalization o f (2.42). The following theorem 

shows tha t we have convergence, but not necessarily to x ^ .  As usual, || • | is a 

given (but arb itrary) vector norm in C” , and a m a trix  norm in  Cmxn consistent 

w ith  it .  For a given point x0 6 Cn and a positive scalar r, the open ball of radius 

r about x0 is denoted by

B (x 0,r )  =  {x  £ Cn : ||x -  x 0|| <  r } .

The closed ball, {x  6 Cn : ||x — x0|| <  r } ,  is denoted by B (x 0,r ) .

T he o re m  14 Let the following be given:

x0 e C n, r >  0,

/  : B (xo ,r) —► Cm a function  

e >  0, 6 >  0, rj > 0 positive scalars,

and fo r any x  £  B (xq, t) let

A x £ CmXn, Tx £ Cnxm

(3.53)

be matrices such that fo r a ll u ,v  £ B (xo ,r):

| f (u )  -  f ( v )  -  A v(u -  v )| <  e||u -  v||

fo r all u ,v  £ B ( x0,r) ,  (3.54)

TUA UTU =  Tu, i.e. Tu £  A u{ 2} (3.55)

|( r B- r u)/(t; ) ||< ^ ltt-t; f l, (3.56)

4 T \ +  V < 6 < 1 ,  (3.57)

m i | / ( x 0) | < ( l - 6 ) r .  (3.58)
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Then the sequence

x i+1 =  Xi -  Tt . f { x k) (3.59)

converges to a point

Xoo € B (x 0, r) (3.60)

which solves

TXoof {x )  =  0. (3.61)

Note that (3.59), considered in the form Ax,- =  —TXif (x k )  is a particular case 

o f (3.28). There is a great deal of leeway in the choice o f /  which w ill be 

explored experimentally in chapter 6. Perhaps the nicest aspect o f the Newton 

extrapolation (3.52) is that it  is an ideal form  in which to  use the highly perfected 

singular value decomposition (SVD) for the computation o f the appropriate 

Moore-Penrose pseudoinverses.
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Figure 3.7: The Method of Conjugate Gradients

1. Select x0 and compute

r0 =  b -  A x i  =  - F ’(xo)

Iterative Steps. Having obtained x a n d  pk by the formulas

2.

3.

4.

ak =  z r ,  dk =  pk Apt, C* =  p f r *  or Cjt =  |rjt|2, 
dk

X n+ 1 =  X n  +  < * n P n ,  r k + 1  =  T k  ~  a k A p k ,

P kA rk+i , |r*+1|2
bk = -------   or bk = -----------,

dk c*

5.

P k + l  —  r fc+l +  b k P k -

6. Termination. Terminate at the m th step i f  rm+1 =  0 or guesses 

have degrading residuals. Set xm+i =  xo and restart i f  necessary 

m inimum point has not been reached.
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Figure 3.8: Planar CG-Algorithm

1. Initial etep. Select zo, set e =  1 /2 , and compute

r 0 =  - F ( z o), Po =  r 0, 9i =  Ap

2. Iterative steps. Having obtained x k, >Pit> 4*, compute

^P4, ^9 4 , <** =  Pk A p k , Sk = P t A q t , ek =  qj?Aqk , (1)

Afc =  <*4 =  <*4e4 ~  6k < ck =  Pk r k -

3. If |A *| < do this step, otherwise go to  equation 2 in step 6.

ck
a* =  — , H + i  =  xk +  a*?*, r*+1 =  r k — akApk . ak

4. If rjt+ i =  0 term inate, else compute

. , , VkA r k + 1 |rjfc+ 1 13
P4+1 -  n t+ i+ & 4 P 4 . 04 —  j   -  ---------- ,

“4 c4

. » .  * _  PkA A Pk+ 1 _  9 ^ 4 + 1
94+1 =  ^ P 4 + l  +  P kP k ,  Pk  -----------^ ------------ -----------^ -------•

5. Increase the index k  by 1 and to to  equation 1 in step 2.

6.

ckek - h q k r k t dkqk r k - 6 kck
<=4 =  --------^ ---------, <** =  --------^ --------- . (2)

*4+2 =  *4 +  C4P4 +  <*4941 r4+2 =  r k ~  ckA p k -  dkAqk .

7. If r k + 2  =  0 term inate, else compute

f t )P4+2 =  r 4 + 2  +  I T -  ) (<*494 -  h p k ), bk =  - 9 4  ^>"4+2 i

94+2 =  ^P 4 + 2  +  ^  ( t k q k  ~  SkPk), Pk  =  “ 94 A A Pk+1>

8. Increase the index k by 2 and go to equation 1 step  2.

9. In m atrix  iterations, the  algorithm should work in order(G) iterations unless significant roundoff errors occur. 
Successive estimates z „ + i , z n + 2  should be checked for diverging behavior.
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Chapter 4

T he A nnihilation and 
Suppression of Spectral Terms

4 .1  T h e  C lassical S hanks-S chm idt A pproach  
and G enera lizations.

Suppose tha t a sequence of complex numbers xn has a dependence on a complex 

number in the following form:

00

x n  =  Xoo +  £  ° r Ar (4 - l )
r= 1

where Ar ( ^  1) and cr are complex numbers. Suppose further that |Ajt+1| <  |A*|

for some k and |Ar | 1 for all r  >  k >  0. For large enough n  consider the

truncation
k

xn w loo ^  '  crAr . (4>2)
r - 1

Form a linear system of A: +  1 successive iterates

fc
x oo +  XI Cr K

r= l
k

x n + 1 »  Xoo +  X !  cr A?+1 (4.3)
r= l

k

x n + k  ^  x oo 4“ ^  '1 Cr Ar ^ .
r= l
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In  m atrix  form  the system appears as Ac «  s where

1 A? A? . . .  AJ? •

1 A?+1 A£+1 . . .  Xnk+1

.1 A?+* AJ+* . . .  A£+*.

8
i

X n  

x n + 1
c = and s =

- X n + k .

Use Cramer’s rule to solve for the first unknown in s, so tha t

X n A" •• \ n
A k

det
Zn+l A?+1 • ■ K + 1

■ X n + k A?+* •• ■ W -
1 \ n

i f  '

det
1 A?+1 ••• i f +1

.1 A?+* ••• A f+\

I f  the expression (4.3) were exact, the extrapolation (4.5) would be exact, the 

accuracy of the approximation in (4.3) depends on the sensitivity o f the linear 

system Ac =  s to a perturbation of the terms of an amount e f  where e > 0 and 

feC n. I t  is well known (see Golub and VanLoan for example) tha t the solutions 

to A ce =  s +  e f  and Ac =  s have a relative error bound given by

where || • || is any vector norm and K ( A) =  ||A|| • ||A_1|| is the condition number of 

A in the given norm. So the efficacy of the transformation is subject to the size 

of terms neglected (the perturbation ef), the conditioning o f A, and the nature 

of the segment o f the sequence s.
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Suppose for now tha t the sequence, conditioning and perturbation are such 

tha t (4.5) w ill given an extrapolation of a desired accuracy. The calculation 

of the determinants in (4.5) is now the only obstacle left in the way of the 

extrapolation.

The determinant in the denominator o f (4.5) can be evaluated in  0  (k2) flops 

since

det

which is effectively the Vandermonde determinant o f polynomial interpolation 

that can be evaluated in 0 ( k 2) flops [28]. For the numerator such efficiency is 

not obvious; however, the evaluation of (4.5) can sometimes be made efficient 

w ith  the use o f determinental identities (cf. section 4.1.1).

The expression on the right hand side in (4.5) defines a potentia lly useful 

sequence transformation even if  the extrapolation is not exact. Denote the right 

hand side o f (4.5) by Snik(x) i.e.

xn A? •

*n+i  ar 1

1 A? A£ 1 1 1 1

1 A"+1 •• AJ[+1
=  n A "d e t

1 Ai A2 • • ■ A*

1 A?+* A*+* 1 A* A£ A*

det

Sn,k{X) =

AnAk

K +I

AP* AJ+*

det

1 A?

1 A?+1

A nk 

A*+1

A f *

(4.7)

1 A?+* •

where x =  x u  x2, —  Note that the length and starting point of the segment 

xn, xn+i , . . .  , x n+k o f the sequence x  is implied by n and k in the transform x.
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Let

D n,k(x) =  det

^  A? 

* „ +1 A” +1

\ nAk

A* + 1
(4.8)

xn+* A"+* ••• \ f k 

Denote the sequence 1 ,1 ,1 ,1 ,... by e. From (4.7) it  follows that

m

We w ill also need an auxiliary m atrix  defined by equation (4.13).

Except for determinants of very low order, the right hand side o f (4.7) is usu

ally evaluated in  a recursive manner that has the effect o f m inim izing storage 

and computations. A method of forming the recursion w ill now be described. 

The idea is to use certain minors of the determinants in  (4.7), which describe 

sequence transforms in themselves, in form ing the recursion. Here we w ill use 

Sylvester’s determinental identity which arises out of the Gaufiian elim ination 

process. These are not the only possible identities, for example certain Schwein- 

sian identities m ight do [1], bu t they w ill be sufficient for our purposes.

4.1.1 Sylvester’s Identity

S u bm a trice s . Let A  G M mi„(C). For index sets a  C {1 ,2 , . . . ,m }  and /? C 

{1 ,2 , . . .  ,7 i}, the submatrix that consists of the rows of A  indexed by a  and the 

columns indexed by (3 w ill be denoted A {a ,P ).  I f  a  =  /?, we use the notation 

A (a) =  A (a , a).

Let a  C {1 ,2 , . . . , n }  be a fixed index set and let B  =  [6 , - j ]  G M n - f c ( C )  be 

defined by

bij =  det A (a  U { * } ,  a { j } )

where k is the cardinality of a, i , j  G { 1 ,2 , . . . ,  n.} are indices not contained in 

a, and A  G Atn(C). Sylvester’s determinantal identity is

detl? =  [detA(a)]” -fc-1detA. (4.10)
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A popular special case o f (4.10) results from  letting a  be an index set of 

order n — 2, say a  =  {2 ,3 , . . . ,  n  — 1}. We then have

^11^22 — ^21^12 — detA(a)detA . (4.11)

We generally want detA, so we use

detA = 1̂1^22 — 2̂1b21012 (4.12)
detA(a)

This particu lar identity has the special im portant feature o f using contiguous 

elements in  the m atrix  A  in form ing minors. These minors w ill tu rn  out to be 

“ lower”  order transforms of particular segments. We now give a simplified proof 

of the scalar B.H. Protocall apparently discovered independently by Brezinski 

and H&ive. [34]

To develop a recursion for (4.7) we need a further auxiliary determinant. 

In order to  show the generality of th is recursion, let f r (n) =  A? and let f£r be 

defined by

f r {n) f r {n + 1) . . .  f r [n +  k) 

f i { n ) / i ( »  +  l )  ••• f i [ n  +  k)
det

fir
fk(n) fk (n  + 1 )  . . .  fk [n  +  k)

det

1 1 

/ i( n )  / i ( n  +  l) . / i  {n +  k)

(4.13)

fk{n) fk {n  + 1 )  . . .  fk {n  +  k) 

which is effectively £„,*(/,.(«), fr{n +  1 ) ,  • • • ,  fr{n +  k ) , . ..) Now given a fraction 

r /s  let A /(r/s ) =  r. Apply Sylvester’s identity to the numerator and denomina

tor of (4.7).

-  , i Dn,k-1 ( « ) * ( / # » )  ~  Dn+l,k-1( x ) H ( f U k )
> D nk-i{e) -  M ( f ^ l k )  -  I W - i M *  ( f f - x  J

(4.14)
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Divide the numerator and denominator o f the above fraction by 

D n,k-1 (e) A»+i,fc-1 (e) to  obtain

_  ^ n , t - l ( g ) / f c - i |fc — £ * - l , n + l ( z ) / £ - l , f c  
fn+1 _  fn
Jk-l,k Jk-l,k

where n, k >  0

o / _ \  un,k-l\^)Jk-l,k  / ,  ,  P\
=  ------------- 7^+i------77.------------------’ (4'15)

(4.16)

w ith  in itia l condition

SBi0(z) =  * B (4.17)

Identically, the following recursion may be formed for the quantities /£ r :

f n  f n + l  f n + 1  f n
r n  J i c - l , r J k —l , k  J  k —l , i J  k - l , k  f  a i  o \

J k . r  ~  T n + 1  7 ^ -----------------1 I 4 -18 !
J k - l , k  J k - l , k

f i r  =  K ,  

r  >  1,

0 <  k <  r  -  2.

The recursion (4.15) and (4.16) is directly generalizable to  extrapolation on 

sequences o f the form
OO

Xn =  Zoo +  ] C  crfr{n) (4.19)
r = l

where { f r {n )}  is now any asymptotic scale [34], not just an exponential and the 

cr are vectors. W im p’s choice in [34] of an asymptotic scale seems the proper 

generalization of (4.1).

The appearance of the recurrence (4.15) should not be misconstrued as as a

highly efficient means of evaluating Snik. Its chief advantage is using previous

iterates, so that convergence of in between iterates may be checked in the process 

of proceeding from  Sn0tk0 to Sn,k where n  >  n0 and k >  k0. In  fact, i t  is not 

emphasized enough in scalar sequence transforms that the extrapolation is a
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single component solution to  a linear system of the form

1 / i( n )  . . .  f k{n)

1 / i ( n - f - l )  . . .  fie(n + 1 )

Xoo Xn

Cl
=

® n + l

Ck x n+k

(4.20)

1 / i ( n  +  k) . . .  f h{n +  k)

So any evaluation o f the transform should not take many more operations that 

the forward elim ination process of Gauflian E lim ination, which costs (k +  l ) 3/ 3 

flops for (4.19) above. Also, various symmetries of the systems and subsystems 

in (4.19) may be exploited w ith  the many elim ination processes tha t exist in 

the public domain, for example Toeplitz system solvers and Cholesky decompo

sitions, to produce efficient implementations o f (4.7).

The original error structure £*_0c,A" has some distinguishing characteristics 

that should be shown. Consider an interpolation polynomial Pk{z) =  X^=0 a,-z' 

of degree k which has the complex numbers Ai, A2 , ...Ajt as roots and normalized 

so that p * ( l)  =  1. Denote by E  the forward shift operator E x n =  xn+1 and 

notice tha t en+*+i  =  £ * =0 A x n+r +  er when l >  r .  Apply P k { E )  to both sides of 

e„ =  £ * = 0  CA?  to obtain

k k /  1

Pk{Ei)(.n 'y O'l̂ n+l — 53®  ̂( ^  ̂Agn+r
1=0 1=0 Vr=0

=  0. (4.21)

Hence, upon changing the order of summation and redefining the coefficients, 

we have the following error structure

xn — # 0 0  ■+- drA x n+r (4.22)
r= 0

Moreover, p* annihilates er for r  >  n  as can be seen by a suitable redefining of 

the coefficients cr in for values o f n >  n0. Hence the system (4.3) is equivalent 

to
k

Xm =  X00 +  X ]  dr A xm+r n <  m <  n  +  k +  1
r=0
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which has solution

det

Xn

x n + l

A  X n  

Aln+1

1 • • A x n+jt 

■ • • A x n+ t+ i

x n+k+1 A x n+t-[-i . . .  A x n_2fc+ 1

det

1 A x „  • • •  A x n+*

1 A x n+i . . .  A x n+jt_|_i

(4.23)

1 AXn+fc+i . . . A x n -̂2A:+1

This is the classical Shank’s transform (see Shanks). I t  has the characteristic 

tha t it  spectral terms Ax,. . . ,  An are a simple byproduct o f the iteration and need 

not be postulated.

There are other recursions tha t evaluate the transform  (4.22) expressed in 

the e- algorithm  of W ynn [36]. The procedure is roughly the same as before- 

determinental identities lead to  a recursion. The relevant identities, however, are 

an obscure two of the Schweinsian type and the procedure is somewhat indirect 

[34]. The algorithm  has the following appearance:

n  >  0
k+1 fc-l T  („+1) _  („) k >  O' 

c< —
(4.24)

w ith  in itia l conditions

c(_ni} =  0

ei)n) =  xn n > 1 .

A result of Wynn [36] states tha t

4k ~  Sn,k{x)z2k

and

(4.25)

(4.26)

=  Snik( A x) 
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where A x  =  { A x i,  A i 2, • • • •}

The e-algorithm is bu t one o f many ways to  evaluate the transform  (4.21). 

However, there is understandably no recursion as simple to  evaluate the the 

much more general B.H. protocall. This is to be expected since the linear sys

tems produced do not, in general, consist of nice matrices w ith  Toeplitz subma

trices. In  fact, the use of Sylvester’s identity is convenient, bu t probably not as 

efficient or stable as a good Gaufiian elim ination routine which takes advantage 

of peculiarities of the system or some large subsystem formed to  determine the 

extrapolation.

Consider a system, such as (4.19), formed in the course o f an extrapolation:

1
Zoo Z n

; M* Cl
=

Z n+1

1
Cfc Zfi+fc

M fc is a (k +  1) x k m atrix. By permuting the firs t column to  the last, we can 

solve for w ith  the forward stage of elim ination w ith  one back substitution. 

The question here is the structure of l\d!jfc. For example, i f  i t  is symmetric, a 

Cholesky method could be used; if  Hankel, a Trench or Durbin algorithm  would 

be appropriate [14]. I f  it  is desired to compute an a higher order transform by 

enlarging the system w ith  an additional row, the new system may be solved 

efficiently using the pivots from  the previous lower order system. So there is 

usually at most an addition o f 0((fc +  l ) 2) operations. I f  (4.27) has a subsystem 

consisting of a particular matrices used in  previous extrapolations, efficient ex

trapolations may be implemented w ith  a Sherman- Woodbury-Morrison formula 

[14]. This is discussed in section 4.3.

I t  is im portant that the transforms be numerically stable; tha t is, not unduly 

sensitive to the natural numerical errors in the sequence x  tha t result from
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floating point arithm etic. The epsilon algorithm has been shown to be stable 

for schemes w ith  error structures of the form

=  f> ,A ?
«=i

where \  >  |AX| >  |A2| • • • [34].

4.2 E igenvalue P roblem s, A n a ly tic
C o n tin u a tio n , and R a tio n a l A p p ro x im atio n .

In  this section we investigate the use of rational approximations for form ing

approximations. A nice m otivation for the use o f a certain types of rational

approximations, the Pade-type approximations, is found in  the problem of finding

an analytic continuation to  a type o f power series evaluated at oo. To be more 
n c-

specific, let x „(z ) =  ^  ~  be a power series converging on some ball B about
»=o 2*+1

00 c
0 0  to x(z) =  r .  —rjy  where c,- =  vA'ui for some m atrix  A  and fixed vectors v

i= 0 Z*
and w and none of the eigenvalues o f A  are in B . Then on B we have that

lW = (vS^r)“'
1 1

=  v - -  jW
z 1 — —

Z

— v ( z - A ) ~ 1w.

so that the problem of finding the poles of x(z) from  x n(z) is equivalent to finding 

the eigenvalues of A from  the coefficients, or “moments” , c,, i  <  n. More 

im portantly from  the extrapolation standpoint, we consider a scalar sequence 

element xn to be the partia l sum £ „ ( l )  and look for an analytic continuation 

Xoo =  ® ( l )  to x(z) at z =  a  i f  A i , ( a )  is chosen to  be C j/a ,+ 1 . Generally, a  is 

picked as I .  We expect, roughly, tha t i f  there are eigenvalues of A  near a ,  tha t 

some sort o f analytic continuation w ill be necessary to produce a more accurate 

approximation to  the lim it point of the sequence xn than the series.
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Now consider the m atrix  iteration x,+x =  Ax, +  w — X^*=o A kw where xo =  0 

and the spectrum of the square m atrix  A  is w ith in  or on the u n it ball B ( l,0 ). 

Then a termwise extrapolation can be formed from  analytic continuations to 

ef, x,+1 =  E U o  ef  A kw  for ej =  (0 ,0 ,. . . ,  1 ,0 , . . . ,  0) where the 0 is in  the /th  spot. 

Here we w ill discuss the use of rational approximations as analytic continuations.

4.2.1 Rational and Polynomial Approximation

Polynomial approximations are generally used for interpolation, bu t are gener

ally poor choices for extrapolation because of the ir growth outside a sufficiently 

large interval. In  terms of uses for transformations then, i t  m ight be suspected 

then that unless a nonmonotone transformation of the indices is made, polyno

mial approximations are poor choices for monotone sequences. However, when 

viewing the sequence transform problem as an error m inim ization problem over 

a compact region o f the plane (which happens w ith  some nonmonotone and 

specific monotonic sequences), polynomial approximations often produce very 

effective transforms [18].

In contrast to polynomial approximation, rational approximations of func

tions on [—oo, oo] are useful for extrapolation outside a given closed interval 

[a, 6] o f consideration, especially when the function under consideration has finite 

asymptotic behaviour. Rational approximation is a natural choice for sequence 

transformations i f  one considers a segment xn, xn+x, ■ • • xn+* o f a sequence x „  as 

being values of a function where the index i  is an ordinate value correspond

ing to abscissi x,- and the lim it point x as the value o f the function at infinity. 

Extrapolations may also be formed by considering the sequence as a sequence 

of partia l sums o f a power series and using rational approximations as analytic 

continuations to the partia l sums.

Pade ’ approximants are formed as a result of a special sum mability technique 

for the partia l sums of a power series, this approach is due to W im p [34]. Let
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x n(z) be the partia l sums of a power series analytic at 0  converging to  x(z) 

w ith in  an appropiate radius and

00

x [z) =  X) ^  (4-28)
k= 0

n

xn{z) =  Y l akZ>C- (4‘29)
k = 0

Let 7  be complex and a„k be an in fin ite lower triangular array o f numbers. 

Define

A n(z, 7 )
n

=  Y l '1 ~ k(TrlkXk{z), (4.30)
k=0

B n{z, 7 ) =  i b l ~ k<7rik, (4.31)
fc=0

E*{z, 7 )
n

=
fc=0

(4.32)

where ek(z) =  xn(z) — x{z). We have then that

x{z) =  xn( z , i )  - e n(z ,7 ) (4.33)

where

=  M i )  (4'34)

=  (4-35)

For 7  fixed, xn is ju s t a weighted mean of x0, • • • , x n w ith  weights

* * = u S k ; -  <4-36'

Let 7  =  z and xn(z ,z ) =  x(z), from  (4.31), (4.34) and (4.36) we have

A n(z,z ) =  A n(z), (4.37)

f (z ,z )  =  z, (4.38)

A n(z) znA n(z)
(4'39>
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and because the la tte r is a ratio  of two polynomials, i t  is a rationa l approxima

tion. To show how good the rational approximation is, consider

D n(z) =  [znB n{z)] x(z) -  [znA n{z) \ . (4.40)

Careful consideration of the sums on the left and righ t reveals tha t the rational 

approximation agrees w ith  the power series through n +  1 terms, i.e. D n(z) =  

0  (zn). There is obviously a great deal o f leeway in the choice o f the weights. In 

fact, they can be chosen to agree up to  0 {z 2n+l) in which case the approximation 

is a diagonal Pade approximant (see section 4.2.2). In  general, the rational 

approximant (4.40) is known as a Pade-type Approximant.

The next concern is the choice of the weights o,j. We w ill let these weights be 

chosen autom atically through the use o f Pade Approximation, which is in essense 

the form ulation o f rational approximations o f given degree in the numerators and 

denominators which, when expanded in the ir own Taylor series, agree w ith  the 

given Taylor series to  as many terms as possible. T raditionally w ith  m atrix

iterations, choices o f the weights have been based on the roots or coefficients

of polynomials orthogonal over a given region containing the spectrum of the 

iterative m atrix. We choose here not to have the advantage o f spectral estimates.

4.2.2 Pade Approximation

Let /  be a form al power series at x =  0 and

m +n

/ ( * ) =  £ < : * * * - t -O fz " * " * 1). (4.41)
i=0

We look for a rationa l function p/q, p E Pm, q 6 Pn such that

=  (4.42)

or, i f  q ^  0

q ( x ) f ( x ) - p ( x )  =  0 (z m+n+1). (4.43)
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P utting  p(z) =  a,2 * and q(z) =  X)"= 0  one obtains from  (4.43):

(n+m  \  f  n \  n
£ ,  CfcX*) £  bi x i  =  £  a<x i +  0 (®m+" +1). (4.44)
t=o /  V.j==o /  «=o

This leads to  the linear system

n

Z  fim -n+i+^ii-) =  0, t' — 1 ,2 , . . .  , 71, (4.45)
j = 0

min{«,n}
X ) C i - j b j  — d{ =  0, t =  0 , l , . . . , m ,  (4.46)
i=o

w ith  the understanding that c* =  0  for k <  0 . This system of homogeneous 

equations always has a nontrivia l solution where q =£ 0 . When solving directly, 

the 6y’s from  the denominator can be determined from (4.45), and the a, ’s deter

mined subsequently from  (4.46). Sometimes, a Pade approximant is degenerate; 

tha t is, q(0) =  0  or degree(p) <  m  -  1  o r degree(9 ) <  n — 1 . Details of this 

situation may be found in [17]; we w ill assume tha t no such degeneracies occur 

from extrapolation sequences.

4.2.3 On the Evaluation of Pade Approximants

We are assuming here tha t the existence and degeneracy of approximants are not 

in question. This enables us to  use two recursive methods for pointwise evalua

tion o f Pade approximants. These methods are the quotient difference algorithm 

(Q.D. algorithm) and the e-algorithm, which has already been introduced in  a 

different context of evaluating the Shanks- Schmidt transform (equations 4.24 

and 4.25).

Q .D . A lg o r ith m . This algorithm develops a continued-fraction represen

ta tion for a sequence of Pade approximants. I t  requires th a t the elements of 

the corresponding continued fraction be fin ite  and nonzero. The form  of the 

continued fraction related to the original power series is given on the next page 

by
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where

4  — 0, J — 1,2,3,

(4.48)

and the elements of (4.47) satisfy, for J  >  0 and M  =  1 ,2 ,3 ,. . . ,

(4.49)

(4.50)

The elements are normally exhibited in a Q.D. table as shown in figure 4.1 

on the next page. The implementation of the Q.D. algorithm  is a litt le  more

(4.49) and (4.50). Usually successive convergents are desired in extrapolation 

techniques, so generally a forward recurrence or a particular summation formula

Considering f (z )  =  ]£ “ 0 ciz' as a meromorphic function, it  can be shown [17] 

that the “ q” columns converge to the reciprocals o f the poles of / (z ) ,  provided 

that the poles are distinct. Sim ilarly the “e” rows converge to the reciprocals of 

the zeros of / (z ) ,  provided they have distinct moduli. Also, recalling from section 

4.2 the equivalence of finding the poles of / (z )  from  power series coefficients c,-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complicated tha t the e-algorithm because of the appearance o f two relations

is used to  evaluate the continued fraction once the coefficients are determined

([17] p .114 ff.).
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Figure 4.1: The Quotient Difference A lgorithm

The two left columns are specified by (4.48), and the remaining ele

ments are determined by (4.49) and (4.50). The elements along any 

diagonal are the elements of the continued fraction (4.47)
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where c,- =  vA l w for two vectors v,u;and the eigenvalue problem of a m atrix  A  , 

we see that “q”  columns may be used in an eigenvalue extrapolation o f the form 

(2.19). These facts may be used in form ing an extrapolation by using the poles 

as eigenvalues in  an eigenvalue extrapolation.

4.2.4 On Acceleration Methods for Vector Sequences

Many problems of physics and engineering are solved w ith  vector iterations. 

This especially applies to problems of nonlinear ordinary and partia l differential 

equations. The computer codes that arise in these applications are often large 

and complex. One who uses the code for a particular application may find 

that i t  converges slowly or diverges. Appropriate modifiction o f the code may 

be a task for an expert and completely impractical for a user who needs the 

answers quickly and chose the code as a m atter o f convenience. In  th is  situation 

a vector sequence transformation may be useful. They are usually quite easy 

to incorporate. A ll tha t is needed in general is some extra storage, a call to a 

subroutine and the vector acceleration subroutine itself.

As mentioned before, the simplest vector sequence transformation is to  apply 

a scalar sequence transformation componentwise to  the vector. Despite their 

simplicity, these methods may be quite effective. However, certain singularity 

problems in the scalar sequence transform may be magnified w ith  application 

in the vector case because of the large number o f times i t  must be used. As an
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example, consider the e-algorithm (4.23). The recursion may be represented as

x 0 

/  \
Xi

0 — £' /  
/

X 2

P )  :
6i

x 3 :

c(o)

.(i)
(4.51)

From (4.23) it  is seen that numerical overflows w ill result i f  |e[.n+1  ̂— e ^  | becomes 

sufficiently small for some n  and from  (4.27) that the scheme may be unstable if  

the Shank’s transform 5n^(-) extrapolates (correctly) the sequence Ax,- before 

extrapolating x,-. This may render the e-algorithm unsuitable fo r a large number 

of componentwise extrapolations.

In  response to this, two notable generalization o f scalar sequence transforms 

suitable for vector use w ill now be discussed. One is the direct “vector”  gener

alization of the scalar transform

Zn h [n )  ••• f k{n) 

xn+i f i [ n  +  l )  ••• fk (n  + 1 )
det

E n,k{s) —
zn+k f i { n  +  k) ••• fk {n  +  k)

det

1 / i(» )

1 f i { n  +  l)

fk{n) 

fk {n  + 1 )

(4.52)

1 / i  (n +  k) ••• f k{n +  k) 

discussed earlier. The other is a generalization taken directly from  a recursion 

relation, such as the algorithm  o f Brezinski and H&vie or the e-algorithm of
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Wynn.

The idea o f the latter can be expressed through example. In  the recursion 

(4.23), the quantities ej^ are form ally replaced by vector quantities. The move 

from  scalar addition to vector addition is naturally defined, but a problem exists 

as to the meaning of

( n + l ) _  (»)• (4 -5 3 )
ek e*

There are many possibilities for a vector “ inverse” . W ynn [37] was the firs t to

try  Samuelson’s inverse o f a vector v, which is

v+ =  —  (4.54)
v • v

One recognizes this as the Moore Penrose generalized inverse o f the “m atrix ”

v, that is, the unique vector o f m inimal norm such that v • v+ =  v+ • v =  1.

However, some remarkable exactness results given in the following theorem for 

the Samuelson’s inverse version were discovered and later proven by McLeod 

[23] and Graves-Morris [17].

T he o re m  15 (G ra v e s -M o rr is  [17]) Suppose that a vector sequence xn con

verging to Xoo satisfies a relation of the form

Cr X n + r  =  X<x>> (4.55)
«=0

k
where ] T / r =  1 and k is a positive integer. Then the vector e-algorithm

i= i

h i)  +  ( € ( n + D  _  £ ( n ) )  ? ( 4  5 6 )
eH i =  4_+1) ^  ^ (n+1) -  ' (n) 

=  0,

(n)
«0 =  In 

i'S exact in  the Sk-th column.
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The vector epsilon algorithm  is exact for m atrix iterations x i+i =  Ax,- +6, where 

A  is square, since they satisfy a relationship of the form  (4.47). In this case k 

is likely to be the order of the m atrix  A, unless we are lucky enough to guess a 

starting vector purely in an invariant subspace. Theorem 1 is o f litt le  practical 

value where computation to the 2fcth column, k  =  order A, would amount to a 

very expensive numerical method. However, it  w ill be shown in the numerical 

results o f chapter 5 that the vector e-algorithm is a good convergence acceleration 

technique in variety of situations, especially if, when taking dot products, the 

sparsity of the vectors is taken in consideration. There is certainly a vector 

analog o f the recursions (4.15) through (4.17) or any other scalar recursion 

relationship tha t involves a rational function of iterates. The problem, as can 

be deduced from the extensive papers of Graves-Morris [17] and McLeod [23] is 

proving anything about them.

A  natural generalization o f (4.43) is due to Brezinski and H&ive [19]. Suppose 

that 8 is a nontriv ia l real or complex Banach space w ith  norm  || • || w ith  dual B'. 

Pick a convergent sequence o f functionals <f>u  <f>2, • • • in S', where ker(</>r) /  8, for 

r  =  1, oo. Suppose that sequence x i, X2 , • • • in 8 has the following representation

00

Xn ~  Zoo +  Y ,  cr fr {n )  (4.57)
r - 0

where the cr are scalars and for each r, the “spectral” sequence / r ( l ) , / r (2 ),. . .  

is convergent in 8 . Assume tha t ||/r || =  0(1) as r  —► oo and, w ithout loss of 

generality, tha t f j  ^  f k for j  ^  k. The generalization is given by
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E k{xn) =

Xr

$n{Xi»)

0 /x(n)

1 ^ n ( /l(» ))

/m(»)
< M /*(n ))

4n+k{xn+k) 1 <£n+ fc(/n (» )) <£n+fc(/fc(n ) )

At ( /* (» )) 

< M /*(n ))

(4.58)

1 & .+ fc ( / l ( »  +  *0 )  • ”  <£r»+ifc(/jfc(n  +  k) )

where the expansion is done form ally along the first row to make the determinant 

in the numerator well defined and the denominator is assumed non-zero.

I f  the Banach space & is actually C and the sequence of functionals <}> is 

{1 ,1 , - - -, 1, • - -}, then (4.50) is identical to (4.44) [34]. The sequence transform

(4.50) is the most general one to  date for which nice regularity (convergence of 

sequence implies convergence of transform) results have been proven for different 

choices of the functional sequence <j> and which reduces in the scalar case to the 

“well known” sequence transforms. The essential tool in the regularity results 

is Sylvester’s identity for reducing the determinants involved into sim ilar ones 

o f lower order.

Some regularity results in the theory o f the general B.H. protocall (4.50) w ill 

now be given. Assume that lim  <f>n =  <f> ^  0 and tha t the kernal of (j> is not the
Jfc—too

whole space B.  Consider a path P through the table o f transforms. Graphically,
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the path is represented by a line through a table of transforms. For example,

Consider the two cases

i. <j>i,  <j>2 , • .. a constant sequence, P an a rb itra ry path.

ii. fa, <f>2 , . . .  a general sequence and P an arb itrary path through (4.51) with 

n  —> oo.

T he o re m  16 In  cases i. and ii. above let d ( r j^ 5/C ) / | rW | >  6 >  0 on P  where 

n +  k is sufficiently large, then E k{xn) converges to on P  i f  an only i f  S*(x) 

converges to S along the path P.

For the convergent sequence x n —> x ^ ,  Brezinski [8] has shown tha t the bound-

fixed constant, is enough to insure convergence of E n(xk) to  x ^  on paths w ith in  

0 < k < K  +  l .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-Ei(zi)

E i {x2)

E i ( x 3) (4.59)

E i ( x 4) E 2( x 4)  E 3(x4) E 4(::4) 

E ^xs) E 2(xB) E 3( x b) E 4( I b)

To state the results we introduce the definitions:

d(b,K) =  in f lim||6 -  t\ 

5 * =  <f>n(Ek(xn))

s  =  H xoo)

and e* =  Ek{xn) -

edness away from  1 o f <j>n+i{Ek{ f k+ i{n  +  1)))
for paths where 1 <  k <  K , K  a
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The behaviour o f Dk(xn) for unbounded k  is apparently unexplored. Results 

for classes o f sequences for which =  0(1), i.e. the transform  is
\ xn ~  *001 ' '

accelerative, are also unknown. There are some results for acceleration in a 

seminorm (<£(•)) for case i. For details see [34] chapter 10.

4.3  O n  th e  F o rm atio n  o f E x trap o la tio n s

I t  is not emphasized in the literature tha t many scalar extrapolation methods 

are single component solutions to a system of the form

(4.60)

M  is a (k  +  1) x k m atrix. There seems to be a notion tha t because determi- 

nental methods determine Xoo w ithout determining ci,C2 , . . . ,  c*, tha t they are 

somehow more efficient. However, flop counts reveal that this is not so and, in 

fact, in many situations Gauffian elim ination is preferable ([34] p .198). Deter

m ination o f good parameters Cj,C2, . . .  ,cr is all im portant because, in a sense, 

they describe the number o f degrees o f freedom tha t the sequence terms have 

on spectral terms. Accordingly we propose tha t “vector”  extrapolations involve 

the “solution”  o f a formal system

_ _
X o o

1

: M C l
: =

X n + 1

1
c k x n + k

I

<

X o o

C l

1

< £ ** t

Ck

w
(4.61)
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The M P E  method is of this form  w ith  /,(n ) =  x „ , lVLr given by

( A i i ,  A x i )  • • • ( A i i ,  A x i )

(A x r , A x i)  . . .  (A x r , A x r) 

V  is the n x r  zero m atrix, and W  is

We w ill consider the simplification

1<
X o o X n

<f> 1 Cl ^1 ' -Cn+1

M, : :

. r̂ c* <j>r • X n + k

(4.62)

where the first row is vector or scalar quantities; the unknowns and the right 

hand side are scalars; I  is the n x n identity m atrix ; and ]Vtr is a (r +  l )  x 

r  m a trix  somehow related to the first row such as a sequence of functional 

evaluations of the vector spectral terms f r (n ); and the column . . .  ,(f>r\

and [xpi, f a , . . . ,  xl>r\ are given functionals. In (4.62) the m ultip lica tion <j>k-Xoo 1 < 

k <  r  may be specified or determined from 4>k'Xn =  <£*•£<»+Xw=o c,<^jf/, (n) i f  the 

functional is linear and there is confidence in the representation. A  typical choice 

for the quantities <f>k and /jb(n) 1 <  k <  r  is a set of vectors <j>k — (j>\,. . . ,  (j>{]

and fk (n ) =  [ /* (« )> / t ( n)>••• 5/jt(n)]ff in %*■> £ =  dim(xoo). In  this case the 

formal system is a large m atrix  of order (n +  r) x (n  +  r) , but quite sparse, 

so advantage can be taken w ith  a proper sparse solver. Also in  the essential
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problem now is the evaluation o f the transform  implied in (4.61), the m atrix  

IVtr is obtained from  a m atrix  M r _ i  by appending a row and a column. 

When this happens ]VIr+1 is easily obtained from  ] \ ^ r w ith  use o f a Sherman- 

Woodbury-Morris on type formula [14]. We can “precondition” the system (??) 

by left m ultip lica tion by the m atrix

In  0

0

M
- l  
r + 1

(4.63)

Xoo

In  f Cl

O

. M r+1̂ / r+1
: . M r+14> /r+1

cr+1

to obtain the system

xn

^ l^ n + l  

<j>rXn+r+i ^
" (4.64)

where M  is a (r +  2 ) x (r +  1 ) m atrix, I t is the I  x i  identity m atrix , <j> =

[<f>i,<f>2, " - , <f>r+i]T and f  =  [ / i , / 2 ,  f r+ 1]. This system is quite sparse and

can be solved efficiently. Possble appropriate sparse solvers are the Conjugate 

Gradient Methods of chapter 3 and, again, the Sherman-Woodbury-Morrison 

type formulas. The algorithm w ill be shown through an example in  chapter 5. 

There are two key steps in the implementation of this extrapolation.

•  A  good choice of representing functions f  must be chosen. This leads to the 

overdetermined system xn =  £<*, +  £JL0 c,•/,(») of which [z ^ , c1?. . . ,  cr+1] 

is a solution.

•  The functionals must be chosen to  select a good solution from  the set of 

solutions to the overdetermined system. There is an all im portant question
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tha t w ill, unfortunately, not be answered here. Intu itive ly, i f  one is very 

confident w ith  the adequacy of the representation

r

* »  =  X o o  +  ° i f i  (n ) » ( 4 -6 5 )
«=0

then it  is probably best to  determine <f>k • Xoo exp lic itly  from  (4.65). I f  one 

is not confident, then perhaps it  is best to  go to the other extreme w ith  a 

representation (4.61) where V  is zero.

Making the system (4.61) square was done for clarity. I t  should be noted 

that i t  is possible to make (4.61) overdetermined by picking more <f> terms than 

/  terms. There are many sparse solvers, such as the planar conjugate gra

dient technique, which efficiently solve such systems. I t  may also be desired 

to allow the first row quantities be scalar terms and the column of unknowns 

[xqo, ci, . . . ,  cr] be vectors. This leads to extrapolations sim ilar to  Henrici’s [7].
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Chapter 5 

N um erical Experim ents w ith  
Selected E xtrapolations

In tro d u c t io n .  Here we investigate the various extrapolations formed in chap

ters 2,3 and 4 on a model problem. The main thrust of the investigation w ill be 

on extrapolation to the lim it of a vector sequence produced by two well known 

iterative methods for linear systems. The first o f these methods is the successive 

overrelaxation method (S.O.R.) and the second is the Chebychev semiiterative 

method (C.S.I.). These methods have parameters which, when modified, cause 

the eigenelements o f the associated iterative m atrix  to  vary over a wide range. 

There are “optim al”  values—  values which minimize the spectral radius of the 

iterative m atrix—  for the parameters which are known for certain test prob

lems, but not for general iterative matrices. Consequently, the parameters are 

often not the best possible. I t  w ill be shown tha t in this situation that the 

extrapolations are economical and simple methods for improving convergence.

In  the following section we give a brief introduction to  formulation of classes 

of iterative methods including S.O.R. and C.S.I..
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5.1 P recondition ing  and the  Form u lation  of 
Ite ra t iv e  M ethods

Consider the numerical solution o f a large sparse linear algebraic system

A x  =  6 , x,b  6  Z n (5.1)

where A  is nonsingular. Very often in applications A  is sparse w ith  a band or 

skyline structure in which there are only a few nonzero entries. D irect meth

ods based upon a factorization A  =  LU , where L  and U are upper and lower 

triangular factors respectively, tend to produce costly fill- in  w ith in  the band or 

skyline structure. Furthermore, in direct solution methods round-off and data 

errors tend to  increase faster than the condition numbers (see for instance [3]). 

In  defense of direct methods, this can be partia lly  alleviated by the method of 

iterative improvement at additional cost (see Rice [28]).

Iterative methods do not suffer from fill-in  and, w ith  effective preconditioning 

or acceleration, algorithms of almost optim al order may be derived. Further

more, preconditioning and acceleration techniques are often extendible to non

linear iterative numerical methods just as many o f the classic linear iterative 

methods are.

Let C  be an approximation o f A which is relatively inexpensive to  invert. 

C  is often called a preconditioning m atrix. A  basic iterative method in defect 

correction form  is given by

(5.2)

where r,- =  b — Ax{ is the residual (or defect) at the tth  step. A good starting 

value is xo =  C~l b.

Consider the splitting

A =  C - R (5.3)
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where R  is known as the defect m atrix. Then (5.2) takes the form

C xi+ i =  R xi +  b (5.4)

which converges i f  /)(C_1 iE) <  1 , where p(-) is the spectral radius. There is 

extensive theory devoted to  regular splittings (C - 1  >  0 and R >  0  elementwise) 

which may be applied at this point. Included in  this is the well known S.O.R.

(successive overrelaxation method).

The number o f iterations to  reach a relative error, ||x — xn| / | x  — Xo|| <  € is 

given by

Three possible ways to improve the efficiency o f iterative methods are

1 . “accelerating” the iterative method,

2 . picking a good preconditioner, and

3. a combination of (1.) and (2.).

S e m iite ra tiv e  M e th o d s . Here we review the form ulation of semiiterative 

methods. For more details see [6 ] or [32], Consider first the iterative method 

modified from  (5.2)

for the solution o f Ax  =  6 . This is the defect-correction form  of the iterative 

method

(5.5)

where p0 =  |C,- 1 iE|. As noted be Axellson [2], in  the case o f common discretiza

tions o f second order e lliptic partia l differential equations where C  is chosen to be 

the (block) diagonal part of the discretization m atrix, one obtains p0 — 1 / ( 1  +  f) 

for positive f  independent o f h. Hence k  =  0  (A-2) which is unacceptably large.

x,+ i =  x t- — 7,C _1 rt-, r,- =  A xi — b (5.6)

X.-+1 =  ( I  -  T iC  ^ x , -  +  C  l b i  =  0 ,1 , . . . (5.7)
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where { r , }  is a sequence of iteration parameters. I f  r,- =  r, t =  0 , 1 , . . we ta lk 

about a stationary iterative method, otherwise the method is nonstationary or 

semi-iterative. Let e,- =  Xoo — x,-, the iteration error. Then it  follows from

(2 .1 ) tha t e, + 1  =  ( I  — r,C'_1A)e,-, i  =  0 , 1 , __ So e,- =  P,(c- 1A)e0 and r< =

APi{C-lA)A-\'Q = Pi{AC~1)r0. Here ? < ( A )  =  n^oC 1  “  TtA )  is an (m +  l ) th  

degree polynomial having zeros at 1 /r,- and satisfying P, (0) =  1.

We want to choose parameters { r , }  so tha t fe,-f is minimized. However, in 

general these parameters depend on eo which is not known. Instead we choose 

to minimize ||e,-||/||e0|| for all choices o f e0 by m inim izing ||Pm(C _1A)|| in some 

way.

I f  the eigenvalues o f C~l A  are real and positive and positive lower a and 

upper b bound are known of the spectrum, then we may choose to minimize 

max0<A< 6 |Pm(A)| for all Pm such tha t Pm € Pm and Pm(0 ) =  1 . The solution to 

this problem is well known,

=  , b . l \  •

where Tm(z) =  cos(m arc cos z) are the Chebychev polynomials of the first kind. 

The corresponding values of r,- satisfy

1 b — a b +  a 2 i — 1
-  =  ~ Y ~  cos0j +  ~ Y ~, =  t =  l , 2 , . . . , m ,

which are the zeros of the polynomial. This method is known as the Cheby

chev (one step) method. I t  can be shown tha t i f  m >  K ft/a ) 1/ 2 ln(2/e) then

|e»n|/|fo|| <  e [14].

Disadvantaged to  this method are tha t on needs accurate estimates of a and 

b for fast convergence and a tendency toward instability i f  the parameters r,- 

are not taken in a certain order [13]. The la tter problem may be alleviated by
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employing the three term  recursion for Chebychev polynomials of the firs t kind 

over an interval,

1 — XGCfXt -f- ( l  o :,)x ,_ i P iC  r,-, i  — 1 , 2 , ,

where x x =  x0 -  \P QC~xr0, Po =  4 /(a  +  b),

a- +  b „  a +  b (b  — a \ Z „
<*i =  Pi =  ~ 2  I —^— ) P i-1> * =  1, 2, . . . .

This is the Chebychev Semiiterative Method. We do not have to  determine the 

number of steps beforehand and the method is numerically stable for reasonable 

close estimates [14]. When the eigenvalues are complex w ith  positive real parts 

and we know an ellipse containing them, the parameters may be chosen similarly. 

See Young [18] for details. The intention here is to employ various extrapolation 

techniques and compare their effectiveness w ith  (slightly) inaccurate estimates 

of the spectral bounds a and b.

5.1.1 On the Formation of Classical 
Relaxation Methods

Here we formulate classical relaxation methods by the producing rational ap

proximations to the exponential function. This approach has been considered in 

Varga [32]. The exponential function arises as a solution to a system of linear 

ordinary differential equations.

Suppose tha t a solution to  the linear system A x  =  b is derived. Consider 

instead formulating the problem as

doc
C  —— =  b — A x =  r(x )  (5.8)

dv

where C  is a preconditioner to A. Consider a general solution to  (5.8) w ith

in itia l condition x (0 ) =  x0: The solution is given by

x {t) =  A~xb +  e x p ( - tC - 1 j4) • {xo — A ' 1̂ }. (5.9)
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Here exp (A) =  I + A + A 2 +  A s +  . .. [14]. Assume that exp(iQ ) >  0 (elementwise 

postive) for all t >  0. Such a m atrix Q is known as an essentially positive matrix. 

The following theorems from  [32] are necessary to understand the methods we 

shall derive.

The firs t theorem is closely related to  the Perron-Frobenius Theorem.

Theorem  17 [82] Let Q be an essentially positive matrix. Then Q has a real 

eigenvalue f(Q ) such that

1. To f  (Q) there corresponds an eigenvector x >  0 .

2. I f  a  is any other eigenvalue of Q, then 3?(a) <  s(Q )•

&  C(Q) increases when any element o f Q increases.

[32] The following theorem, which follows from  theorem 5.1 [32], shows tha t f  (Q) 

dictates the asymptotic behavior of |exp(t<2)|| for large t  when Q is essentially 

positive.

Theorem  18 Let Q be an n  x n essentially positive matrix. I f  f  (Q) is the 

eigenvalue of theorem 5.1, then

II exp(tQ)|| ~  K exp(*f(Q )), t -> +oo,

where K  is a positive constant independent of t.

Consider now the nonhomogeneous ordinary m atrix differential equation

=  Q v(t) +  r  (5.10)

where v(0 ) is a specified in itia l condition and r  is independent of t. I f  Q is 

nonsingular, the unique solution of (5.10) satisfying the in itia l condition is

v(t) =  - Q -1r  +  exp(fQ) • (v ( 0 ) +  Q_ lr }> t >  0 . (5.11)

The proof o f the following theorem follows from theorem 5.2. I t  describes the 

behavior o f solutions to (5.10).
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Theorem  19 [82] Let the n x n matrix Q of (5.10) he essentially positive and 

nonsingular. I f  f(Q ) >  0, then fo r certain in itia l vectors t>(0 ), the solution v(t) 

of (5.10) satisfies

l«(<)ll =  + ° °  (5 -12)

i f  c(Q) <  o, then the solution vector v (t) is uniform ly bounded in  norm fo r all 

t >  0 , and satisfies

=  ~Q ~ l r - (5-13)

Let Q =  C~l A , i t  can be shown that i f  C  has a positive diagonal and A  is an 

irreducible, M -m atrix  [32], we have that f(Q ) <  0 and (5.13) is satisfied. 

Replace t by t  +  A t  in (5.9), then

x {t +  A t) =  A _1b +  exp(—A tC -1 A) [io  — -A-1&]

=  A~*b +  exp(—A tC ~ 1A)e0 (5.14)

for any A t >  0  large or small. Iterative methods can be constructed from  (5.10) 

by considering polynomial, rational, or general m atrix  function approximations 

to exp(—A tC ^ A ) .  The approximation is often to the scalar function exp ( - 7 ) 

upon which the m atrix  argument -C ~ l A A t  is substituted. G lobally accurate 

approximations over as large a region as possible are needed so that a large time 

step or large norm preconditioners may be used to diminish exp(—A tC ~ l A)ea. 

This produces an efficient iterative method. O f course there is always the trade

off that comes w ith  the additional complexity that comes w ith  better approxi

mations.

The fam ilia r point and block Jacobi methods can be constructed from  (5.10) 

by letting C be a diagonal or block diagonal of A, A t  =  1 , and approximating 

e~l by its firs t order McClaurin expansion about 0 ; that is e- t  «  1 — t. Let 

t =  nA t.
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Using a firs t order m atrix  approximation

exp(—C 'U A i )  «  ( /  -  A tL )~ x{A tU  +  (1 -  A t ) / }

where

A =  D - { C l  +  Cv )

L  =  D ~1Cl 

U  =  D ~XCV

produces the iteration

x((n  +  l ) A t )  =  ( I  — A tL )~ x {A tU  +  ( 1  -  A t) I}a ;( ttA t)  (5.15)

+ A t [ I  -  A tL )~ l D ~ xb (5.16)

This is the successive overrelaxation method (S.O.R.) when Cl  and Cv are re

spectively the lower and upper traingular portions of A. The exponential deriva

tion is due to Varga [32].

W ith  rational m atrix approximations, care must be taken to ensure tha t the 

inverse exist and is easily found numerically. Direct m atrix  approximations of

exp(—A tC - 1  ^2  A i)

where £•/!» =  A  from  a class o f iterative methods including S.O.R. and Jacobi.

In problems where effective time accuracy is desired, it  is im portant to con

sider the accuracy o f the approximation, the time step, and the conditioning of 

the component matrices Details of the accuracy in terms of both the

Schur decomposition and the Jordan canonical form  of the m a trix  exponential 

argument are given in Golub and VanLoan [14].

Now consider the exponential approach in its generality. Let A  =  At- 

Then from (5.10) it  is seen tha t

n
x (t +  A t) =  A~xb +  JJ e x p (-C “ 1A <At)[a:o -  A~xb]. (5.17)

t=i
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Let A t  =  y^.A tj be a large time step, then
9=1

x {t  +  A t)  =  A l b +  JI JJ e x p (-C  1AeAtq)[x0 — A  *6 ] (5.18)
1=1 9 = 1

or

x(t +  A t)  = I  -  JJ II e x p (-C  1At )A tq
t=l 9=1

A  xb +  n n e x p ( -C _1^ A t , ) i o
1=1 9 = 1

(5.19)

As before, an iterative method is constructed by considering rational approxima

tions ( ^ ) m(A) to exp(A) where (associated w ith  e x p (-C - 1 A <A t,)  over a region 

containing the spectrum of — C~x A t A t q or by considering direct rational m atrix  

operations
P { -C ~ l A t A tq)
Q { - C - 'A t A tq) ’

In  practice i t  is im portant for P and Q to  be constructed such tha t

P ( - C - 'A t A t,)  ,

is easily calculated. Since it  is A  that is inverted, A - 1  should not appear in the 

expression.
p

Let T (A t)  =  JJ JJ ( —)eg(—C A eA tq) and consider the approximation in (5.19):
y

x(t +  A t)  =  A~l b +  r(A *)[x o  -  A~xb] (5.20)

Considering this as an iteration and taking m  time steps gives

x m =  x (t +  m A t)  =  A~l b +  r ( A t ) m[x0 -  A ~ l b\. (5 -21)

I t  can be seen tha t if  the time steps A t i  and the splitting is chosen so that the 

spectral radius p (T (A t)) «  1 , then the method w ill be quickly convergent.

In summary, the justification for the exponential form ulation is (1) in the 

ease by which classical methods are formed from it, including the classical relax

ation method; and (2 ) the incorporation of readily available accurate rational 

approximations to  ez; and (3) the sp litting  property ea+b =  eaeh which enables 

us to form  iterative methods from  preconditioned “parts” o f A, as in (5.17).
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5.2 M o re  on the  S .O .R . M e th o d

The successive overrelaxation method is given by (5.15). We let A t  =  w to 

formulate the method in  defect correction form  as

Xi =  x i+1 -  +  D )~ l  • r,- (5.22)

where r,- =  6  — Ax,-. For certain physical reasons, the time step is known as the 

overrelaxation parameter. The following theorems are the results o f extensive 

work by Young [18]:

• The method is convergent only for 0 <  w <  2. I f  0 <  u  <  1, we speak of 

underrelaxation.

• The method is faster than the Gaufi-Seidel method for a large class of 

matrices arising from  fin ite differencing and fin ite element techniques.

• I f  p j is the spectral radius of the Jacobi iteration and the m atrix  has 

property “Y ” [6 ], then the optimal choice of relaxation parameter is given 

by

2  / ,w = --------7= = .  (5-23)i+v 'w i
•  W ith  optim al choice of parameter u , the spectral radius for S.O.R. is given 

b y  2

'8-0JL=(177b*) • (524)
In  two numerical examples, we w ill assume here that there is no knowledge of 

the spectrum o f the Jacobi m atrix of the iteration, so tha t we do not know the 

optim al overrelaxation parameter.

We now tu rn  our attention to a boundary value problem exemplified by an

elliptic partia l differential equation. The commonly used model equation in the
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Poisson equation:
d2u d2u . . . .

9 *  +  V  =  ' , ( l ’ S) (5'25)

where the source term  p is given. I f  the source term is equal to  zero, the equation

is Laplace’s equation. Consider a uniform  grid spacing o f points

x} =  x0 + j A  j  =  0 ,1 , . . . ,  J,

and

!/ i =  yo +  /A  I =  0 , 1 , . . . ,  L

where A  is constant. The resulting fin ite difference approximation using / (xy, yj) : 

for any function /  and

(Pu ^  Uj- !,y  -  2u,-,y +  Ujj 
d x 2 ■(*,») ~  A 2 ’

and sim ilar for y, can be w ritten  in the form

tty+i.i +  tty -u  +  tty,j+i +  tty,i_i — 4Ujti =  A 2 • f a .  (5.26)

(5.26) defines a m a trix  equation Ax =  b where the structure of the m atrix is 

determined by the way the two-dimensional grid is f it  into the one dimensional 

vector of unknowns x. The fin ite difference equation defines a unique set of 

eigenvalues and eigenvectors which are the same modulo a s im ilarity transfor

mation of permutation matrices [6 ].

A  general second-order e llip tic equation in x and y approximated by finite 

differences over a square has the form

ttj.Jtty+l.J +  6y,itty-l,( +  CjjUj'i+x +  +  CyiUyy =  f j i . (5.27)

where the model equation has a =  b =  c =  d =  l ,  e =  —4. The fin ite difference 

form o f the Jacobi method is obtained by updating the term  Ujj in  terms of the 

others:
f,n + l _  fj.l ~  ai,Jtty+ i, i -  &y,|tty_li( — Cy,iU"z+1 — dy.jUy j . j
uy,J -    • (5.28)

cj,i
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Gaufi-Seidel results from  updating iterates as soon as they become available in 

the given ordering o f unknowns. I f  the ordering is done along rows, we have

u n+1 =  ai.iu?+H  +  h i ul - h  +  ci , K i + i +  d jjiu l t \  -  /y ,i (5

3' ei,i

S.O.R. is obtained as a linear extrapolation between a Jacobi iterate and a 

previous iterate:

=  w«;,i +  (1 -  w)u9jd . (5.30)

where

... f i t  ~  ahlU7+l,l ~  ~  Cj,lU7,l+l ~  d},lU7,l-1 tr  o i\uu  = --------------------------------— ---------------------------------. (5.31)

The residual has the form

r j,i — f j, i ~~ aj,iuj+ i,i ~~ b jjU j- i'i — Cj iUj i+i  — d j i Uj i - i  — ej iUj i .  (5.32)

so that the S.O.R. algorithm is given by

=  «oM +  J li i .  (5 .33)
ei,l

In the examples in  the following two sections we fix the size of u at 11 x 11, set 

a =  b =  c =  d — 1, e =  —4i and / 6 i6  =  1 and /  =  0  elsewhere.

5.3 E xtrap o la tio n s  on th e  S .O .R . M e th o d

The iterative m atrix  G in the S.O.R. method is in general nonsymmetric so that

z i+ 1  =  Gxi +  k (5.34)

is an iterative means of solving the nonsymmetric system (I  — G )x  =  k. We shall 

attempt to accelerate the convergence w ith  extrapolation methods that do not 

assume symmetry. These methods include the M.P.E. extrapolation of section

(3.1), an eigenvalue extrapolation from a projected equation (section 2.2) where 

the eigenvalue solver is for nonsymmetric matrices, and the e-algorithm in its
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vector version. We start off w ith  the M PE method which, in the numerical ex

amples we have tried and in agreement w ith  Sidi, Smith, and Ford [30] is one of 

the best. In  comparisons w ith  the projected residual and projected eigenvalue 

methods, we shall show tha t M PE is the numerically wise way to  extend Lus- 

te rn ik ’s transformation (2.9) for the m atrix  iterations considered. Accordingly, 

we devote a large portion of this chapter to  th is method in try ing  to  determine 

how to effectively use it.

5.3.1 M PE on the S.O.R. M ethod

We w ill now extrapolate on S.O.R. on the model equation w ith  u> =  1.0 and 

u  =  1 .2 . The firs t situation is commonly known as the Gaufi-Seidel iteration. In 

Gaufi-Seidel the eigenvalues of the m atrix  G are real and w ith in  the interval [0,1]. 

In  fact, the closure o f the spectrum nearly covers the whole interval, making 

Gaufi-Seidel a very slowly converging iteration [18]. However, the advantage 

in  this iteration is having a real spectrum which insures the presence of low 

dimension subspaces approximate to dominant invariant subspaces on which to 

project a problem. We employ the following notation for the M PE method:

(5.35)

Here a is the number of iterates used in the iteration, b means to use iterates 

b ■ t, i  =  1 , 2 , . . . ,  for example, b = 2  means to  use every other iterate, x 

is the starting index of the vector iterates (ordered from  top to bottom) to 

use in  the extrapolation, y is the finishing index, and z means to  use every 

Z ' i ,  i  =  l , 2 , . . . ,  indice from x  to y. For example, let x  =  [x1} z 2, • • •, £no]r - 

£io:2 :9o is the vector x =  [x10, x i2, . . . ,  X90]. As a final note, we have found that it  

is generally most effective to employ our extrapolations for a certain length of 

tim e to produce an extrapolation x*, and then restart the iteration w ith  x0 =  x*. 

In  the following tables an occurrence where a restart was not employed w ill be
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indicated by a rectangle around the number in  the table (which is the £2 norm 

of the residual). For example, if  on the 10th iteration the residual is 0.0123,

the entry on the table w ill appear as 0.0123 if  no replacement was made after

the residual o f the extrapolation was determined. I t  w ill appear as 0.0123 in  no 

replacement was made. Generally, boxes w ill not appear in the extrapolation 

columns. A fte r an extrapolation is make, new coefficients are computed for the 

next extrapolation.

The following page has results o f the Gaufi-Seidel iteration:

G au fi-S e ide l I te ra t io n  (S .O .R . w i th  u  — 1.0)

(entries are £ 2 norms of the residual)

Iteration Gaufi-Seidel M PE jo-ioq.i m p e SSm M PE’ SUoo*

1 2 . 0 0 0 0

6 0.3474 0.2348

1 1 0.2074 0.1157 0.1434

17 0.1255 0.0255

2 1 0.0760 0.0123 0.1363 0.0713

26 0.0460 0.0035

31 0.0279 0.0231

36 0.0169

41 0 . 0 1 0 2 0.0152

46 0.0061

We now give results for the S.O.R. iteration (5.33) w ith  w =  1.2. Note here tha t 

because of the ineffectiveness o f the extrapolations used for the last two columns 

above we use different M PE iterations (see comments on the next page).

I l l
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S.O .R . w ith  w =  1.2

(entries axe £ 2 norms of the residual)

Iteration S.O.R. u =  1 .2 MPEj^ioo;! M P E ^ jqo* M P E ™ * *

1 2 0 0 0 . 0

6 0.3389 0.2869 1.8923

1 1 0.1555 0.1189 0.0326 0.1692

16 0.0713 0.0496 0.0135

2 1 0.0327 0.0208 0.0056 0.0463

26 0.0150 0.0092

31 0.0069

36 0.0034

C om m ents. In  actual applications the residual calculation fo r the extrapolation, 

which is one of the more expensive parts o f the iteration, would not be used as 

often as in  the table where it  is needed for purposes of illustra tion. For linear 

iterations such as above, the evidence seems to  indicate tha t i t  is im portant to 

avoid rank deficiency, which is what occurred in columns two and three of the 

first table above and is seemingly the cause o f the failure of the extrapolations. 

A fP E f^ 100;5 accomplished this better than the other versions by keeping the 

number o f vectors in  the extrapolation small and the size of the vectors small. 

As as rough rule for keeping the systems small to avoid rank deficiency is to use 

about y /n /2  iterates, where n is the size o f the vectors involved in the iteration.

5.3.2 S.O.R. and the e-algorithm

We w ill now illustrate the dramatic effect the vector e-algorithm has upon the 

sequences produced from the two variants o f S.O.R. used in M PE above. We 

remind the reader tha t the meaningful analytic continuations are contained in 

the even numbered columns of the e-array (4.56). We employ the algorithm  in
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two ways: the first is the diagonal sequence e* which is generally best to pro

duce analytic continuations of nonrational functions, but expensive memorywise 

since we must save the whole bottom  diagonal o f the array; and the second is 

proceeding down the diagonal u n til a certain even column is reached, in this 

case column 5, and then proceeding down the column. The second is more 

economical storage wise, but slower.

e -a lg o rith m  fo r  th e  G au fi-S e ide l Process 

(entries are £2 norms of the residual)

Iteration Gaufi-Seidel e (diagonal) € (column 5)

4 0.4510 0.4670 0.4670

6 0.3474 0.4490 0.4490

8 0.2809 0.0719 0.1123

1 0 0.2294 0.0015 0.0141

1 2 0.1876 1.502-10"5 2.0624-10"4

Now for S.O.R. w ith  some overrelaxation:

e -a lg o rith m  fo r  S .O .R . u  =  1.2

(entries are £2 norms of the residual)

Iteration S.O.R. u  =  1.2 e (diagonal) e (column 5)

4 0.4683 0.8154 0.8154

6 0.3389 0.5482 0.5482

8 0.2481 0.0400 0.0722

1 0 0.1817 1.5020-10-5 1.2150-10-4

R e m arks . The e-algorithm shows superior convergence to the M PE method of 

the previous subsection. But at what cost? Note tha t each use o f MPE extrap

olation using 5 iterates had a cost of about 2500 flops for the inner products 

and system inversion. Each extrapolation has a cost of about 700 flops. The
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cost o f the extrapolation is small when is considered tha t we spend 2600 flops 

per iteration. The e-algorithm costs about 500 flops in  moving one column to 

the right. There is also a great deal o f subscripting and movement of storage 

not taken in to the flop count. Roughly, a move up the diagonal of a 5-column 

e-algorithm costs the same as an MPE extrapolation. B u t this cost is incurred 

for every iteration  as opposed to every 5 for the M PE method. However, w ith  

this version o f S.O.R., the convenience and exceptional convergence make the 

e-algorithm worth it.

We note tha t the iterates in this example had components tha t were mono

tone decreasing to the lim it. The epsilon algorithm  does not seem to do so 

well for a highly oscillatory sequence produced by the Chebychev iteration (see 

section 5.5). F inally we note tha t none of the extrapolations produced here are 

likely to work for an optim ally overrelaxed scheme. Heuristically, the reason can 

be seen by consideration of iterative m atrix  G and the error e,- at the tth  step. 

The extrapolations produce semiiterative methods which have error of the form

£i ~  P i - l { G ) £0

where Pi (G )  is a polynomial of degree i. The question is the best choice of the 

polynomials Pi[z) .  The spectrum of the optim ally overrelaxed m atrix  in the 

model problem is on a circle centered about zero. So the ideal polynomials w ill 

have m inimal norm (we choose £2) over the circle. However, the polynomials 

are exactly Pi(z)  =  zx for i  =  1,2 ,...[12]. This is equivalent to no semiiterative 

modification o f the original iteration Xj= 1  =  Gx, +  k.

5.4 E xperim ents  on S .O .R . W ith  
O th e r E xtrapo la tions

In this section we consider the formulation o f an extrapolation from  a projected 

problem. In  particular we use a projected eigenvalue problem to form  the co-
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efficients of the extrapolation. This is extrapolation of figure 2.1 page 27. We 

chose not to  use some of the specialized projection methods, such as the Lanzcos 

method for representing the projection o f the m atrix  in tridiagonal form, because 

of the moderate size o f the iteration. Such methods, which save a fu ll K ry lov 

span from  a beginning vector, are more suited for larger and sparser iterations 

[10].

For the model problem we solved the eigenproblem (2.36) w ith  Q taken as 

the orthonormalization o f the m a trix  [ A x x, & x 2, . . . ,  A x 5]. Tw o very simple 

extrapolations, one using the 10th and 11th iterations and one using the 15th 

and 16th iterations, w ith  only the dominant eigenvalue were performed. The 

overhead involved iteration on the columns of Q, five vector inner products, and 

the solution of a 5 x  5 eigenproblem. The following convergence history was 

produced:

Selected Eigenvalue E xtrapolation

(entries are Li norms of the residual)

Iteration Gaufi-Seidel Eigenvalue Extrapolation

6 0.3474

1 1 0.2074 0.0090

16 0.1255 6.5571 • 10" 4

2 1 0.0760

26 0.0460

5.5 Some E xtrap o la tio n s  on 
th e  Chebychev M e th o d

Here we show tha t the Chebychev iteration may be improved when the endpoints 

chosen are not accurate values for the optimum endpoints. The extrapolations

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



we choose are the most successful ones from  the S.O.R. iteration, namely the vec

to r e-algorithm and the various successful implementations o f the M PE method. 

Here the endpoint parameters were given the values a =  0.0900 and b =  7.9000. 

These values are upper and lower bounds on the spectrum and are close to the 

optim al values a =  0.1620 and b =  7.8380. These are much better estimates 

than can be obtained for the Gershgorin estimates [14], Obtaining such good 

bounds for a general m atrix  w ithout extensive analysis is unlikely.

Chebychev iteration is a semiiterative method in  itself so th a t we no longer 

have a simple m atrix  iteration w ith  which the extrapolations may be formu

lated. We instead assume there is some m atrix  iteration which approximates 

the iteration and employ the extrapolations which are, o f course, formed from 

the vector iterates.

C hebychev I te ra t io n  w i th  in accu ra te  pa ra m e te rs  

(entries are £ 2 norms of the residual)

Iteration Chebychev M PE ^ :100;1 e (diagonal) e (column 5)

1 1.4142 1.5888 1.5888

6 0.1031 0.2226 10.2945 10.2945

1 1 0.6106 0.5837 0.9527 0.3578

16 0.0507 0.1039 0.1440 0.1052

2 1 0.2158 0.0245 0.0661 0.0724

26 0.0260 0.2399 0.2521

Contrary to  the widely viewed notion tha t the e-algorithm is the method of 

choice, we see tha t it  failed to accelerate the convergence of th is iteration. The 

method also becomes unreasonably expensive, especially down the diagonal, 

w ith  the extensive movement in to different storage elements and the cost of 

about 500 flops per step in moving up a diagonal. The M PE^iooa method 

produced an effective extrapolation using iterates 2 1  thorugh 26 resulting in a
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savings o f 5 iterations. Keep in mind tha t to  implement a step of this method we 

solved a least squares problem costing only about 2500 flops. A  single iteration 

of this extremely cheap method costs over 2600 flops. For fu ll matrices the cost 

w ill rise to  well over 10,000 flops per iteration. The cost per extrapolation, of 

course, is the same as for the sparse m atrix  in the model problem, so there is 

even greater benefit to  be gained from  less sparse iterations.
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