126 research outputs found

    Linearly Preconditioned Nonlinear Solvers for Phase Field Equations Involving p-Laplacian Terms

    Get PDF
    Phase field models are usually constructed to model certain interfacial dynamics. Numerical simulations of phase-field models require long time accuracy, stability and therefore it is necessary to develop efficient and highly accurate numerical methods. In particular, the unconditionally energy stable , unconditionally solvable, and accurate schemes and fast solvers are desirable. In this thesis, We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. The results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Based on the PSD framework, we also proposed two efficient and practical Preconditioned Nonlinear Conjugate Gradient (PNCG) solvers. The main idea of the preconditioned solvers is to use a linearized version of the nonlinear operator as a metric for choosing the initial search direction. And the hybrid conjugate directions as the following search direction. In order to make the proposed solvers and scheme much more practical, we also investigate an adaptive time stepping strategy for time dependent problems. Numerical simulations for some important physical application problems – including thin film epitaxy with slope selection, the square phase field crystal model and functionalized Cahn-Hilliard equation – are carried out to verify the efficiency of the schemes and solvers

    Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure

    Full text link
    The numerical solution of partial differential equations on high-dimensional domains gives rise to computationally challenging linear systems. When using standard discretization techniques, the size of the linear system grows exponentially with the number of dimensions, making the use of classic iterative solvers infeasible. During the last few years, low-rank tensor approaches have been developed that allow to mitigate this curse of dimensionality by exploiting the underlying structure of the linear operator. In this work, we focus on tensors represented in the Tucker and tensor train formats. We propose two preconditioned gradient methods on the corresponding low-rank tensor manifolds: A Riemannian version of the preconditioned Richardson method as well as an approximate Newton scheme based on the Riemannian Hessian. For the latter, considerable attention is given to the efficient solution of the resulting Newton equation. In numerical experiments, we compare the efficiency of our Riemannian algorithms with other established tensor-based approaches such as a truncated preconditioned Richardson method and the alternating linear scheme. The results show that our approximate Riemannian Newton scheme is significantly faster in cases when the application of the linear operator is expensive.Comment: 24 pages, 8 figure

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    A high-order local discontinuous Galerkin method for the pp-Laplace equation

    Full text link
    We study the high-order local discontinuous Galerkin (LDG) method for the pp-Laplace equation. We reformulate our spatial discretization as an equivalent convex minimization problem and use a preconditioned gradient descent method as the nonlinear solver. For the first time, a weighted preconditioner that provides hkhk-independent convergence is applied in the LDG setting. For polynomial order k⩾1k \geqslant 1, we rigorously establish the solvability of our scheme and provide a priori error estimates in a mesh-dependent energy norm. Our error estimates are under a different and non-equivalent distance from existing LDG results. For arbitrarily high-order polynomials under the assumption that the exact solution has enough regularity, the error estimates demonstrate the potential for high-order accuracy. Our numerical results exhibit the desired convergence speed facilitated by the preconditioner, and we observe best convergence rates in gradient variables in alignment with linear LDG, and optimal rates in the primal variable when 1<p⩽21 < p \leqslant 2.Comment: 36 pages, 36 figure

    Convergence Analysis of the Fast Subspace Descent Methods for Convex Optimization Problems

    Full text link
    The full approximation storage (FAS) scheme is a widely used multigrid method for nonlinear problems. In this paper, a new framework to design and analyze FAS-like schemes for convex optimization problems is developed. The new method, the Fast Subspace Descent (FASD) scheme, which generalizes classical FAS, can be recast as an inexact version of nonlinear multigrid methods based on space decomposition and subspace correction. The local problem in each subspace can be simplified to be linear and one gradient descent iteration (with an appropriate step size) is enough to ensure a global linear (geometric) convergence of FASD.Comment: 33 page
    • …
    corecore