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Abstract

Phase field models are usually constructed to model certain interfacial dynamics.

Numerical simulations of phase-field models require long time accuracy, stability and

therefore it is necessary to develop efficient and highly accurate numerical methods. In

particular, the unconditionally energy stable , unconditionally solvable, and accurate

schemes and fast solvers are desirable.

In this thesis, We describe and analyze preconditioned steepest descent (PSD)

solvers for fourth and sixth-order nonlinear elliptic equations that include p-

Laplacian terms on periodic domains in 2 and 3 dimensions. Such nonlinear elliptic

equations often arise from time discretization of parabolic equations that model

various biological and physical phenomena, in particular, liquid crystals, thin film

epitaxial growth and phase transformations. The analyses of the schemes involve the

characterization of the strictly convex energies associated with the equations. We

first give a general framework for PSD in Hilbert spaces. Based on certain reasonable

assumptions of the linear pre-conditioner, a geometric convergence rate is shown for

the nonlinear PSD iteration. We then apply the general theory to the fourth and

sixth-order problems of interest, making use of Sobolev embedding and regularity

results to confirm the appropriateness of our pre-conditioners for the regularized

p-Lapacian problems. The results include a sharper theoretical convergence result

for p-Laplacian systems compared to what may be found in existing works. We

demonstrate rigorously how to apply the theory in the finite dimensional setting

using finite difference discretization methods.

viii



Based on the PSD framework, we also proposed two efficient and practical

Preconditioned Nonlinear Conjugate Gradient (PNCG) solvers. The main idea of

the preconditioned solvers is to use a linearized version of the nonlinear operator as a

metric for choosing the initial search direction. And the hybrid conjugate directions

as the following search direction. In order to make the proposed solvers and scheme

much more practical, we also investigate an adaptive time stepping strategy for time

dependent problems.

Numerical simulations for some important physical application problems –

including thin film epitaxy with slope selection, the square phase field crystal model

and functionalized Cahn-Hilliard equation – are carried out to verify the efficiency of

the schemes and solvers.
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Chapter 1

Introduction

Let Ω ⊂ Rd, d = 2, 3, be a rectangular domain. In this work we are interested in

efficient solution techniques for fourth and sixth-order nonlinear elliptic equations

that have p-Laplacian terms. The fourth-order problem reads as follows: given f

Ω-periodthesis ic, find u Ω-periodic such that

u− s∇ · (|∇u|p−2∇u) + sε2∆2u = f, (1.1)

where 0 < ε ≤ 1 and s is a positive parameter. The sixth-order problem is as follows:

given f, g Ω-periodic, find u,w Ω-periodic such that

u−∆w = g, (1.2a)

sλu− s∇ ·
(
|∇u|p−2∇u

)
+ sε2∆2u− w = f, (1.2b)

where 0 < ε ≤ 1, s > 0, and λ ≥ 0 are parameters. The highest order positive

diffusion term, parameterized by ε, is often referred to as the surface diffusion,

following the thin film applications described below.

We will refer to problems (1.1) and (1.2a) – (1.2b) as regularized p-Laplacian

problems. However, this is primarily for ease of reference. The highest order surface

diffusion term, though parameterized by the “small" coefficient ε > 0, must be present

1



for the related physical models to make sense and is not an artificial regularization.

In other words, we will not consider and are not concerned with the singular limit

ε↘ 0.

These model equations arise most commonly from the time discretization for

certain time-dependent physical models. For example, consider the thin epitaxial

film model with slope selection

∂tu = ∇ ·
(
|∇u|2∇u

)
−∆u− ε2∆2u,

in [59, 71, 77, 83], where u is the spatially periodic height of the film. The 4-Laplacian

term in combination with the negative Laplacian term gives energetic preference

to facets with unit slope, a continuum-level model of the Ehrlich-Schwoebel kinetic

barrier. The highest order term models a small amount of surface diffusion, which

smooths the corners where the facets merge. In the square Swift-Hohenberg (SSH)

equation

∂tu = (β − 1)u+ ηu3 − u5 + α
(
|∇u|2∇u

)
− 2∆u+ ∆2u, α > 0, β, η ∈ R,

studied in [22, 49, 47, 63], and the square phase field crystal (SPFC) equation

∂tu = ∆
(
γ0u+ γ1∆u+ ε2∆2u−∇ ·

(
|∇u|2∇u

))
, γ0 ∈ R, γ1 > 0,

studied in [29, 43, 47, 63], the 4-Laplacian term gives preference to square-symmetry

arrays of “dots" in the density field u. In general, such localized structures play

important roles in biological, chemical, and physical processes [50].

For these time-dependent problems, convex decomposition schemes have been

proposed and analyzed in [71, 77] to obtain unconditional unique solvability and

unconditional energy stability. The convex decomposition scheme for the thin film

2



model is [77]

um − s∇ · (|∇um|2∇um) + sε2∆2um = um−1 − s∆um−1,

where s > 0 is the time step size, and the superscripts indicate the time discretizations.

The convex decomposition scheme for the SPFC model – which can be inferred from

the general principles in [77, 82] – is precisely

um −∆wm = um−1,

sγ0u
m − s∇ ·

(
|∇um|2∇um

)
+ sε2∆2um − wm = − sγ1∆um−1,

assuming γ0, γ1 ≥ 0. These schemes are nonlinear and require one to deal with the

p-Laplacian term at the implicit time level. We remark that there are also second-

order-in-time convex decomposition schemes for such nonlinear parabolic equations,

as described in [71], which have similar nonlinear structures. In any case, solving

nonlinear elliptic equations with the p-Laplacian term is challenging, because of its

highly nonlinear nature. In [71, 77], the authors used a nonlinear conjugate gradient

algorithm to solve the nonlinear system at each implicit time step. Such naive gradient

methods are guaranteed to converge due to the global convexity of the equations, but

are not necessarily efficient.

Several works develop and analyze numerical schemes for nonlinear elliptic

equations involving the p-Laplacian operator. The works [6, 8, 53, 62, 74, 87, 88]

are based on finite element approximations in space. Recently, the vanishing moment

method for the p-Laplacian was proposed in [39]. In that method, the highest order

term is purely artificial, whereas, for the models above, the surface diffusion term

is small, but non-vanishing. A hybridizable discontinuous Galerkin method for the

p-Laplacian was proposed in [21]. Of these works, [53, 87, 88] are primarily focused

on efficient solvers for the elliptic equations with p-Laplacian terms, rather than, say,

error estimates.
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The main goal of this thesis is to design a general framework of preconditioned

steepest descent (PSD) methods for certain nonlinear elliptic equations with p-

Laplacian terms. The main idea is to use a linearized version of the nonlinear operator

as a pre-conditioner, or in other words, as a metric for choosing the search direction.

We propose and analyze the preconditioned steepest descent methods for both the

fourth- and sixth-order p-Laplacian problems mentioned above. Herein we present

numerical simulations for the 6-Laplacian thin film epitaxy and the H−1 gradient

flow SPFC model by using the proposed method. While we restrict our focus to

the p-Laplacian problems herein, the search direction framework is general and can

be applied to other nonlinear equations, such as the Cahn-Hilliard (CH) equation

[11, 18, 64, 73], functionalized Cahn-Hilliard (FCH) equation [19, 26, 31], for example.

The convergence analyses of the nonlinear iteration algorithms we propose for the

p-Laplacian equations are quite challenging, due to the highly nonlinear nature of the

problems. However, we are able to recast the equations as equivalent minimization

problems involving strictly convex functionals in Hilbert spaces. Once this is done,

we are able to characterize the properties of general pre-conditioners that will result

in geometric convergence rates. This general approach is applicable to both the 4th

and 6th order equations at the space-continuous level, as well as the approximation of

these problems in finite dimensions using finite differences. Though we do not explore

it here, we remark that the theory is extensible to the pseudo-spectral, spectral-

Galerkin, and mixed finite element settings as well, using the appropriate discrete

Gagliardo-Nirenberg inequalities. To our knowledge, the only related theoretical

results available in the existing literature are to be found in [53], in which finite

element PSD solvers were designed and analyzed. Specifically, it was proved in [53]

that their method converges with the rate O(k−β), where k is the iteration index

and β = p
p−2

> 0. In this thesis , we provide a theoretical analysis with a geometric

convergence rate O(αk), with 0 < α < 1, for the finite difference PSD solver applied

to the regularized p-Laplacian problems.
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For such nonlinear analyses, the essential difficulty has always been associated with

the subtle fact that the numerical solution has to be bounded uniformly in certain

functional norms, so that a bound for the iteration error could be established. For the

p-Laplacian problems, typically a uniform W 1,p bound of the numerical solution is

available at each iteration stage, and such a bound may be used to derive an O(k−β)

convergence rate for the PSD iteration. However, for the regularized p-Laplacian

problems, one observes that a linear operator with higher-order diffusion may be

utilized so that a uniform H2 bound of the numerical solution may be obtained.

Specifically, the existence of the surface diffusion term ε2∆2u enables us to derive

a geometric convergence rate O(αk) for the PSD iteration, which gives a sharper

theoretical result than the existing one in [53]. Our strategy comes at a cost that

we point out at the offset: a linear, positive, constant-coefficient operator of order 4

or 6 must be inverted to obtain the search direction. But, since we are interested in

applications involving coarsening processes over periodic domains, the FFT can be

utilized to make this process efficient.

By using the similar preconditioned idea, we also proposed two efficient and

practical Preconditioned Nonlinear Conjugate Gradient (PNCG) solvers. The main

idea of the preconditioned solvers is to use a linearized version of the nonlinear

operator as a metric for choosing the search direction for the initial step. And the

hybrid conjugate directions as the following search direction. In order to make the

proposed solvers and scheme much more practical, we also investigate the adaptive

time stepping strategy.

The remainder of the thesis is organized as follows. In Chapter 2, we present

some preliminary notations and definitions. In Chapter 3, we present a general

preconditioned steepest descent (PSD) method for nonlinear equations in generic

Hilbert spaces, and provide the convergence rate estimates for the PSD method. The

application of the general theory to the fourth-order and sixth-order regularized p-

Laplacian problem are presented in Chapter 4. Based on the framework of PSD

solver, we proposed Linearly Preconditioned Nonlinear Conjugate Gradient Solvers

5



in Chapter 5. The concluding remarks are offered in section 6. In the Appendix A,

we give the proof of a few discrete Sobolev inequalities.
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Chapter 2

Preliminaries

2.1 Sobolev Spaces over Periodic Domains

2.1.1 Notation

For the remainder of thesis Ω ⊂ Rd with d = 2, 3 is a rectangular domain. In what

follows, if d = 2 we assume p ∈ [2,∞); whereas if d = 3 we suppose p ∈ [2, 6]. Most

of the physically relevant cases correspond to p being an even integer, however, all of

our arguments hold for any value of p in the indicated ranges. The Sobolev spaces of

periodic functions are defined as follows: for q ∈ [1,∞], we set

W k,q
per(Ω) :=

{
u ∈ W k,q

loc (Rd)
∣∣∣ u is Ω− periodic

}
,

where k ∈ N is the differentiability index. Observe that W 0,q
per(Ω) =: Lqper(Ω) = Lq(Ω).

We denote the norm of W k,q
per(Ω) by ‖ · ‖Wk,q , or just ‖ · ‖Lq when k = 0. In the case

q = 2 and k = 0, we denote by (·, ·) and ‖·‖ the inner product and norm, respectively.

We set Hk
per(Ω) = W k,2

per(Ω) and immediately remark that, given the range of p, we

have H2
per(Ω) ↪→ W 1,p

per(Ω). For k ∈ N + 1, the continuous dual of Hk
per(Ω) is denoted

by H−kper(Ω).
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If L2
0(Ω) denotes the set of functions in L2(Ω) with zero mean, we define

H̊1
per(Ω) := H1

per(Ω) ∩ L2
0(Ω), H̊−1

per(Ω) :=
{
v ∈ H−1

per(Ω)
∣∣ 〈v, 1〉 = 0

}
.

We define a linear operator T : H̊−1
per(Ω) → H̊1

per(Ω) via the following variational

problem: given ζ ∈ H̊−1
per(Ω), T[ζ] ∈ H̊1

per(Ω) solves

(∇T[ζ],∇χ) = 〈ζ, χ〉, ∀ χ ∈ H̊1
per(Ω).

From the Riesz representation theorem it immediately follows that T is well-defined.

We define the inner product

(ζ, ξ)H̊−1
per

:= (∇T[ζ],∇T[ξ]) = 〈ζ,T[ξ]〉 = 〈ξ,T[ζ]〉, ∀ ζ, ξ ∈ H̊−1
per(Ω).

The induced norm is denoted ‖ · ‖H̊−1
per
. The following facts can be easily estab-

lished [24]:

Lemma 2.1.1. On H̊−1
per(Ω) the norm ‖ · ‖H̊−1

per
equals the operator norm: for all

ζ ∈ H̊−1
per(Ω),

‖ζ‖H̊−1
per

= sup
06=χ∈H̊1

per(Ω)

〈ζ, χ〉
‖∇χ‖

.

Consequently, we have |〈ζ, χ〉| ≤ ‖ζ‖H̊−1
per
‖∇χ‖, for all χ ∈ H1

per(Ω) and ζ ∈ H̊−1
per(Ω).

Furthermore, for all ζ ∈ L2
0(Ω), we have the Poincaré type inequality: ‖ζ‖H̊−1

per
≤

C ‖ζ‖, for some C > 0.

2.1.2 Interpolation Inequalities

Lemma 2.1.2. Suppose that p ∈ [2,∞) when d = 2, and p ∈ [2, 6], if d = 3. For any

ξ ∈ H2
per(Ω), we have

‖∇ξ‖Lp ≤ C9

 ‖ξ‖
1
p · ‖∆ξ‖

p−1
p , if d = 2, p ∈ [2,∞),

‖ξ‖
3
2p
− 1

4 · ‖∆ξ‖
5
4
− 3

2p , if d = 3, p ∈ [2, 6],
(2.1)
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for some C9 = C9(d, p) > 0.

Proof. This follows from the Gagliardo-Nirenberg interpolation inequality and elliptic

regularity.

Lemma 2.1.3. For every ξ ∈ H̊2
per(Ω) we have

‖ξ‖ ≤ ‖ξ‖
2
3

H̊−1
per
‖∆ξ‖

1
3 , (2.2)

and

‖∇ξ‖ ≤ ‖ξ‖
1
3

H̊−1
per
‖∆ξ‖

2
3 . (2.3)

Proof. Using integration by parts we get

‖∇ξ‖2 = −(ξ,∆ξ) ≤ ‖ξ‖ · ‖∆ξ‖. (2.4)

The definition of the H̊−1
per(Ω) norm implies that

‖ξ‖2 = (ξ, ξ) ≤ ‖ξ‖H̊−1
per
‖∇ξ‖. (2.5)

Therefore, a combination of (2.4) and (2.5) leads to

‖∇ξ‖ ≤ ‖ξ‖
1
2 · ‖∆ξ‖

1
2 ≤ ‖ξ‖

1
4

H̊−1
per
‖∇ξ‖

1
4 · ‖∆ξ‖

1
2 ,

so that

‖∇ξ‖
3
4 ≤ ‖ξ‖

1
4

H̊−1
per
‖∆ξ‖

1
2 .

which yields the second inequality. The first may be proved in a similar way.

Similar to before, the Gagliardo-Nirenberg inequality, together with elliptic

regularity, yield the following interpolation result.
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Lemma 2.1.4. Suppose that p ∈ [2,∞) when d = 2, and p ∈ [2, 6], if d = 3. For any

ξ ∈ H̊2
per(Ω), we have

‖∇ξ‖Lp ≤ C9

 ‖ξ‖
2
3p

H̊−1
per
‖∆ξ‖1− 2

3p , if d = 2, p ∈ [2,∞),

‖ξ‖
1
p
− 1

6

H̊−1
per
‖∆ξ‖

7
6
− 1
p , if d = 3, p ∈ [2, 6],

(2.6)

for some C9 = C9(d, p) > 0.

2.2 Finite Difference Spatial Discretization in 2D

2.2.1 Notation

In this subsection we define the discrete spatial difference operators, function spaces,

inner products and norms, following the notation used in [52, 71, 77, 78, 82]. Let

Ω = (0, Lx) × (0, Ly), where, for simplicity, we assume Lx = Ly =: L > 0. We write

L = m · h, where m is a positive integer. The parameter h = L
m

is called the mesh

or grid spacing. We define the following two uniform, infinite grids with grid spacing

h > 0:

E := {xi+ 1
2
| i ∈ Z}, C := {xi | i ∈ Z},

where xi = x(i) := (i − 1
2
) · h. Consider the following 2D discrete periodic function

spaces:

Vper :=
{
ν : E × E → R

∣∣∣ νi+ 1
2
,j+ 1

2
= νi+ 1

2
+αm,j+ 1

2
+βm, ∀ i, j, α, β ∈ Z

}
,

Cper := {ν : C × C → R | νi,j = νi+αm,j+βm, ∀ i, j, α, β ∈ Z} ,

Eew
per :=

{
ν : E × C → R

∣∣∣ νi+ 1
2
,j = νi+ 1

2
+αm,j+βm, ∀ i, j, α, β ∈ Z

}
,

Ens
per :=

{
ν : C × E → R

∣∣∣ νi,j+ 1
2

= νi+αm,j+ 1
2

+βm, ∀ i, j, α, β ∈ Z
}
.

The functions of Vper are called vertex centered functions ; those of Cper are called cell

centered functions . The functions of Eew
per are called east-west edge-centered functions ,
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and the functions of Ens
per are called north-south edge-centered functions . We also

define the mean zero space

C̊per :=

{
ν ∈ Cper

∣∣∣∣∣ h2

|Ω|

m∑
i,j=1

νi,j =: ν = 0

}
.

We now define the important difference and average operators on the spaces:

Axνi+ 1
2
,� :=

1

2
(νi+1,� + νi,�) , Dxνi+ 1

2
,� :=

1

h
(νi+1,� − νi,�) ,

Ayν�,i+ 1
2

:=
1

2
(ν�,i+1 + ν�,i) , Dyν�,i+ 1

2
:=

1

h
(ν�,i+1 − ν�,i) ,

with Ax, Dx : Cper → Eew
per if � is an integer, and Ax, Dx : Ens

per → Vper if � is a

half-integer, with Ay, Dy : Cper → Ens
per if � is an integer, and Ay, Dy : Eew

per → Vper if

� is a half-integer. Likewise,

axνi,� :=
1

2

(
νi+ 1

2
,� + νi− 1

2
,�

)
, dxνi,� :=

1

h

(
νi+ 1

2
,� − νi− 1

2
,�

)
,

ayν�,j :=
1

2

(
ν�,j+ 1

2
+ ν�,j− 1

2

)
, dyν�,j :=

1

h

(
ν�,j+ 1

2
− ν�,j− 1

2

)
,

with ax, dx : Eew
per → Cper if � is an integer, and ax, dx : Vper → Ens

per if � is a half-

integer; and with ay, dy : Ens
per → Cper if � is an integer, and ay, dy : Vper → Eew

per if �

is a half-integer.

Define the 2D center-to-vertex derivatives Dx, Dy : Cper → Vper component-wise

as

Dxνi+ 1
2
,j+ 1

2
:= Ay(Dxν)i+ 1

2
,j+ 1

2
= Dx(Ayν)i+ 1

2
,j+ 1

2

=
1

2h
(νi+1,j+1 − νi,j+1 + νi+1,j − νi,j) ,

Dyνi+ 1
2
,j+ 1

2
:= Ax(Dyν)i+ 1

2
,j+ 1

2
= Dy(Axν)i+ 1

2
,j+ 1

2

=
1

2h
(νi+1,j+1 − νi+1,j + νi,j+1 − νi,j) .

11



The utility of these definitions is that the differences Dx and Dy are collocated

on the grid, unlike the case for Dx, Dy. Define the 2D vertex-to-center derivatives

dx, dy : Vper → Cper component-wise as

dxνi,j := ay(dxν)i,j = dx(ayν)i,j

=
1

2h

(
νi+ 1

2
,j+ 1

2
− νi− 1

2
,j+ 1

2
+ νi+ 1

2
,j− 1

2
− νi− 1

2
,j− 1

2

)
,

dyνi,j := ax(dyν)i,j = dy(axν)i,j

=
1

2h

(
νi+ 1

2
,j+ 1

2
− νi+ 1

2
,j− 1

2
+ νi− 1

2
,j+ 1

2
− νi− 1

2
,j− 1

2

)
.

Now the discrete gradient operator, ∇v
h: Cper → Vper × Vper, is defined as

∇v
hνi+ 1

2
,j+ 1

2
:= (Dxνi+ 1

2
,j+ 1

2
,Dyνi+ 1

2
,j+ 1

2
).

The standard 2D discrete Laplacian, ∆h : Cper → Cper, is given by

∆hνi,j := dx(Dxν)i,j + dy(Dyν)i,j =
1

h2
(νi+1,j + νi−1,j + νi,j+1 + νi,j−1 − 4νi,j) .

The 2D vertex-to-vertex average, A : Vper → Cper, is defined to be

Aνi,j :=
1

4
(νi+1,j + νi−1,j + νi,j+1 + νi,j−1) .

The 2D skew Laplacian, ∆v
h : Cper → Cper, is defined as

∆v
hνi,j = dx(Dxν)i,j + dy(Dyν)i,j

=
1

2h2
(νi+1,j+1 + νi−1,j+1 + νi+1,j−1 + νi−1,j−1 − 4νi,j) .

The 2D discrete p-Laplacian operator is defined as

∇v
h ·
(
|∇v

hν|
p−2∇v

hν
)
ij

:= dx(rDxν)i,j + dy(rDyν)i,j,
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with

ri+ 1
2
,j+ 1

2
:=
[
(Dxu)2

i+ 1
2
,j+ 1

2
+ (Dyu)2

i+ 1
2
,j+ 1

2

] p−2
2
.

Clearly, for p = 2, ∆v
hν = ∇v

h ·
(
|∇v

hν|
p−2∇v

hν
)
.

Now we are ready to define the following grid inner products:

(ν, ξ)2 := h2

m∑
i=1

n∑
j=1

νi,jψi,j, ν, ξ ∈ Cper,

〈ν, ξ〉 := (A(νξ), 1)2 , ν, ξ ∈ Vper,

[ν, ξ]ew := (Ax(νξ), 1)2 , ν, ξ ∈ Eew
per,

[ν, ξ]ns := (Ay(νξ), 1)2 , ν, ξ ∈ Ens
per.

Suppose that ζ ∈ C̊per, then there is a unique solution Th[ζ] ∈ C̊per such that

−∆hTh[ζ] = ζ. We often write, in this case, Th[ζ] = −∆−1
h ζ. The discrete analog of

the H̊−1
per inner product is defined as

(ζ, ξ)−1 := (ζ,Th[ξ])2 = (Th[ζ], ξ)2 , ζ, ξ ∈ C̊per.

where summation-by-parts [71, 82] guarantees the symmetry and the second equality.

We now define the following norms for cell-centered functions. If ν ∈ C̊per, then

‖ν‖2
−1 = (ν, ν)−1. If ν ∈ Cper, then ‖ν‖2

2 := (ν, ν); ‖ν‖pp := (|ν|p, 1) (1 ≤ p <∞), and

‖ν‖∞ := max 1≤i≤m
1≤j≤n

|νi,j|. Similarly, we define the gradient norms: for ν ∈ Cper,

‖∇v
hν‖

p
p := 〈|∇v

hν|p, 1〉, |∇v
hν|p := [(Dxν)2 + (Dyν)2]

p
2 = [∇v

hν · ∇v
hν]

p
2 ∈ Vper,

where 2 ≤ p <∞ and

‖∇hν‖2
2 := [Dxν,Dxν]ew + [Dyν,Dyν]ns .
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Consequently, the discrete ‖ · ‖H1
h
and ‖ · ‖H2

h
norms on periodic boundary domain

defined as

‖φ‖2
H1
h

:= ‖φ‖2
2 + ‖∇hφ‖2

2 , (2.7)

‖φ‖2
H2
h

:= ‖φ‖2
H1
h

+ ‖∆hφ‖2
2 . (2.8)

Lemma 2.2.1. For any φ ∈ Cper with φ = 0, we have

‖∇hφ‖2
2 ≥ ‖∇v

hφ‖2
2. (2.9)

Proof. By the definition of Dxφ, we get

Dxφi+ 1
2
,j+ 1

2
=

1

2

(
(Dxφ)i+ 1

2
,j + (Dxφ)i+ 1

2
,j+1

)
, (2.10)

which in turn implies that

‖Dxφ‖2
2 = h2

m−1∑
i,j=0

(Dxφi+ 1
2
,j+ 1

2
)2 ≤ h2

m−1∑
i,j=0

(Dxφi+ 1
2
,j)

2 = ‖Dxφ‖2
2, i.e., ‖Dxφ‖2 ≤ ‖Dxφ‖2.(2.11)

Using a similar argument, we also obtain ‖Dyφ‖2 ≤ ‖Dyφ‖2. These two inequalities

lead to the desired estimate; the proof of Lemma. 2.2.1 is complete.

2.2.2 Discrete Sobolev Inequalities

Lemma 2.2.2. Suppose that p ∈ [2,∞), d = 2, we have

‖∇v
hξ‖p ≤ C9

 ‖ξ‖
1
p

2 · ‖∆hξ‖
p−1
p

2 , ∀ ξ ∈ Cper,

‖ξ‖
2
3p

−1 · ‖∆hξ‖
1− 2

3p

2 , ∀ ξ ∈ C̊per,

for some C9 = C9(p) > 0.

The proof for p = 4, d = 2 can be found in the appendix. Following the similar

arguments, the other cases can be proved.

14



Remark 2.2.3. Though we have focused on the case d = 2 in this section, we can

also define our operators and norms, in particular ∇v
hξ and ‖∇v

hξ‖p, in three space

dimensions. Then for p ∈ [2, 6], we expect

‖∇v
hξ‖p ≤ C9

 ‖ξ‖
3
2p
− 1

4

2 ‖∆hξ‖
5
4
− 3

2p

2 , ∀ ξ ∈ Cper,

‖ξ‖
1
p
− 1

6

−1 ‖∆hξ‖
7
6
− 1
p

2 , ∀ ξ ∈ C̊per,

for some C9 = C9(d = 3, p) > 0.

The following preliminary estimates are cited from earlier works. For more details

we refer the reader to [52, 82].

Lemma 2.2.4. For any f, g ∈ Cper, the following summation by parts formulas are

valid:

(f,∆hg) = −(∇hf,∇hg),

(f,∆2
hg) = (∆hf,∆hg), (2.12)

(f,∆3
hg) = −(∇h∆hf,∇h∆hg).

Lemma 2.2.5. Suppose φ ∈ Cper. Then

‖∆hφ‖2
2 ≤

1

3α2
‖φ‖2

2 +
2α

3
‖∇h(∆hφ)‖2

2, (2.13)

is valid for arbitrary α > 0.

Lemma 2.2.6. For φ ∈ Cper, we have the estimate

Fh(φ) ≥ C‖φ‖2
2,2 −

L3

4
, (2.14)

with C only dependent on Ω, and Fh(φ) given by (2.18).

The following preliminary estimates are needed in the convergence analysis

presented in later sections; the detailed proof is left to Appendix A.4
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Proposition 2.2.7. For any φ ∈ Cper with φ = 0, we have

‖∆hφ‖2
2 ≥ C1‖φ‖2

H2
h
, (2.15)

‖φ‖∞ ≤ C‖φ‖H2
h
, (2.16)

‖φ‖W 1,6
h

:= ‖φ‖6 + ‖∇v
hφ‖6 ≤ C‖φ‖H2

h
, (2.17)

with C and C1 only dependent on Ω.

2.3 Finite Difference Spatial Discretization in 3D

Similarly, the notation and discrete functions can be easily generated to 3D. For

simplicity of presentation, we denote (·, ·) as the standard L2 inner product, and ‖ · ‖

as the standard L2 norm, and ‖ · ‖Hm as the standard Hm norm. We use the notation

and results for some discrete functions and operators from [27, 45, 80, 82].

2.3.1 Notation

Let Ω = (0, Lx)× (0, Ly)× (0, Lz), where for simplicity, we assume Lx = Ly = Lz =:

L > 0. It is also assumed that hx = hy = hy = h and we denote L = m · h, where m

is a positive integer. The parameter h = L
m

is called the mesh or grid spacing. We

define the following two uniform, infinite grids with grid spacing h > 0:

E := {xi+ 1
2
| i ∈ Z}, C := {xi | i ∈ Z},

where xi = x(i) := (i − 1
2
) · h. Consider the following 3D discrete periodic function

spaces:

Cper := {ν : C × C × C → R | νi,j,k = νi+αm,j+βm,k+γm, ∀ i, j, k, α, β, γ ∈ Z} ,

Ex
per :=

{
ν : E × C × C → R

∣∣∣ νi+ 1
2
,j,k = νi+ 1

2
+αm,j+βm,k+γm, ∀ i, j, k, α, β, γ ∈ Z

}
.
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The spaces Ey
per and Ez

per are analogously defined. The functions of Cper are called cell

centered functions . The functions of Ex
per, Ey

per, and Ez
per, are called east-west face-

centered functions , north-south face-centered functions , and up-down face-centered

functions , respectively. We also define the mean zero space

C̊per :=

{
ν ∈ Cper

∣∣∣∣∣ν :=
h3

|Ω|

m∑
i,j,k=1

νi,j,k = 0

}
.

We now introduce the important difference and average operators on the spaces:

Axνi+ 1
2
,j,k :=

1

2
(νi+1,j,k + νi,j,k) , Dxνi+ 1

2
,j,k :=

1

h
(νi+1,j,k − νi,j,k) ,

Ayνi,j+ 1
2
,k :=

1

2
(νi,j+1,k + νi,j,k) , Dyνi,j+ 1

2
,k :=

1

h
(νi,j+1,k − νi,j,k) ,

Azνi,j,k+ 1
2

:=
1

2
(νi,j,k+1 + νi,j,k) , Dzνi,j,k+ 1

2
:=

1

h
(νi,j,k+1 − νi,j,k) ,

with Ax, Dx : Cper → Ex
per, Ay, Dy : Cper → Ey

per, Az, Dz : Cper → Ez
per. Likewise,

axνi,j,k :=
1

2

(
νi+ 1

2
,j,k + νi− 1

2
,j,k

)
, dxνi,j,k :=

1

h

(
νi+ 1

2
,j,k − νi− 1

2
,j,k

)
,

ayνi,j,k :=
1

2

(
νi,j+ 1

2
,k + νi,j− 1

2
,k

)
, dyνi,j,k :=

1

h

(
νi,j+ 1

2
,k − νi,j− 1

2
,k

)
,

azνi,j,k :=
1

2

(
νi,j,k+ 1

2
+ νi,j,k− 1

2

)
, dzνi,j,k :=

1

h

(
νi,j,k+ 1

2
− νi,j,k− 1

2

)
,

with ax, dx : Ex
per → Cper, ay, dy : Ey

per → Cper, and az, dz : Ez
per → Cper. The standard

3D discrete Laplacian, ∆h : Cper → Cper, is given by

∆hνi,j,k := dx(Dxν)i,j,k + dy(Dyν)i,j,k + dz(Dzν)i,j,k

=
1

h2
(νi+1,j,k + νi−1,j,k + νi,j+1,k + νi,j−1,k + νi,j,k+1 + νi,j,k−1 − 6νi,j,k) .
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Now we are ready to define the following grid inner products:

(ν, ξ)2 := h3

m∑
i,j,k=1

νi,j,kξi,j,k, ν, ξ ∈ Cper, [ν, ξ]x := (ax(νξ), 1)2 , ν, ξ ∈ Ex
per,

[ν, ξ]y := (ay(νξ), 1)2 , ν, ξ ∈ Ey
per, [ν, ξ]z := (az(νξ), 1)2 , ν, ξ ∈ Ez

per.

We now define the following norms for cell-centered functions. If ν ∈ Cper, then

‖ν‖2
2 := (ν, ν)2; ‖ν‖

p
p := (|ν|p, 1)2 (1 ≤ p < ∞), and ‖ν‖∞ := max1≤i,j,k≤m |νi,j,k|.

Similarly, we define the gradient norms: for ν ∈ Cper,

‖∇hν‖2
2 := [Dxν,Dxν]x + [Dyν,Dyν]y + [Dzν,Dzν]z .

Consequently,

‖ν‖2
2,2 := ‖ν‖2

2 + ‖∇hν‖2
2 + ‖∆hν‖2

2 .

In addition, the discrete energy Fh(φ) : Cper → R is defined as

Fh(φ) =
1

4
‖φ‖4

4 +
1− ε

2
‖φ‖2

2 − ‖∇hφ‖2
2 +

1

2
‖∆hφ‖2

2. (2.18)
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Chapter 3

Linearly Preconditioned Steepest

Descent Methods

The content in this chapter has been published in [34], for more details please refer

to [34].

3.1 Linearly Preconditioned Steepest Descent Meth-

ods

3.1.1 The Classical Setting: Linear Symmetric Positive Defi-

nite Systems in Finite Dimensions

Before we get to the general case, let us quickly review the convergence theory for

preconditioned steepest decent methods for solving the linear system Au = f , where

A ∈ Rm×m
sym is positive definite. This is closely related to the preconditioned conjugate

gradient (PCG) method, though may be less familiar to the reader. Solving Au = f

is, of course, equivalent to minimizing the quadratic energy E[v] := 1
2
vTAv − vT f .

Suppose that L ∈ Rm×m
sym is also positive definite. Here A is the stiffness matrix and L

is the pre-conditioner. The idea is that L ≈ A, but the former is “easier to invert." The
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preconditioned steepest decent algorithm for approximating the solution to Au = f

is given in Algorithm 1 [5, 56].

Algorithm 1 Preconditioned Steepest Descent
1: Input: u0, f ∈ Rm

2: Compute residual: r0 := f − Au0

3: Set d0 := L−1r0

4: Set d0 ← −g0, k ← 0
5: for k = 0, · · · , kmax − 1 do
6: Compute αk := (dTk rk)/(d

T
kAdk)

7: uk+1 := uk + αkdk
8: rk+1 := f − Auk+1

9: if ‖rk+1‖ < tol or k = kmax − 1 then
10: u? := uk+1

11: exit for loop
12: else
13: dk+1 := L−1rk+1

14: end if
15: end for

Here dk ∈ Rm is called the search direction and rk ∈ Rm is called the residual.

We observe that

αk = argmin
α∈R

E[uk + αdk] = argzero
α∈R

dTk∇E[uk + αdk] =
dTk rk
dTkAdk

.

We have the classical convergence result: for some C > 0,

‖u− uk‖A ≤ C

(
κ− 1

κ+ 1

)k
‖u− u0‖A ,

where κ := λm
λ1

, and λm is the largest eigenvalue of L−1A, and λ1 is the smallest

[5, 56, 70].
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3.1.2 Non-Quadratic Energy Functionals in Generic Hilbert

Spaces

Here we review the general theory for preconditioned steepest descent in a generic

Hilbert space [3, 20, 28, 56]. Suppose that H is a (real) Hilbert space with the

inner product ( · , · )H and induced norm ‖ · ‖H . We consider an energy functional

E[ · ] : H → R with the following properties:

(E1) E is twice Fréchet differentiable for all points ν ∈ H. For each fixed ν ∈ H,

δE[ν]( · ) : H → R is the continuous (bounded) linear functional equal to the

first Fréchet derivative at ν, and, for each fixed ν ∈ H, δ2E[ν]( · , · ) : H×H → R

is the continuous bilinear operator equal to the second Fréchet derivative at ν.

(E2) For every ν ∈ H,

0 ≤ δ2E[ν](ξ, ξ), ∀ ξ ∈ H, (3.1)

and

0 < δ2E[ν](ξ, ξ), ∀ ξ ∈ H \ {0} . (3.2)

This implies a strict convexity of E.

(E3) E is coercive with respect to the norm on H, i.e., there exist constants C1 > 0,

C2 ≥ 0 such that

C1 ‖ν‖2
H ≤ E[ν] + C2, ∀ ν ∈ H.

If E satisfies (E1) – (E3), it follows [20] that there is is a unique element u ∈ H with

the property that

E[u] ≤ E[ν], ∀ ν ∈ H, with E[u] < E[ν], for ν 6= u,

and this minimizer further satisfies

δE[u](ξ) = 0, ∀ ξ ∈ H.
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We wish to construct, via preconditioned steepest descent (PSD), a sequence that

converges to the unique minimizer. By H ′ we denote the continuous dual of H. When

it is convenient, we use the symbol 〈 · , · 〉H : H ′ ×H → R to denote the dual pairing

between H ′ and H. Consider a linear operator L : H → H ′. This operator L, which

we call the pre-conditioner induces a bilinear form on H:

(ν, ξ)L := 〈L[ν], ξ〉 = L[ν](ξ), ∀ ν, ξ ∈ H.

We assume that L satisfies the following properties:

(L1) ( · , · )L : H ×H → R is symmetric, i.e.,

(ν, ξ)L = (ξ, ν)L, ∀ ν, ξ ∈ H;

(L2) ( · , · )L is continuous with respect to the standard topology of H, i.e., there is

some C3 > 0 such that

|(ν, ξ)L| ≤ C3 ‖ν‖H ‖ξ‖H , ∀ ν, ξ ∈ H;

(L3) ( · , · )L is coercive with respect to H, i.e., there is some C4 > 0 such that

C4 ‖ν‖2
H ≤ (ν, ν)L, ∀ ν ∈ H.

It follows that ( · , · )L : H × H → R is an inner product on H, equivalent to the

primary inner product ( · , · )H . The induced norm, ‖ν‖L :=
√

(ν, ν)L, is equivalent

to the primary norm. By the Riesz Representation Theorem, if f ∈ H ′, then there

exists a unique uf ∈ H such that

(uf , ξ)L = f(ξ) = 〈f, ξ〉, ∀ξ ∈ H,
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with

‖uf‖L = ‖f‖L−1 := sup
0 6=ξ∈H

f(ξ)

‖ξ‖L
,

where the second norm is the L-induced operator norm.

Suppose that uk ∈ H is given. We define the following search direction problem:

find dk ∈ H such that

(
dk, ξ

)
L = −δE

[
uk
]

(ξ), ∀ξ ∈ H. (3.3)

We call dk the kth search direction. In operator form, we write L[dk] = −δE[uk] in H ′.

The functional −δE
[
uk
]
is called the residual of uk. By the Riesz Representation

Theorem, we discover that

− δE
[
uk
]

(dk) =
∥∥dk∥∥2

L =
∥∥δE [uk]∥∥2

L−1 . (3.4)

We then define the next iterate uk+1 as

uk+1 := uk + αkd
k, (3.5)

where αk ∈ R is the unique solution to

αk := argmin
α∈R

E[uk + αdk] = argzero
α∈R

δE[uk + αdk](dk). (3.6)

Therefore, we have the fundamental orthogonality relation

δE[uk + αkd
k](dk) = δE[uk+1](dk) = 0. (3.7)

It follows that the sequence
{
uk
}∞
k=0
⊂ H generated by the preconditioned steepest

descent algorithm converges to the unique minimizer u ∈ H. We now wish to estimate

the convergence rate.
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3.1.3 Estimates of the Convergence Rate for the PSD Method

We summarize some standard results.

Proposition 3.1.1. Suppose that E satisfies (E1) – (E3). It follows that, for any

ν, ξ ∈ H,

δE[ν](ξ − ν) ≤ E[ξ]− E[ν] ≤ δE[ξ](ξ − ν), (3.8)

and, consequently,

0 ≤ (δE[ξ]− δE[ν]) (ξ − ν).

Proposition 3.1.2. Suppose that E satisfies (E1) – (E3). Let
{
uk
}∞
k=0
⊂ H be

computed via (3.5). Then, for every k ≥ 0 we have E[uk+1] ≤ E[uk]. Furthermore,

αk > 0, as long as uk 6= u.

Proof. Using the orthogonality relation (3.7) and the convexity inequality (3.8), we

find

E[uk+1]− E[uk] ≤ δE[uk+1](uk+1 − uk) = αkδE[uk+1](dk) = 0.

Now, suppose dk 6= 0. Then, by Taylor’s theorem, (3.4), and (3.2),

E[uk+1] = E[uk]− αk
∥∥dk∥∥L +

α2
k

2
δ2E[θk](dk, dk) > E[uk]− αk

∥∥dk∥∥L .
Equivalently, we get

αk
∥∥dk∥∥L > E[uk]− E[uk+1] ≥ 0,

which implies that αk > 0.

Proposition 3.1.3. Suppose that E satisfies (E1) – (E3) and u ∈ H is the unique

minimizer of E. Then, for any ξ ∈ H,

0 ≤ E[ξ]− E[u] ≤ (δE[ξ]− δE[u]) (ξ − u) = δE[ξ](ξ − u),
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and, consequently,

0 ≤ E[uk]− E[u] ≤
(
δE[uk]− δE[u]

)
(uk − u) = δE[uk](uk − u). (3.9)

Proof. This follows immediately from (3.8), because δE[u](ξ) = 0, for all ξ ∈ H.

Now, we make the following further assumptions about the pre-conditioner L with

respect to the derivatives of the energy E:

(L4) There is a constant C5 > 0 such that

C5 ‖ξ − ν‖2
L ≤ (δE[ξ]− δE[ν]) (ξ − ν), (3.10)

for all ν, ξ ∈ H.

(L5) Suppose B := {ν ∈ H | E[ν] ≤ E0} is non-empty. (This is the the case if, for

example, one chooses E0 = E[0].) There is a constant C6 = C6(E0) > 0 such

that, for all ν ∈ B, and any ξ ∈ H,

∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ C6 ‖ξ‖2

L . (3.11)

Remark 3.1.4. We note that, practically speaking, (L5) is harder of the last two

conditions to enforce. In some sense, if the norm induced by L is not “strong" enough,

then there does not exist C6 > 0 so that (L5) is satisfied.

Theorem 3.1.5. Suppose that assumptions (E1) – (E3) and (L1) – (L5) are valid.

Let
{
uk
}∞
k=0
⊂ H be the sequence generated by (3.5). Then

0 ≤ E[uk]− E[u] ≤ (C7)k(E[u0]− E[u]), (3.12)

where

0 < C7 := 1− C5

2C6

< 1. (3.13)
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Proof. Consider the function g(α) := E[uk + αdk] − E[uk], α ∈ R. Then g(0) = 0,

and g has a global minimum at αk > 0. By coercivity and continuity of E, there is a

βk, αk < βk <∞, such that g(βk) = 0, and, for all α ∈ [0, βk],

E[uk + αdk] ≤ E[uk] ≤ E[u0] =: E0.

By Taylor’s theorem, there is a γ = γ(uk, dk, α) ∈ (0, 1), such that

E[uk + αdk]− E[uk] = αδE[uk](dk) +
α2

2
δ2E[θk](dk, dk),

where θk := uk + (1− γ)αdk. By convexity of E,

E[θk] ≤ γE[uk] + (1− γ)E[uk + αdk] ≤ E[uk] ≤ E[u0] = E0.

Using estimate (3.11) – with the set B defined with respect to E0 = E[u0] – and norm

equality (3.4), we get, for all α ∈ [0, βk],

g(α) = E[uk + αdk]− E[uk] ≤ αδE[uk](dk) +
α2

2
C6

∥∥dk∥∥2

L

=
(
− α +

α2

2
C6

) ∥∥δE[uk]
∥∥2

L−1 =: f(α). (3.14)

Now, the function f(α) is quadratic, f(0) = 0, f(βk) ≥ g(βk) = 0, and f ′(0) < 0. See

Figure 3.1. Thus f has a minimum in (0, βk). In fact, the minimum is achieved at

0 < σk := 1
C6
< βk . Then we have

E[uk + αkd
k]− E[uk] ≤ g(σk) = E[uk + σkd

k]− E[uk] ≤ − 1

2C6

∥∥δE[uk]
∥∥2

L−1 = f(σk),

or, equivalently,

E[uk]− E[uk+1] ≥ 1

2C6

∥∥δE[uk]
∥∥2

L−1 .
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α

f(α)

g(α)

βk

σk

0

Figure 3.1: The functions g(α) = E[uk + αdk] − E[uk] and f(α) =
(
− α +

α2

2
C6

) ∥∥δE[uk]
∥∥2

L−1 from (3.14). The function g, which is strictly convex, is dominated
by the function f , which is quadratic, on the interval [0, βk].

Now, using estimates (3.9) and (3.10) we obtain

0 ≤ E[uk]− E[u] ≤ 1

C5

∥∥δE[uk]
∥∥2

L−1 .

Combining the last two estimates, we get the result

0 ≤ E[uk]− E[u] ≤ 2C6

C5

(
E[uk]− E[uk+1]

)
,

or, equivalently,

0 ≤ E[uk+1]− E[u] ≤
(

2C6

C5

− 1

)(
E[uk]− E[uk+1]

)
.

Since E[uk+1] > E[u], as long as uk+1 6= u, and E[uk] ≥ E[uk+1], this last inequality

implies that

0 <
C5

2C6

< 1.
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A little more manipulation reveals the equivalent inequality

0 ≤ E[uk+1]− E[u] ≤
(

1− C5

2C6

)(
E[uk]− E[u]

)
,

and the result follows.

If the following property holds, we get a simple corollary of the last theorem.

(L6) There is a constant C8 > 0, such that, for every v, w ∈ H,

C8 ‖w‖2
L ≤ |δ

2E[ν](w,w)|. (3.15)

This implies the strict convexity of E and is, therefore, stronger that (E2).

Corollary 3.1.6. Suppose that assumptions (E1) – (E3) and (L1) – (L6) are valid.

Let
{
uk
}∞
k=0
⊂ H be the sequence generated by (3.5), and define ek := u− uk. Then

∥∥ek∥∥2

L ≤ (C7)k
E[u0]− E[u]

C8

. (3.16)

Proof. By Taylor’s theorem and estimate (3.15), we have

E[uk]− E[u] = δE[u](ek) +
1

2
δ2E[θk](ek, ek)

=
1

2
δ2E[θk](ek, ek) ≥ C5

∥∥ek∥∥L , (3.17)

where θk is in the line segment from uk to u. The result follows from (3.12).
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3.2 Nonlinear Elliptic Equations on Periodic Do-

mains

3.2.1 A Fourth-Order Regularized p-Laplacian Problem

We consider the following weak formulation of (1.1): given f ∈ L2
per(Ω), find u ∈

H2
per(Ω) such that

(u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (∆u,∆ξ) = (f, ξ) , ∀ ξ ∈ H2

per(Ω), (3.18)

where 0 < ε ≤ 1 and s > 0 are parameters. Equation (3.18) is mass conservative

in the following sense: (u− f, 1) = 0. One can show that the solution of the weak

formulation is a minimizer of the following energy: for any ν ∈ H2
per(Ω),

E[ν] :=
1

2
‖ν − f‖2 +

s

p
‖∇ν‖pLp +

sε2

2
‖∆ν‖2. (3.19)

It is not difficult to show that E satisfies (E1) – (E3). The first derivative of E at a

point ν may be calculated as follows: for any ξ ∈ H2
per(Ω),

dτE[ν + τξ]|τ=0 = δE[ν](ξ) = (ν − f, ξ) + s
(
|∇ν|p−2∇ν,∇ξ

)
+ sε2 (∆ν,∆ξ) .

Thus, our original problem is equivalent to the following: find u ∈ H2
per(Ω), such that,

for all ξ ∈ H2
per(Ω), δE[u](ξ) = 0, which is equivalent to (3.18). This problem has a

unique solution, which is, in turn, the unique minimizer of the energy (3.19):

u := argmin
ν∈H2

per(Ω)

E[ν].
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The following estimate is holds: for all ν, ξ ∈ H2
per(Ω),

|δE[ν](ξ)| ≤ ‖ν − f‖ · ‖ξ‖+ s ‖∇ν‖p−1
Lp ‖∇ξ‖Lp + sε2 ‖∆ν‖ · ‖∆ξ‖ .

The second variation is a continuous bilinear operator. Given a fixed ν ∈ H2
per(Ω),

the action of the second variation on the arbitrary pair (ξ, η) ∈ H2
per(Ω)×H2

per(Ω) is

given by

δ2E[ν](ξ, η) = (ξ, η) + s
(
|∇ν|p−2∇ξ,∇η

)
+ (p− 2)s

(
|∇ν|p−4∇ν · ∇ξ,∇ν · ∇η

)
+ sε2 (∆ξ,∆η) ,

and we have the bound

∣∣δ2E[ν](ξ, η)
∣∣ ≤ ‖ξ‖ · ‖η‖+ s ‖∇ν‖p−2

Lp ‖∇ξ‖Lp ‖∇η‖Lp

+ (p− 2)s ‖∇ν‖p−2
Lp ‖∇ξ‖Lp ‖∇η‖Lp + sε2 ‖∆ξ‖ · ‖∆η‖ . (3.20)

For this problem we define the pre-conditioner L : H2
per(Ω)→ H−2

per(Ω) via

〈L[ν], ξ〉 := (ν, ξ) + s (∇ν,∇ξ) + sε2 (∆ν,∆ξ) , ∀ ξ ∈ H2
per(Ω).

Clearly, this is a positive, symmetric operator, and it satisfies assumptions (L1) –

(L3), and one can see the similarities with the nonlinear operator in (3.18). We now

wish to find the positive constants C5, C6, C8 such that assumptions (L4) – (L6) are

satisfied in addition.

Remark 3.2.1. We could also consider the possibility of changing the metric in

the descent direction calculation by, for example, defining the linear operator Lk :

H2
per(Ω)→ H−2

per(Ω) via

〈Lk[ν], ξ〉 := (ν, ξ) + s
(∣∣∇uk∣∣p−2∇ν,∇ξ

)
+ sε2 (∆ν,∆ξ) , ∀ ξ ∈ H2

per(Ω).
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This is similar to the idea in [56]. The search direction is then found as follows: find

dk ∈ H2
per(Ω) such that

〈Lk[dk], ξ〉 = −δE
[
uk
]

(ξ), ∀ ξ ∈ H2
per(Ω).

Our theory does not cover this case, and we will not consider it further here. But we

plan to examine this in a future work.

Lemma 3.2.2. For any ν, ξ ∈ H2
per(Ω),

C5 ‖ξ − ν‖2
L ≤ (δE[ξ]− δE[ν]) (ξ − ν), (3.21)

where C5 = min
(

1
2
, εs−

1
2

)
. Let E0 be given, such that B :=

{
ν ∈ H2

per(Ω)
∣∣ E[ν] ≤ E0

}
is non-empty. For any ν ∈ B and any ξ ∈ H2

per(Ω),

∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ C6 ‖ξ‖2

L , (3.22)

where

C6 =


1 + 1

p
(p− 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10 for p ∈ [2,∞), d = 2,

1 + (p− 1)
(

4p
6−p

) p−6
4p
(

4p
5p−6

) 6−5p
4p

s
6−p
4p ε

6−5p
2p C2

9C
p−2
10 for p ∈ [2, 6), d = 3,

1 + (p− 1) ε−2C2
9C

p−2
10 for p = 6, d = 3,

(3.23)

and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (3.15) of assumption

(L6).

Proof. Clearly

(δE[ξ]− δE[ν]) (ξ − ν) = ‖ξ − ν‖2 + sε2 ‖∆(ξ − ν)‖2

+ s
(
|∇ξ|p−2∇ξ − |∇ν|p−2∇ν,∇(ξ − ν)

)
.
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In addition, the following estimate is available:

(
|∇ξ|p−2∇ξ − |∇ν|p−2∇ν,∇(ξ − ν)

)
≥ 1

2p−2
‖∇(ξ − ν)‖pLp ≥ 0, for p ≥ 2. (3.24)

The simple interpolation inequality

‖∇ξ‖2 ≤ ‖ξ‖ · ‖∆ξ‖, ∀ξ ∈ H2
per(Ω),

in conjunction with Young’s inequality yields

1

2
‖ξ − ν‖2 +

sε2

2
‖∆(ξ − ν)‖2 ≥ s

1
2 ε ‖ξ − ν‖ · ‖∆(ξ − ν)‖ ≥ s

1
2 ε ‖∇(ξ − ν)‖2 .

As a consequence, we get

(δE[ξ]− δE[ν]) (ξ − ν) ≥ ‖ξ − ν‖2 + sε2 ‖∆(ξ − ν)‖2

≥ 1

2
‖ξ − ν‖2 +

1

2
sε2 ‖∆(ξ − ν)‖2 + s

1
2 ε ‖∇(ξ − ν)‖2 ,

and we conclude that estimate (3.21) is valid by choosing C5 = min(1
2
, εs−

1
2 ).

Next we derive (3.22). Suppose ν ∈ B. From (3.20) we have

∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ ‖ξ‖2 + (p− 1)s ‖∇ν‖p−2

Lp ‖∇ξ‖
2
Lp + sε2 ‖∆ξ‖2 . (3.25)

Now, since ν ∈ B,

‖∇ν‖Lp ≤ (pE0)
1
p =: C10.

Suppose that d = 2. An application of the Sobolev inequality (2.1) in Lemma 2.1.2

indicates that

p
1
p

(
p

p− 1

) p−1
p

ε
2(p−1)
p s

(p−1)
p C−2

9 ‖∇ξ‖
2
Lp ≤ p

1
p ‖ξ‖

2
p ·
(

p

p− 1

) p−1
p

ε
2(p−1)
p s

p−1
p ‖∆ξ‖

2(p−1)
p

≤ ‖ξ‖2 + sε2 ‖∆ξ‖2 ,
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where Young’s inequality is applied in the second step. It follows that,

(p− 1)s ‖∇ν‖p−2
Lp ‖∇ξ‖

2
Lp ≤

1

p
(p− 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10

(
‖ξ‖2 + sε2 ‖∆ξ‖2) .

(3.26)

Substituting (3.26) in (3.25) yields

∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ (1 +

1

p
(p− 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10

)
(‖ξ‖2 + ε2 ‖∆ξ‖2).

We conclude that estimate (3.22) is valid by choosing

C6 = 1 +
1

p
(p− 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10 .

Note that both C9 and C10 are ε and s independent. Following the similar arguments,

for p ∈ [2, 6), d = 3, we get

C6 = 1 + (p− 1)

(
4p

6− p

) p−6
4p
(

4p

5p− 6

) 6−5p
4p

s
6−p
4p ε

6−5p
2p C2

9C
p−2
10 .

For the case p = 6, d = 3, the Sobolev inequality (2.1) degenerates to ‖∇ξ‖Lp ≤

C9 ‖∆ξ‖, for any ξ ∈ H2
per(Ω). Hence, we have

‖ξ‖2 + sε2 ‖∆ξ‖2 ≥ sε2 ‖∆ξ‖2 ≥ sε2C−2
9 ‖∇ξ‖

2
Lp ,

and ∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ (1 + (p− 1) ε−2C2

9C
p−2
10

)
(‖ξ‖2 + ε2 ‖∆ξ‖2).

Therefore, estimate (3.22) is valid by choosing

C6 = 1 + (p− 1) ε−2C2
9C

p−2
10 .

That we can take C8 = C5 is the result of a simple calculation that we omit for

the sake of brevity. The proof is complete.

33



3.2.2 A Sixth-Order Regularized p-Laplacian Problem

We now study problem (1.2a) – (1.2b). A weak formulation is given as follows: for
f, g ∈ L2

per(Ω), find u ∈ H2
per(Ω) and w ∈ H1

per(Ω) such that

(u, χ) + (∇w,∇χ) = (g, χ) , ∀ χ ∈ H1
per(Ω), (3.27a)

sλ (u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (∆u,∆ξ) − (w, ξ) = (f, ξ) , ∀ ξ ∈ H2

per(Ω), (3.27b)

where λ ≥ 0, and ε ∈ (0, 1]. This problem is mass-conservative, in the sense that

(u−g, 1) = 0, and (w−sλg+f, 1) = 0, and it can be recast as a minimization problem

with an energy that involves the H̊−1
per norm. In particular, for any ν ∈ H̊2

per(Ω) we

define

E[ν] =
1

2
(ν − g + ḡ,T[ν − g + ḡ]) +

λs

2
‖ν + ḡ‖2 − (ν, f) +

s

p
‖∇ν‖pLp +

sε2

2
‖∆ν‖2

=
1

2
‖ν − g + ḡ‖2

H̊−1
per

+
λs

2
‖ν + ḡ‖2 − (ν, f) +

s

p
‖∇ν‖pLp +

sε2

2
‖∆ν‖2 . (3.28)

Observe that ν − g + ḡ ∈ H̊−1
per, which is required for this energy to make sense. It

is straightforward to show that E satisfies (E1) – (E3), with respect to the Hilbert

space H = H̊2
per(Ω). The first variation of E is given as follows: for any ξ ∈ H̊2

per(Ω),

dτE[ν + τξ]|τ=0 = δE[ν](ξ) = (T[ν − g + ḡ], ξ) + λs (ν + ḡ, χ)− (f, ξ)

+ s
(
|∇ν|p−2∇ν,∇ξ

)
+ sε2 (∆ν,∆ξ) .

The unique minimizer of E – let us call it u? ∈ H̊2
per(Ω) for the moment – satisfies

δE[u?](ξ) = 0, for all ξ ∈ H̊2
per(Ω). By the definition of the T operator, there is a

unique element w? ∈ H̊1
per(Ω) such that

w? := −T[u? − g + ḡ].
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Therefore, we have, for all ξ ∈ H̊2
per(Ω),

sλ (u? + ḡ, ξ) + s
(
|∇u?|p−2∇u?,∇ξ

)
+ sε2 (∆u?,∆ξ)− (w?, ξ) = (f, ξ) .

Setting u := u? + ḡ and w := w? + sλḡ − f̄ and using the fact that ξ is of zero mean,

we have

sλ (u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (∆u,∆ξ)− (w, ξ) = (f, ξ) , ∀ ξ ∈ H̊2

per.

Using the definition of the T operator again, we conclude that w? ∈ H̊1
per(Ω) satisfies

(∇w?,∇χ) = − (u? − g + ḡ, χ) ,

for all χ ∈ H̊1
per(Ω), which implies that

(∇w,∇χ) = − (u− g, χ) .

It follows that solving (3.27a) – (3.27b) is equivalent to minimizing the coercive,

strictly convex energy (3.28), after the appropriate affine change of variables.

The second variation of E is a continuous bilinear operator. Given a fixed ν ∈

H̊2
per(Ω), the action of the second variation on the arbitrary pair (ξ, η) ∈ H̊2

per(Ω) ×

H̊2
per(Ω) becomes

δ2E[ν](ξ, η) = (ξ,T[η]) + λs (ξ, η) + s
(
|∇ν|p−2∇ξ,∇η

)
+ (p− 2)s

(
|∇ν|p−4∇ν · ∇ξ,∇ν · ∇η

)
+ sε2 (∆ξ,∆η) .

Similar to the estimate in the fourth-order case (3.20), we have the bound

∣∣δ2E[ν](ξ, η)
∣∣ ≤ ‖ξ‖H̊−1

per
‖η‖H̊−1

per
+ λs ‖ξ‖ · ‖η‖+ s ‖∇ν‖p−2

Lp ‖∇ξ‖Lp ‖∇η‖Lp

+ (p− 2)s ‖∇ν‖p−2
Lp ‖∇ξ‖Lp ‖∇η‖Lp + sε2 ‖∆ξ‖ · ‖∆η‖ ,
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which implies that

∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ ‖ξ‖2

H̊−1
per

+ sλ ‖ξ‖2 + (p− 1)s ‖∇ν‖p−2
Lp ‖∇ξ‖

2
Lp + sε2 ‖∆ξ‖2 , (3.29)

for all ν, ξ ∈ H̊2
per(Ω).

For the sixth order problem, we define the pre-conditioner L : H̊2
per(Ω)→ H̊−2

per(Ω)

via

〈L[ν], ξ〉 := sλ (ν, ξ)+(ν, ξ)H̊−1
per

+s (∇ν,∇ξ)+sε2 (∆ν,∆ξ) , ∀ ξ ∈ H̊2
per(Ω). (3.30)

This operator satisfies (L1) – (L3). To show that it satisfies (L3) – (L6), we need

some technical results.

We can now find the coefficients C5, C6, and C8, which establish properties (L4)

– (L6) and therefore guarantee the geometric convergence of the PSD method for the

sixth-order case.

Lemma 3.2.3. For any ν, ξ ∈ H̊2
per(Ω), we have

C5 ‖ξ − ν‖2
L ≤ (δE[ξ]− δE[ν]) (ξ − ν), (3.31)

where C5 = min
(

1
3
, ε

4
3 s−

1
3

)
. Let E0 be given such that B :=

{
ξ ∈ H̊2

per(Ω)
∣∣∣ E[ξ] ≤ E0

}
is non-empty. For any ν ∈ B and any ξ ∈ H̊2

per(Ω), the following estimate is valid:

∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ C6 ‖ξ‖2

L , (3.32)

where

C6 =


1 + (p− 1)

(
3p
2

)− 2
3p

(
3p

3p−2

) 2−3p
3p

ε
4−6p
3p s

2
3pC2

9C
p−2
10 , for p ∈ [2,∞), d = 2,

1 + (p− 1)
(

6p
6−p

) p−6
6p
(

6p
7p−6

) 6−7p
6p

ε
6−7p
3p s

6−p
6p C2

9C
p−2
10 , for p ∈ [2, 6), d = 3,

1 + (p− 1)ε−2C2
9C

p−2
10 , for p = 6, d = 3,

(3.33)
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and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (3.15) of assumption

(L6).

Proof. The proof is similar to that of Lemma 3.2.2. Using (A.51) again, we have

(δE[ξ]− δE[ν]) (ξ − ν) = sλ ‖ξ − ν‖2 + ‖ξ − ν‖2
H̊−1

per
+ sε2 ‖∆(ξ − ν)‖2

+ s
(
|∇ξ|p−2∇ξ − |∇ν|p−2∇ν,∇(ξ − ν)

)
.

≥ sλ ‖ξ − ν‖2 + ‖ξ − ν‖2
H̊−1

per
+ sε2 ‖∆(ξ − ν)‖2

≥ sλ ‖ξ − ν‖2 +
2

3
‖ξ − ν‖2

H̊−1
per

+
1

3
sε2 ‖∆(ξ − ν)‖2

+ s
2
3 ε

4
3 ‖∇(ξ − ν)‖2 ,

where the last step is a consequence of the interpolation inequality (2.3):

1

3
‖ξ − ν‖2

H̊−1
per

+
2

3
sε2 ‖∆(ξ − ν)‖2 ≥ s

2
3 ε

4
3 ‖ξ − ν‖

2
3

H̊−1
per
‖∆(ξ − ν)‖

4
3 ≥ s

2
3 ε

4
3 ‖∇(ξ − ν)‖2 .

We conclude that estimate (3.31) holds by choosing C5 = min(1
3
, ε

4
3 s−

1
3 ).

Next we derive (3.32). Inequality (3.29) yields

∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ sλ ‖ξ‖2 + ‖ξ‖2

H̊−1
per

+ (p− 1)s ‖∇ν‖p−2
Lp ‖∇ξ‖

2
Lp + sε2 ‖∆ξ‖2 .

Since ν ∈ B, ‖∇ν‖Lp ≤ (E(u0))
1
p =: C10. Suppose that d = 2. An application of the

Sobolev inequality (2.6) from Lemma 2.1.4 indicates that, for every ξ ∈ H̊2
per(Ω),

(
3p

2

) 2
3p
(

3p

3p− 2

) 3p−2
3p

ε
6p−4
3p s

3p−2
3p C−2

9 ‖∇ξ‖
2
Lp

≤
(

3p

2

) 2
3p

‖ξ‖
4
3p

H̊−1
per

(
3p

3p− 2

) 3p−2
3p

ε
6p−4
3p s

3p−2
3p ‖∆ξ‖

6p−4
3p

≤ ‖ξ‖2
H̊−1

per
+ sε2 ‖∆ξ‖2 ,
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where, in the last step, we applied Young’s inequality. It follows that,

(p− 1)s ‖∇ν‖p−2
Lp ‖∇ξ‖

2
Lp

≤ (p− 1)

(
3p

2

)− 2
3p
(

3p

3p− 2

) 2−3p
3p

ε
4−6p
3p s

2
3pC2

9C
p−2
10

(
‖ξ‖2

H̊−1
per

+ sε2 ‖∆ξ‖2
)
.

As a result, estimate (3.32) is valid by choosing

C6 = 1 + (p− 1)

(
3p

2

)− 2
3p
(

3p

3p− 2

) 2−3p
3p

ε
4−6p
3p s

2
3pC2

9C
p−2
10 .

Similarly, For p ∈ [2, 6), d = 3, we have

(
6p

6− p

) 6−p
6p
(

6p

7p− 6

) 7p−6
6p

ε
7p−6
3p s

7p−6
6p C−2

9 ‖∇ξ‖
2
Lp

≤
(

6p

6− p

) 6−p
6p

‖ξ‖
6−p
3p

H̊−1
per

(
6p

7p− 6

) 7p−6
6p

ε
7p−6
3p s

7p−6
6p ‖∆ξ‖

7p−6
3p

≤ ‖ξ‖2
H̊−1

per
+ sε2 ‖∆ξ‖2 .

As a result, estimate (3.32) is valid by choosing

C6 = 1 + (p− 1)

(
6p

6− p

) p−6
6p
(

6p

7p− 6

) 6−7p
6p

ε
6−7p
3p s

6−p
6p C2

9C
p−2
10 .

For the case p = 6, d = 3, the Sobolev inequality (2.6) degenerates, as before.

But it is straightforward to show that estimate (3.32) is valid upon choosing

C6 = 1 + (p− 1)ε−2C2
9C

p−2
10 .

As before, we omit the simple argument that one may take C8 = C5 to satisfy (L6).

The proof is complete.

Remark 3.2.4. We note that a mixed formulation of the sixth-order regularized p-

Laplacian problem — expressed in strong form in (1.2a) – (1.2b) and in weak form
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in (3.27a) – (3.27b) — in order to preserve the proper variational structure of the

problem. Specifically, observe that the p-Laplacian term appearing in (1.2b) is the

gradient of a convex energy functional. However, if one applies −∆ to (1.2b), so that

the variable w is dropped, a composition of the p-Laplacian and regular Laplacian

operators yields a nonlinear term that could not be represented as the gradient of a

convex energy. In short, the variational/convexity structure would be lost and the

theoretical convergence could not be justified.

3.2.3 Convergence for the Discretized Fourth-Order Problem

The discrete version of (1.1) can be expressed as follows: given f ∈ Cper, find u ∈ Cper

such that

u− s∇v
h ·
(
|∇v

hu|
p−2∇v

hu
)

+ sε2∆hu = f. (3.34)

This represents a second-order (in space) approximation of the solution of (1.1). As in

the space continuous case, we formulate an equivalent minimization problem. Using

the definitions from subsection 2.2.1, we have the following discrete energy: given

f ∈ Cper, for any ν ∈ Cper, define

Eh(ν) :=
1

2
‖ν − f‖2

2 +
s

p
‖∇v

hν‖
p
p +

sε2

2
‖∆hν‖2

2. (3.35)

This (discrete) energy satisfies (E1) – (E3). The discrete variational derivative at

ν ∈ Cper is

δEh[ν](ξ) := dτEh(ν + τξ)|τ=0

= (ν − f, ξ)2 + s〈|∇v
hν|p−2Dxν,Dxξ〉+ s〈|∇v

hν|p−2Dyν,Dyξ〉+ sε2(∆hν,∆hξ)2

= (ν − f, w)2 + s〈|∇v
hν|p−2∇v

hν,∇v
hξ〉+ sε2(∆hν,∆hξ)2

=
(
ν − f − s∇v

h ·
(
|∇v

hν|
p−2∇v

hν
)

+ sε2∆2
hν, ξ

)
2
,
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for all ξ ∈ Cper, where we have used summation-by-parts [71, 82] to obtain the last

equality. Given a fixed ν ∈ Cper, the action of the second variation on the arbitrary

pair (ξ, η) ∈ Cper × Cper is given by

δ2Eh[ν](ξ, η) = (ξ, η)2 + s〈|∇v
hν|p−2∇v

hξ,∇v
hη〉

+ (p− 2)s〈|∇v
hν|p−4∇v

hν · ∇v
hξ,∇v

hν · ∇v
hη〉+ sε2 (∆hξ,∆hη)2 .

We have the bound:

∣∣δ2Eh[ν](ξ, η)
∣∣ ≤ ‖ξ‖2 ‖η‖2 + s ‖∇v

hν‖
p−2
p ‖∇v

hξ‖p ‖∇
v
hη‖p

+ (p− 2)s ‖∇v
hν‖

p−2
p ‖∇v

hξ‖p ‖∇
v
hη‖p + sε2 ‖∆hξ‖2 ‖∆hη‖2 . (3.36)

For this problem, we define the pre-conditioner via

(ν, ξ)Lh = Lh[ν](ξ) := (ν, ξ)2 + s [Dxν,Dxξ]ew + s [Dyν,Dyξ]ns + sε2(∆hν,∆hξ)2

= (ν − s∆hν + sε2∆2
hν, ξ)2,

for all ν, ξ ∈ Cper, where we have used summation-by-parts to establish the second

equality. In other words,

Lh[ν] = ν − s∆hν + sε2∆2
hν.

One will notice the similarity of the pre-conditioner with the nonlinear operator

in (3.34). The induced norm is

‖ν‖2
Lh := (ν, ν)Lh = ‖ν‖2

2 + s ‖∇hν‖2
2 + sε2 ‖∆hν‖2 ,

defined for every ν ∈ Cper.
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Mimicking the proofs in the continuous case, using summation-by-parts in place

of integration-by-parts, and Lemma 2.2.2, we get the following result, whose proof is

omitted:

Lemma 3.2.5. For any ν, ξ ∈ Cper,

C5 ‖ξ − ν‖2
Lh ≤ (δEh[ξ]− δEh[ν]) (ξ − ν), (3.37)

where C5 = min
(

1
2
, εs−

1
2

)
. Let E0 be given, such that B := {ν ∈ Cper | Eh[ν] ≤ E0}

is non-empty. For any ν ∈ B and any ξ ∈ Cper, we have

∣∣δ2Eh[ν](ξ, ξ)
∣∣ ≤ C6 ‖ξ‖2

Lh , (3.38)

where

C6 = 1 +
1

p
(p− 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10 , (3.39)

and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (3.15) of assumption

(L6).

3.2.4 Convergence for the Discretized Sixth-Order Problem

The (second-order accurate) discrete version of (1.2a) – (1.2b) can be expressed as

follows: given f, g ∈ Cper, find u,w ∈ Cper such that

u−∆hw = g,

sλu− s∇v
h ·
(
|∇v

hu|
p−2∇v

hu
)

+ sε2∆hu− w = f.

As before, it is convenient to switch to the mean-zero version: find u?, w? ∈ C̊per such

that

u? −∆hw? = g − g,
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sλu? − s∇v
h ·
(
|∇v

hu?|
p−2∇v

hu?
)

+ sε2∆hu? − w? = f − f.

Similar to fourth-order regularized p-Laplacian problem, we define the following

discrete energy: for every ν ∈ C̊per

Eh(ν) :=
1

2
‖ν − g + ḡ‖2

−1 +
λs

2
‖ν + ḡ‖2

2 − (ν, f) +
s

p
‖∇v

hν‖
p
p +

sε2

2
‖∆hν‖2 .

For the discrete sixth order problem, we define a linear operator Lh : C̊per → C̊per via

(ν, ξ)Lh = Lh[ν](ξ) := sλ (ν, ξ)2 + (ν, ξ)−1

+ s [Dxν,Dxξ]ew + s [Dyν,Dyξ]ns + sε2(∆hν,∆hξ)2

=
(
sλν − s∆hν + sε2∆2

hν − Th [−ν] , ξ
)

2
,

where the second equality may be seen using summation-by-parts [71, 82]. This

operator satisfies (L1) – (L3), and the next result, which we give without proof for

the sake of brevity, shows that (L4) – (L6) are satisfied as well.

Lemma 3.2.6. For any u, v ∈ C̊per, the following inequality is valid

C5 ‖u− v‖2
Lh ≤ (δEh[u]− δEh[ν]) (u− v),

where C5 = min
(

1
3
, ε

4
3 s−

1
3

)
. Let E0 be given such that B :=

{
ξ ∈ C̊per

∣∣∣ Eh[ξ] ≤ E0

}
is

non-empty. For any ν ∈ B, we have

∣∣δ2Eh[ν](ξ, ξ)
∣∣ ≤ C6 ‖ξ‖2

Lh ,

for all ξ ∈ C̊per, where

C6 = 1 + (p− 1)

(
3p

2

)− 2
3p
(

3p

3p− 2

) 2−3p
3p

ε
4−6p
3p s

2
3pC2

9C
p−2
10 ,
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and C10 = (pEh,0)
1
p . We can take C8 = C5 to satisfy estimate (3.15) of assumption

(L6).
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Chapter 4

Applications of the Linearly

Preconditioned Steepest Descent

Methods

In this chapter we perform some numerical experiments to support the theoretical

results. The finite difference search direction equations and Poisson equations are

solved efficiently using the Fast Fourier Transform (FFT). We would like to point out

that the Fourier pseudo-spectral method can be used to discretize space, and, once

again, one can utilize the FFT for the inversion of the linear systems. For descriptions

of the pseudo-spectral methods, see, for example, [9, 17, 48].

4.1 Application to Epitaxial Thin Film Growth Model

with First-Order-In-Time Scheme

The content in this chapter has been published in [34], for more details please refer

to [34].
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4.1.1 Introduction

In this section we recall the convex splitting numerical scheme in [77] for the thin film

epitaxy model with slope selection. Suppose that Ω ⊂ R2 is a rectangular domain.

The energy of an epitaxial thin film is given by

E [u] =

∫
Ω

{
1

p
|∇u|p − 1

2
|∇u|2 +

ε2

2
|∆u|2

}
dx, ∀ u ∈ H2

per(Ω),

where, p ≥ 4 is even, u : Ω→ R is the height of the film, and ε is a constant. The L2

gradient flow is

∂tu = −w, w := δE = −∇ ·
(
|∇u|p−2∇u

)
+ ∆u+ ε2∆2u, (4.1)

and w is called the chemical potential. The model predicts the emergence of a faceted

thin film, whose facets have slopes of magnitude approximately one, that coarsens over

time. The fully-implicit convex splitting scheme in 2D [77] can be written in operator

format as Nh[un+1] = f , where

Nh[ν] := ν − s∇v
h ·
(
|∇v

hν|
p−2∇v

hν
)

+ ε2s∆2
hν, f = un − s∆v

hu
n. (4.2)

Hence, the scheme can be reformulated as the fourth-order problem (3.34) with f =

un − s∆v
hu

n and p ≥ 4 and even.

In way of summary, to solve Nh[u] = f , suppose that iterate uk ∈ Cper is given.

(Note that k is the PSD solver iteration index, not the time step index, the latter of

which we usually denote by n.) We first compute the search direction dk ∈ Cper via

(3.3):

L[dk] = dk − s∆hd
k + sε2∆2

hd
k = − δEh[uk]

= −
(
uk − f − s∇v

h ·
(∣∣∇v

hu
k
∣∣p−2∇v

hu
k
)

+ sε2∆2
hu

k
)

= f −Nh[uk],
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where Eh is as defined in (3.35). This equation is efficiently solved using FFT. Once
dk is found, we perform a line-search according to (4.45): find αk ∈ R such that
q(αk) = 0, where

q(α) := δEh[uk + αdk](dk)

=
(
uk + αdk − f − s∇v

h ·
(∣∣∇v

h(uk + αdk)
∣∣p−2∇v

h(uk + αdk)
)

+ sε2∆2
h(uk + αdk), dk

)
2

=
(
Nh[uk + αdk]− f, dk

)
2
.

The approximation sequence is then updated via uk+1 = uk + αkd
k. When p = 4

(p = 6), a short calculation shows that q is a cubic (quintic) polynomial whose

coefficients can be easily obtained. Moreover, the theory predicts that there is a

unique global root for q.

4.1.2 Convergence and complexity of the PSD solver

In this subsection we demonstrate the accuracy and efficiency of the PSD solver by

using the epitaxial thin film model with slope selection. We present the results of

some convergence tests and perform some sample computations to demonstrate the

convergence and near optimal complexity with respect to the grid size h.

Table 4.1: Errors, convergence rates, average iteration numbers and average CPU
time for each time step. Parameters are given in the text, and the initial data are
defined in (4.3). The refinement path is s = 0.1h2.

p = 4 p = 6
hc hf ‖δu‖2 Rate #iter Tcpu(hf ) ‖δu‖2 Rate #iter Tcpu(hf )
3.2
16

3.2
32 6.2192× 10−3 - 4 0.0007 9.3074× 10−3 - 5 0.0009

3.2
32

3.2
64 1.2685× 10−3 2.29 2 0.0024 1.6392× 10−3 2.51 3 0.0032

3.2
64

3.2
128 2.6046× 10−4 2.28 2 0.0114 2.9046× 10−4 2.50 2 0.0141

3.2
128

3.2
256 5.9639× 10−5 2.13 2 0.0475 6.5325× 10−5 2.15 2 0.0616

3.2
256

3.2
512 1.4526× 10−5 2.04 2 0.3560 1.5886× 10−5 2.04 2 0.4636

To simultaneously demonstrate the spatial accuracy and the efficiency of the

solver, we perform a typical time-space convergence test for the fully discrete scheme

(4.2) for the slope selection model. As in [71, 77], we perform the Cauchy-type
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convergence test using the following periodic initial data [71]:

u(x, y, 0) = 0.1 sin2

(
2πx

L

)
· sin

(
4π(y − 1.4)

L

)
−0.1 cos

(
2π(x− 2.0)

L

)
· sin

(
2πy

L

)
, (4.3)

where Ω = (0, 3.2)2. In this test, we compute the Cauchy difference, δu := uhf (T )−

Ifc (uhc(T )), where hc = 2hf , and Ifc is a bilinear interpolation operator that maps

the coarse grid approximation uhc onto the fine grid. We take a quadratic refinement

path, i.e., s = Ch2, to equalize the spatial and temporal error contributions. At the

final time, T = 0.32, we expect the global error to be O(s) +O(h2) = O(h2) in the `2

and `∞ norms, as h, s→ 0. The other parameters are given by ε = 0.1 and s = 0.1h2.

The norms of Cauchy difference, the convergence rates, average iteration number and

average CPU time can be found in Table 4.1. Second-order convergence is observed.

At the same time, the average iteration count for the solver remains at around 2.

Since we are using a quadratic refinement path, increasing the grid size by a factor

of two (decreasing the grid spacing by 2) means increasing the number of time-space

degrees of freedom by a factor of 16. But the CPU time increases at a much slower

rate. The complexity can be offset, of course, by the fact the starting guesses for the

solver at each independent time level are better for smaller time step sizes.

To more directly investigate the complexity of the PSD solver we perform another

series of tests to determine the dependences of the convergence rates on ε, h, s, and

p, in particular. Consider the following spatially periodic function parameterized by

s:

ũ(x, y, s) =
1

2π
sin
(
2πx

)
cos
(
2πy

)
cos(s). (4.4)

First we calculate f := Nh [Ih (ũ( · , · , s))] ∈ Cper, where Ih : C0
per(Ω) → Cper is the

canonical grid projection operator. Then we compute the sequence
{
uk
}∞
k=0

via the
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Figure 4.1: Complexity tests showing the solver performance for changing values of
h, ε, s and p. Parameters are given in the text.

PSD algorithm, with the itialization

u0
i,j = ũ(pi, pj, 0) + s2 sin

(
4πpi

)
sin
(
6πpj

)
.

The right-hand-side f is manufactured so that u = Ih (ũ( · , · , s)) is the exact algebraic

solution to Nh[u] = f , hence uk → Ih (ũ( · , · , s)), as k → ∞. Define γk := ‖uk −

Ih (ũ( · , · , s)) ‖∞. We stop the PSD algorithm when γk ≤ τ := 1× 10−8.
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In Figure 4.12 we plot γk versus k, on a semi-log scale, for various choices of h,

ε, s and p. In Figure 4.12(a) p = 4, s = 0.01 and ε = 0.03; in Figure 4.12(b) p = 4,

s = 0.01 and h = 1/512; in Figure 4.12(c) p = 4, h = 1/512 and ε = 0.03; in Figure

4.12(d): h = 1/512, s = 0.01 and ε = 0.03. As can be seen in Figure 4.12(a), the

convergence rate (as gleaned from the error reduction) is nearly uniform and nearly

independent of h. Figures 4.12 (b) and (c) indicate that more PSD iterations are

required for smaller values of ε and larger values of s, respectively. Figure 4.12(d)

shows that the number of PSD iterations increases with the value of p. These general

trends are expected form the theory.

4.1.3 Long-time coarsening behavior for the thin film model

with p = 4, 6

Coarsening processes in thin film systems can take place on very long time scales [57].

In this subsection, we perform (now standard) long time behavior tests for p = 4, 6.

Such test, which have been performed in many places, will confirm the expected

coarsening rates and serve as benchmarks for our solver. See, for example, [71, 77].

The initial data for the simulations are taken as essentially random:

u0
i,j = 0.05 · (2ri,j − 1), (4.5)

where the ri,j are uniformly distributed random numbers in [0, 1]. Time snapshots

of the evolution for the epitaxial thin film growth model with p = 4 can be found in

Figure 4.2. The coarsening rates for the p = 4 case are given in Figure 4.3. These

simulation results are consistent with earlier work on this topic in [71, 77, 83], showing

the surface roughness, W , grows like t
1
3 and the energy, E, decays like t−

1
3 . We also

present the numerical simulations for the epitaxial thin film growth model with p = 6

in Figure 4.4. Notice in Figure 4.4 that the evolution process is significantly different

from the process depicted in Figure 4.2.
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t = 10 t = 1000

t = 3000 t = 6000

t = 8000 t = 10000

Figure 4.2: Time snapshots of the evolution with PSD solver for the epitaxial thin
film growth model with p = 4 at t = 10, 1000, 3000, 6000, 8000 and 10000. Left:
contour plot of u, Right: contour plot of ∆u. The parameters are ε = 0.03,Ω =
[12.8]2, s = 0.01. These simulation results are consistent with earlier work on this
topic in [71, 77, 83].
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Figure 4.3: Log-log plot of Roughness and energy evolution for the simulation depicted
in Figure 4.2.

t = 10 t = 1000

t = 3000 t = 6000

Figure 4.4: Time snapshots of the evolution with PSD solver for the epitaxial thin
film growth model with p = 6 at t = 10, 1000, 3000 and 6000. Left: contour plot of u,
Right: contour plot of ∆u. The parameters are ε = 3.0× 10−2,Ω = [12.8]2, s = 0.01.

51



4.2 Application to Epitaxial Thin Film Growth Model

with Second-Order-In-Time Backward Differen-

tiation Formula Scheme

The content in this chapter has been published in [36], for more details please refer

to [36].

4.2.1 The fully discrete scheme

LetM ∈ Z+, and set s := T/M , where T is the final time. We define the canonical grid

projection operator Ph : C0(Ω) → Cper via [Phv]i,j = v(ξi, ξj). Set uh,s := Phu(·, s).

Then Fh(uh,s) + 1
2
‖∇h(uh,s − uh,0)‖2

2 → F (u(·, 0)) as h→ 0 and s→ 0 for sufficiently

regular u. We denote φe as the exact solution to the SS equation (5.9) and take

Φ`
i,j = Phφe(·, t`). In the rest of paper, we shall drop the subscription i, j if no

confusion is caused.

With the machinery in last subsection, our second-order-in-time BDF type scheme

can be formulated as follows: for k ≥ 1, given φk−1, φk ∈ Cper, find φk+1 ∈ Cper such

that

3φk+1 − 4φk + φk−1

2s
= ∇v

h · (|∇v
hφ

k+1|2∇v
hφ

k+1)−∆v
h(2φ

k − φk−1)

−As∆2
h(φ

k+1 − φk)− ε2∆2
hφ

k+1, (4.6)

where φ0 := Φ0, φ1 := Φ1 and A is the constant stability coefficient.

For the SS equation (5.9), we see that the PDE is equivalent if a fixed constant

is added or subtracted from the solution. Similar argument could also be applied to

the numerical scheme (4.6), since this scheme is mass conservative at a discrete level.

For simplicity of presentation, we assume that φ0 = φ1 = 0, so that φk = 0, for any

k ≥ 2.
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We now introduce a discrete energy that is consistent with the continuous space

energy (5.7) as h→ 0. In particular, the discrete energy Fh : Cper → R is defined as:

Fh(φ) =
1

4
‖∇v

hφ‖
4
4 −

1

2
‖∇v

hφ‖
2
2 +

1

2
ε2 ‖∆hφ‖2

2 . (4.7)

We also denote a modified numerical energy F̃h : Cper → R via

F̃h(φ, ψ) := Fh(φ) +
1

4s
‖φ− ψ‖2

2 +
1

2
‖∇h(φ− ψ)‖2

2 . (4.8)

Although we can not guarantee that the energy Fh is non-increasing in time, we are

able to prove the dissipation of auxiliary energy F̃h. The unique solvability and the

unconditional energy stability of scheme (4.6) is assured by the following theorem.

Theorem 4.2.1. Suppose that the exact solution φe is periodic and sufficiently

regular, and φ0, φ1 ∈ Cper is obtained via grid projection, as defined above. Given

any (φk−1, φk) ∈ Cper, there is a unique solution φk+1 ∈ Cper to the scheme (4.6).

And also, the scheme (4.6), with starting values φ0 and φ1, is unconditionally energy

stable, i.e., for any τ > 0 and h > 0, and any positive integer 2 ≤ k ≤ M − 1, The

numerical scheme (4.6) has the following energy-decay property:

F̃h(φ
k+1, φk) ≤ F̃h(φ

k, φk−1) ≤ F̃h(φ
1, φ0) ≤ C0, (4.9)

for all A ≥ 1
16
, where C0 > is a constant independent of s, h and T .

Proof. The unique solvability follows from the convexity argument. Taking an inner

product with (4.6) by φk+1 − φk yields

0 =

(
3φk+1 − 4φk + φk−1

2s
, φk+1 − φk

)
−
(
∇v
h · (|∇v

hφ
k+1|2∇v

hφ
k+1), φk+1 − φk

)
+

(
∆v
h(2φ

k − φk−1), φk+1 − φk
)

+As

(
∆2
h(φ

k+1 − φk), φk+1 − φk
)

+ ε2

(
∆2
hφ

k+1, φk+1 − φk
)
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:= I1 + I2 + I3 + I4 + I5. (4.10)

We now establish the estimates for I1, · · · , I5. The temporal difference term could be

evaluated as follows

(
3φk+1 − 4φk + φk−1

2s
, φk+1 − φk

)
≥ 1

s

(
5

4

∥∥φk+1 − φk
∥∥2

2
− 1

4

∥∥φk − φk−1
∥∥2

2

)
.(4.11)

For the 4-Laplacian term, we have

(
−∇v

h · (|∇v
hφ

k+1|2∇v
hφ

k+1), φk+1 − φk
)

=
(
|∇v

hφ
k+1|2∇v

hφ
k+1,∇v

h(φ
k+1 − φk)

)
≥ 1

4

(
‖∇v

hφ
k+1‖4

4 − ‖∇v
hφ

k‖4
4

)
. (4.12)

For the concave diffusive term, the following estimate is valid

(
∆v
h(2φ

k − φk−1), φk+1 − φk
)

= −
(
∇v
h(2φ

k − φk−1),∇v
h(φ

k+1 − φk)
)

= −
(
∇v
hφ

k,∇v
h(φ

k+1 − φk)
)
−
(
∇v
h(φ

k − φk−1),∇v
h(φ

k+1 − φk)
)

= −1

2
‖∇v

hφ
k+1‖2

2 +
1

2
‖∇v

hφ
k‖2

2 +
1

2
‖∇v

h(φ
k+1 − φk)‖2

2 −
(
∇v
h(φ

k − φk−1),∇v
h(φ

k+1 − φk)
)

≥ −1

2

(
‖∇v

hφ
k+1‖2

2 − ‖∇v
hφ

k‖2
2

)
− 1

2
‖∇v

h(φ
k − φk−1)‖2

2

≥ −1

2

(
‖∇v

hφ
k+1‖2

2 − ‖∇v
hφ

k‖2
2

)
− 1

2
‖∇h(φ

k − φk−1)‖2
2, (4.13)

where the last step applied the Lemma. 2.2.1.

For the surface diffusion term, we have

(
∆2
hφ

k+1, φk+1 − φk
)

=
(
∆hφ

k+1,∆h(φ
k+1 − φk)

)
≥ 1

2

(
‖∆hφ

k+1‖2
2 − ‖∆hφ

k‖2
2

)
.(4.14)

Similarly, the following identity is valid for the stabilizing term:

s
(
∆2
h(φ

k+1 − φk), φk+1 − φk
)

= s‖∆h(φ
k+1 − φk)‖2

2. (4.15)
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Meanwhile, an application of Cauchy inequality indicates the following estimate:

1

s
‖φk+1 − φk‖2

2 + As‖∆h(φ
k+1 − φk)‖2

2 ≥ 2A1/2‖∇h(φ
k+1 − φk)‖2

2. (4.16)

Therefore, a combination of (4.11)-(4.13) and (4.16) yields

Fh(φ
k+1)− Fh(φk) +

1

4s

(
‖φk+1 − φk‖2

2 − ‖φk − φk−1‖2
2

)
+

1

2

(
‖∇h(φ

k+1 − φk)‖2
2 − ‖∇h(φ

k − φk−1)‖2
2

)
≤ (−2A1/2 +

1

2
)‖∇h(φ

k+1 − φk)‖2
2 ≤ 0, (4.17)

provided that A ≥ 1
16
. Then the proof follows from the definition of the F̃h in

(4.8).

4.2.2 L∞h (0, T ;H2
h) Stability of the Numerical Scheme

The L∞h (0, T ;H2
h) bound of the numerical solution could be derived based on the

modified energy stability (4.9).

Theorem 4.2.2. Let φ ∈ CΩ, then the L∞h (0, T ;H2
h) bound of the numerical solution

is as follows:

‖φ‖H2
h
≤

√
2
C0 + |Ω|
C1ε2

:= C2, (4.18)

where C2 is independent of s, h and T .

Proof. Since
1

8
ψ4 − 1

2
ψ2 ≥ −1

2
, (4.19)

then we have
1

8
‖∇v

hφ‖4
4 −

1

2
‖∇v

hφ‖2
2 ≥ −

1

2
|Ω|, (4.20)
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with the discrete H1
h norm introduced in (2.7). Then we arrive at the following bound,

for any φ ∈ CΩ:

Fh(φ) ≥ 1

8
‖∇v

hφ‖4
4 +

ε2

2
‖∆hφ‖2

2 −
1

2
|Ω|

≥ 1

2
‖∇v

hφ‖2
2 +

ε2

2
‖∆hφ‖2

2 − |Ω|

≥ ε2

2
‖∆hφ‖2

2 − |Ω|

≥ 1

2
C1ε

2‖φ‖2
H2
h
− |Ω|, (4.21)

in which C1 is a constant associated with the discrete elliptic regularity: ‖∆hφ‖2
2 ≥

C1‖φ‖2
H2
h
, as stated in (2.15) of Proposition 2.2.7. Consequently, its combination with

(4.8) finishes the proof.

Remark 4.2.3. Note that the constant C2 is independent of s, h and T , but does

depends on ε. In particular, C2 = O(ε−1).

4.2.3 Convergence Analysis and Error Estimate

Error equations and consistency analysis

A detailed Taylor expansion implies the following truncation error:

3Φk+1 − 4Φk + Φk−1

2s
= ∇v

h · (|∇v
hΦ

k+1|2∇v
hΦ

k+1)−∆v
h(2Φk − Φk−1)

−As∆2
h(Φ

k+1 − Φk)− ε2∆2
hΦ

k+1 + τ k, (4.22)

with
∥∥τ k∥∥

2
≤ C(h2 + s2) . Consequently, with an introduction of the error function

ek = Φk − φk, ∀ k ≥ 0, (4.23)

we get the following evolutionary equation, by subtracting (4.6) from (4.22):

3ek+1 − 4ek + ek−1

2s
= ∇v

h · (|∇v
hΦ

k+1|2∇v
hΦ

k+1 − |∇v
hφ

k+1|2∇v
hφ

k+1)
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−∆v
h(2e

k − ek−1)− As∆2
h(e

k+1 − ek)

−ε2∆2
he
k+1 + τ k, (4.24)

In addition, from the PDE analysis for the SS equation in [60, 61] and the global in

time H2
h stability (4.18) for the numerical solution, we also get the L∞h , W 1,6 and H2

h

bounds for both the exact solution and numerical solution, uniform in time:

‖Φk‖∞, ‖Φk‖W 1,6 , ‖Φk‖H2
h
≤ C3, ‖φk‖∞, ‖φk‖W 1,6 , ‖φk‖H2

h
≤ C3, ∀ k ≥ 0,

(4.25)

where the 3-D embeddings of H2
h into L∞h and into W 1,6 have been applied, as well

as the discrete Sobolev embedding inequalities (2.16), (2.17) in Proposition 2.2.7

Stability and convergence analysis

The convergence result is stated in the following theorem.

Theorem 4.2.4. Let Φ ∈ R be the projection of the exact periodic solution of the SS

equation (5.9) with the initial data φ0 := Φ0 ∈ H2
per(Ω), φ1 := Φ1 ∈ H2

per(Ω), and the

regularity class

R = H3(0, T ;C0(Ω)) ∩H2(0, T ;C2(Ω)) ∩H1(0, T ;C4(Ω)) ∩ L∞(0, T ;C6(Ω)).(4.26)

Suppose φ is the fully-discrete solution of (4.6). Then the following convergence result

holds as s, h goes to zero:

‖ek‖2 +

(
3

16
ε2s

k∑
`=0

‖∆he
`‖2

)1/2

≤ C(s2 + h2), (4.27)

where the constant C > 0 is independent of s and h.

Proof. Taking an inner product with the numerical error equation (4.24) by ek+1 gives

0 =

(
3ek+1 − 4ek + ek−1

2s
, ek+1

)
+
(
|∇v

hΦ
k+1|2∇v

hΦ
k+1 − |∇v

hφ
k+1|2∇v

hφ
k+1,∇v

he
k+1
)
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−
(
∇v
h(2e

k − ek−1),∇v
he
k+1
)

+ As
(
∆h(e

k+1 − ek),∆he
k+1
)

+ε2
(
∆he

k+1,∆he
k+1
)
−
(
τ k, ek+1

)
=: J1 + J2 + J3 + J4 + J5 + J6. (4.28)

For the time difference error term J1,(
3ek+1 − 4ek + ek−1

2s
, ek+1

)
=

3

4s
‖ek+1‖2

2 −
1

s
‖ek‖2

2 +
1

4s
‖ek−1‖2

2

+
1

s
‖ek+1 − ek‖2

2 −
1

4s
‖ek+1 − ek−1‖2

2. (4.29)

For the backwards diffusive error term J3, we have

−
(
∇v
h(2e

k − ek−1),∇v
he
k+1
)

= −1

2
‖∇v

he
k+1‖2

2 − ‖∇v
he
k‖2

2 +
1

2
‖∇v

he
k−1‖2

2

+‖∇v
h(e

k+1 − ek)‖2
2 −

1

2
‖∇v

h(e
k+1 − ek−1)‖2

2. (4.30)

And for the stabilizing term J4,

As
(
∆h(e

k+1 − ek),∆he
k+1
)

=
As

2

(
‖∆he

k+1‖2
2 − ‖∆he

k‖2
2 + ‖∆h(e

k+1 − ek)‖2
2

)
. (4.31)

For the surface diffusion error term J5 and the local truncation error term J6, we have

ε2
(
∆he

k+1,∆he
k+1
)

= ε2‖∆he
k+1‖2

2, (4.32)

and

−
(
τ k, ek+1

)
≤ ‖τ k‖2 · ‖ek+1‖2 ≤

1

2
‖τ k‖2

2 +
1

2
‖ek+1‖2

2. (4.33)
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For the nonlinear error term J2, we adopt the same trick in [31], and get

J2 =
(
|∇v

hΦ
k+1|2∇v

hΦ
k+1 − |∇v

hφ
k+1|2∇v

hφ
k+1,∇v

he
k+1
)

=
(
∇v
h(Φ

k+1 + φk+1) · ∇v
he
k+1∇v

hΦ
k+1,∇v

he
k+1
)

+
(
|∇v

hφ
k+1|2∇v

he
k+1,∇v

he
k+1
)

=: J2,1 + J2,2. (4.34)

For the first part J2,1 of (4.34), we have

−J2,1 ≤ C4

(
‖∇v

hΦ
k+1‖6 + ‖∇v

hφ
k+1‖6

)
· ‖∇v

hΦ
k+1‖6 · ‖∇v

he
k+1‖6 · ‖∇v

he
k+1‖2

≤ C5C
2
3‖∇v

he
k+1‖6 · ‖∇v

he
k+1‖2

≤ C5C
2
3‖∇he

k+1‖6 · ‖∇he
k+1‖2

≤ C6‖∆he
k+1‖2 · ‖ek+1‖

1
2
2 ‖∆he

k+1‖
1
2
2

≤ C7‖ek+1‖
1
2
2 · ‖∆he

k+1‖
3
2
2

≤ C8‖ek+1‖2
2 +

3

4
ε2‖∆he

k+1‖2
2, (4.35)

in which the W 1,6 bound (4.25) for the exact and numerical solutions was recalled in

the second step, the Sobolev embedding from H2
h into W 1,6 and the estimate (4.25)

were used in the last step. The estimate for the second part J2,2 of (4.34) is trivial:

J2,2 ≥ 0. (4.36)

Then we arrive at

−J2 ≤ C9‖ek+1‖2
2 +

3

4
ε2‖∆he

k+1‖2
2. (4.37)

Finally, a combination of (4.29), (4.30), (4.31), (4.32), (4.33) and (4.37) yields that

3

4s

(
‖ek+1‖2

2 − ‖ek‖2
2

)
− 1

4s

(
‖ek‖2

2 − ‖ek−1‖2
2

)
+

1

2s
‖ek+1 − ek‖2

2

− 1

2s
‖ek − ek−1‖2

2 +
As

2

(
‖∆he

k+1‖2
2 − ‖∆he

k‖2
2

)
+ ε2‖∆he

k+1‖2
2
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≤ 1

2
‖τ k‖2

2 +
1

2
‖ek+1‖2

2 + C9‖ek+1‖2
2 +

3

4
ε2‖∆he

k+1‖2
2 (4.38)

−‖∇v
he
k+1‖2

2 − 2‖∇v
he
k‖2

2 − ‖∇v
h(e

k+1 − ek−1)‖2
2

+4ε−2‖ek+1‖2
2 + 288ε−2‖ek‖2

2 + 72ε−2‖ek−1‖2
2

+
1

16
ε2
(
‖∆he

k+1‖2
2 + ‖∆he

k‖2
2 + ‖∆he

k−1‖2
2

)
.

A summation in time implies that

3

4s

(
‖ek+1‖2

2 − ‖e1‖2
2

)
− 1

4s

(
‖ek‖2

2 − ‖e0‖2
2

)
+

1

2s
‖ek+1 − ek‖2

2

− 1

2s
‖e1 − e0‖2

2 +
As

2

(
‖∆he

k+1‖2
2 − ‖∆he

0‖2
2

)
+

3

16
ε2

k∑
`=1

‖∆he
`+1‖2

2

≤ 1

2

n∑
`=1

‖τ `‖2
2 +

k∑
`=1

(
1

2
+ C9 + 4ε−2

)
‖e`+1‖2

2 (4.39)

+72ε−2

k∑
`=1

(
4‖e`‖2

2 + ‖e`−1‖2
2

)
+

1

16
ε2

k∑
`=1

(
‖∆he

`‖2
2 + ‖∆he

`−1‖2
2

)
.

In turn, an application of discrete Gronwall inequality yields the desired convergence

result (4.2.4). This completes the proof of Theorem 4.27.

4.2.4 Precondition Steepest Descent (PSD) Solver

In this section we describe a preconditioned steepest descent (PSD) algorithm

following the practical and theoretical framework in [34]. The fully discrete scheme

(4.6) can be recast as a minimization problem: For any φ ∈ Cper, the following energy

functional is introduced:

Eh[φ] =
3

s
‖φ‖2

2 +
1

4
‖∇v

hφ‖
4
4 +

1

2
(As+ ε2) ‖∆hφ‖2

2 . (4.40)

One observes that the fully discrete scheme (4.6) is the discrete variation of the strictly

convex energy (4.40) set equal to zero. The nonlinear scheme at a fixed time level
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may be expressed as

Nh[φ] = f, (4.41)

with

Nh[φ] =
3

2
φk+1 − s∇v

h · (|∇v
hφ

k+1|2∇v
hφ

k+1) + (As2 + sε2)∆2
hφ

k+1, (4.42)

and

f =
1

2
(4φk − φk−1)− s∆v

h(2φ
k − φk−1) + As2∆2

hφ
k. (4.43)

The main idea of the PSD solver is to use a linearized version of the nonlinear operator

as a pre-conditioner, or in other words, as a metric for choosing the search direction.

A linearized version of the nonlinear operator N , denoted as Lh : C̊per → C̊per, is

defined as follows:

Lh[ψ] :=
3

2
ψ − s∆hψ + (As2 + sε2)∆2

hψ.

Clearly, this is a positive, symmetric operator, and we use this as a pre-conditioner for

the method. Specifically, this “metric" is used to find an appropriate search direction

for the steepest descent solver [34]. Given the current iterate φn ∈ Cper, we define the

following search direction problem: find dn ∈ C̊per such that

Lh[dn] = f −Nh[φn] := rn,

where rn is the nonlinear residual of the nth iterate φn. This last equation can be

solved efficiently using the Fast Fourier Transform (FFT).

We then obtain the next iterate as

φn+1 = φn + αdn, (4.44)
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where α ∈ R is the unique solution to the steepest descent line minimization problem

α := argmax
α∈R

Eh[φ
n + αdn] = argzero

α∈R
δEh[φ

n + αdn](dn). (4.45)

The theoretical analysis in [34] suggests that the iteration sequence φn converges

geometrically to φk+1, with φk+1 the exact numerical solution of scheme (4.6) at time

level k + 1, i.e., Nh[φk+1] = f . And also, this analysis implies a convergence rate

independent of h.

Remark 4.2.5. The Crank-Nicolson version of the second order energy stable scheme

for the SS equation (5.9), proposed and analyzed in [71], takes the following (spatially-

continuous) form:

φk+1 − φk

s
=χ(∇φk+1,∇φk)−∆

(
3

2
φk − 1

2
φk−1

)
− ε2

2
∆2
(
φk+1 + φk

)
,

χ(∇φk+1,∇φk) :=
1

4
∇ ·
(
(|∇φk+1|2 + |∇φk|2)∇(φk+1 + φk)

)
.

(4.46)

In this numerical approach, every terms in the chemical potential are evaluated at

time instant tk+1/2.

Both the CN version (4.46) and the BDF one (4.6) require a nonlinear solver,

while the nonlinear term in (4.46) takes a more complicated form than (4.6), which

comes from different time instant approximations. As a result, a stronger convexity of

the nonlinear term in the BDF one (4.6) is expected to greatly improve the numerical

efficiency in the nonlinear iteration.

Such a numerical comparison has been undertaken for the Cahn-Hilliard (CH)

model in recent works: the CN and BDF versions of second order accurate, energy

stable numerical schemes for the CH equation, proposed in [45], [84], respectively, were

tested using the same numerical set-up. The numerical experiments have indicated

that, since the nonlinear term in the BDF approach has a stronger convexity than the

one in the CN one, a 20 to 25 percent improvement of the computational efficiency

is generally available for the CH model.
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For the numerical comparison between the BDF and CN approaches for the SS

equation (5.9), namely (4.6), (4.46), respectively. Such an efficiency improvement

is expected to be much greater. This expectation comes from a subtle fact that,

the modified CN approximation to the 4-Laplacian term, χ(∇φk+1,∇φk), does not

correspond to a convex energy functional, because of the vector gradient form (other

than a scalar form) in the 4-Laplacian expansion. As a consequence, the PSD

algorithm proposed in this section could hardly be efficiently applied to solve for (4.46),

while the PSD application to the BDF approach (4.6) has led to a great success. In

fact, an application of the Polak-Ribiére variant of NCG method [66] to solve for

(4.46), as reported in [71], has shown a fairly poor numerical performance.

4.2.5 Numerical Experiments

Convergence test and the complexity of the PSD solver

In this subsection we demonstrate the accuracy and complexity of the PSD solver.

We present the results of the convergence test and perform some sample computations

to investigate the effect of the time step s and stabilized parameter A for the energy

Fh(φ).

To simultaneously demonstrate the spatial accuracy and the efficiency of the

solver, we perform a typical time-space convergence test for the fully discrete scheme

(4.6) for the slope selection model. As in [71, 77], we perform the Cauchy-type

convergence test using the following periodic initial data [71]:

u(x, y, 0) = 0.1 sin2

(
2πx

L

)
· sin

(
4π(y − 1.4)

L

)
−0.1 cos

(
2π(x− 2.0)

L

)
· sin

(
2πy

L

)
, (4.47)

with Ω = [0, 3.2]2, ε = 0.1, s = 0.01h, A = 1/16 and T = 0.16. We use a linear

refinement path, i.e., s = Ch. At the final time T = 0.16, we expect the global

error to be O(s2) + O(h2) = O(h2), in either the `2 or `∞ norm, as h, s → 0. The
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Cauchy difference is defined as δφ := φhf−Ifc (φhc), where Ifc is a bilinear interpolation

operator (with the Nearest Neighbor Interpolation applied in Matlab, which is similar

to the 2D case in [31, 34] and the 3D case in [27]). This requires a relatively coarse

solution, parametrized by hc, and a relatively fine solution, parametrized by hf , in

particular hc = 2hf , at the same final time. The `2 norms of Cauchy difference and

the convergence rates can be found in Table 4.2. The results confirm our expectation

for the second-order convergence in both space and time.

Table 4.2: Errors, convergence rates, average iteration numbers and average CPU
time (in seconds) for each time step. Parameters are given in the text, and the initial
data is defined in (4.47). The refinement path is s = 0.01h.

hc hf ‖δφ‖2 Rate #iter Tcpu(hf )
3.2
16

3.2
32

1.2392× 10−2 - 8 0.0011
3.2
32

3.2
64

1.6355× 10−3 2.92 6 0.0052
3.2
64

3.2
128

3.8124× 10−4 2.10 5 0.0220
3.2
128

3.2
256

9.3854× 10−5 2.02 4 0.0816
3.2
256

3.2
512

2.3372× 10−5 2.01 4 0.5217

In the second part of this test, we demonstrate the complexity of the PSD solver

with initial data (4.3). In Figure 4.5, we plot the semi-log scale of the relative residuals

versus PSD iteration numbers for various values of h and ε at T = 0.02, with time

step s = 10−3. The other common parameters are set as A = 1/16, Ω = [0, 3.2]2.

Figure 4.5(a) indicates that the convergence rate (as gleaned from the error reduction)

is nearly uniform and nearly independent of h for a fixed ε. Figure 4.5(b) shows

that the number of PSD iterations increases with a decreasing value of ε, which

confirms the theoretical results that the PSD solver is dependent on parameter ε

in [34]. Figure 4.5 confirms the expected geometric convergence rate of the PSD

solver predicted by the theory in [34].

In the third part of this test, we investigate the effect of the parameters s and A

for the energy Fh(φ) with initial data (4.3). The evolutions of the energy with various

time steps s and stabilized parameter A are given in Figure 4.6. As can be seen in

Figure 4.6(a), the larger time steps produce inaccurate or nonphysical solutions. In
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(a) h-independence: ε = 3× 10−2.
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Figure 4.5: Complexity tests showing the solver performance for changing values of
h and ε. Parameters are given in the text.

turn, Figure 4.6(a) indicates the proper time steps and provides the motivation of

using adaptive time stepping strategy. Figure 4.6(b) shows that the proposed scheme

and PSD solver is not that sensitive to the stabilized parameter A when A ≤ 1.

0 2 4 6 8 10

Time

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

E
n
e
rg

y

s=0.01

s=0.005

s=0.001

s=0.0005

s=0.0001

2 3 4 5

-70

-65

-60

(a) evolutions of energy w.r.t various s

0 2 4 6 8 10

Time

-80

-70

-60

-50

-40

-30

-20

-10

0

E
n
e
rg

y

A=10

A=1

A=1/2

A=1/4

A=1/8

A=1/10

A=1/16

0.2 0.205 0.21

-39

-38

-37

(b) evolutions of energy w.r.t various A

Figure 4.6: The effect of time steps s and stabilized parameter A for the energy Fh(φ).
Left: the effect of time step s. The other parameters are Ω = [0, 3.2]2, ε = 3.0× 10−2

and A = 1/16; Right: the effect of stabilized parameter A. The other parameters are
Ω = [0, 3.2]2, ε = 1.0−2 and s = 0.001.
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Long-time coarsening process, energy dissipation and mass conservation

Coarsening processes in thin film system can take place on very long time scales [57].

In this subsection, we perform long time simulation for the SS equation. Such a

test, which has been performed in many existing literature, will confirm the expected

coarsening rates and serve as a benchmarks for the proposed solver; see, for example,

[34, 71, 77]. The initial data for the simulations are taken as essentially random:

u0
i,j = 0.05 · (2ri,j − 1), (4.48)

where the ri,j are uniformly distributed random numbers in [0, 1]. Time snapshots

of the evolution for the epitaxial thin film growth model can be found in Figure 4.7.

The coarsening rates are given in Figure 4.8. The interface width or roughness is

defined as

W (tn) =

√√√√ h2

mn

m∑
i=1

n∑
j=1

(φni,j − φ̄)2, (4.49)

where m and n are the number of the grid points in x and y direction and φ̄ is the

average value of φ on the uniform grid. The log-log plots of roughness and energy

evolution and the corresponding linear regression are presented in Figure. 4.8. The

linear regression in Figure. 4.8 indicates that the surface roughness grows like t1/3,

while the energy decays like t−1/3, which verifies the one-third power law predicted

in [58]. More precisely, the linear fits have the form aet
be with ae = 3.09870, be =

−0.33554 for energy evolution and amt
bm with am = −5.35913, bm = 0.32555 for

roughness evolution. The linear regression is only taken up to t = 3000, since the

saturation time would be of the order of ε−2 under the scaling that we have adopted

[71]. These simulation results are consistent with earlier works on this topic in [34,

71, 77, 83]. Moreover, the PSD iteration at each time step demonstrates the efficiency
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of the PSD solver and the mass difference indicates that the mass is conservative, up

to a tolerance of 10−10, for the simulation depicted in Figure 4.7.

t = 10 t = 100

t = 500 t = 2000

t = 4000 t =

Figure 4.7: Time snapshots of the evolution with PSD solver for the epitaxial thin
film growth model at t = 10, 100, 500, 2000, 4000 and 10000. Left: contour plot of
u, Right: contour plot of ∆u. The parameters are ε = 0.03,Ω = [12.8]2, s = 0.001,
h = 12.8/512 and A = 1/16. These simulation results are consistent with earlier work on
this topic in [34, 71, 77, 83].
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Figure 4.8: The log-log plots of energy and roughness evolution and the corresponding
linear regression for the simulation depicted in Figure 4.7.
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Figure 4.9: PSD iterations and mass difference at each time steps for the simulation
depicted in Figure 4.7.
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4.3 Application to Square Phase Field Crystal Model

with First-Order-In-Time Scheme

The content in this chapter has been published in [34], for more details please refer

to [34].

4.3.1 Introduction

Suppose that Ω ⊂ Rd, d = 2, 3 is a rectangular domain. The energy of square phase

field crystal (SPFC) model is given by [29, 43, 47, 63]:

E [u] =

∫
Ω

{
γ0

2
u2 − γ1

2
|∇u|2 +

ε2

2
|∆u|2 +

1

4
|∇u|4

}
dx,

where u : Ω → R corresponds to the number density field of the atoms, and ε > 0,

γ0, γ1 ≥ 0 are parameters. The SPFC model is the H−1 gradient flow of this energy

and is given by

∂tu = ∆w, w := δE = γ0u+ γ1∆u+ ε2∆2u−∇ ·
(
|∇u|2∇u

)
.

We propose the following fully-implicit, nonlinear convex-splitting scheme

un+1−∆hw
n+1 = g, sγ0u

n+1− s∇v
h ·
(∣∣∇v

hu
n+1
∣∣2∇v

hu
n+1
)

+ sε2∆2
hu

n+1−wn+1 = f,

(4.50)

where g = un and f = −γ1∆hu
n. Using the techniques of [77, 82], we can prove that

this scheme is unconditionally energy stable. The fully discrete scheme can also be

rewritten in operator format as Nh[un+1] = g, where

Nh[ν] := sγ0ν + sε2∆2
hν − s∇v

h ·
(
|∇v

hν|
2∇v

hν
)
− Th[−ν + f ].
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We can shift the scheme from the affine space of solutions – whose elements ν satisfy

(ν − g, 1)2 = 0 – to the mean zero space, but this is not necessary for practical

implementation. Otherwise, this scheme is in the scope of our theory, and, according

to the prescription in Section 3.2.4, the pre-conditioner should be

Lh[ν] := sγ0ν − s∆hν + sε2∆2
hν − Th[−ν].

Given uk ∈ Cper, with
(
uk − g, 1

)
2

= 0, we compute the search direction dk ∈ C̊per

by solving the sixth order linear problem L[dk] = f −Nh[uk] using FFT. Once dk is

found, we perform the line-search: find αk ∈ R such that q(αk) = 0, where

q(α) =
(
Nh[uk + αdk]− f, dk

)
2
.

After this, we update the approximation via uk+1 = uk +αkd
k. As before, q is a cubic

polynomial (since p = 4) whose coefficients can be precomputed. But this time, two

of the coefficients involve the Th = −∆−1
h operator. Specifically, for q(α) we need to

compute

(
Th
[
uk − f + αdk

]
, dk
)

2
=
(
Th
[
uk − f

]
, dk
)

2
+ α

(
Th
[
dk
]
, dk
)

2

=
(
uk − f,Th

[
dk
])

2
+ α

(
dk,Th

[
dk
])

2
,

where we have use the linearity and symmetry properties of the Th operator. These

terms have only to be calculated once per line search, and can be efficiently computed

using FFT. In fact, observe that we only need to compute Th
[
dk
]
, at the cost of a

single FFT, per line search!

4.3.2 Numerical Experiments

The 4-Laplacian term in (4.50) gives preference to rotationally invariant patterns

with square symmetry. We perform a simple test showing the emergence of these
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patterns in this subsection. The initial data for those simulations are similar to (4.5),

but we add nucleation sites at specific locations in the domain. The rest of the

parameters are given by ε = 1.0; λ = γ0 = 0.5; γ1 = 2.0; Ω = (0, 100)2; and s = 0.01.

The time snapshots of the evolution by using the given parameters are presented in

Figures 4.10 (one nucleation site) and 4.11 (four nucleation sites). These tests confirm

the emergence of the rotationally invariant square-symmetry patterns in the density

field u.

t = 1, 10 t = 20, 40

t = 60, 80 t = 100, 200

t = 500, 1000 t = 5000, 9000

Figure 4.10: Time snapshots of the evolution with PSD solver for squared phase
field crystal model at t = 1, 10, 20, 40, 60, 80, 100, 200, 500, 1000, 5000 and 9000. The
parameters are ε = 1.0, λ = 0.5, γ1 = 2.0,Ω = [100]2 and s = 0.01.
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t = 1, 10 t = 20, 40

t = 60, 80 t = 100, 200

t = 600, 800 t = 1000, 3000

Figure 4.11: Time snapshots of the evolution with PSD solver for squared phase
field crystal model at t = 1, 10, 20, 40, 60, 80, 100, 200, 600, 800, 1000 and 3000. The
parameters are ε = 1.0, λ = 0.5, γ1 = 2.0,Ω = [100]2 and s = 0.01.

4.4 Application to Functionalized Cahn-Hilliard Model

with First-Order-In-Time Scheme

The content in this chapter has been published in [31], for more details please refer

to [31].

72



4.4.1 Introduction

The Functionalized Cahn-Hilliard (FCH) model was first derived to describe small-

angle X-ray scattering data of an amphiphilic mixture in [44]. Recently, the FCH

model has been proposed to model the interfacial energy in amphiphilic phase-

separated mixtures in [26, 42, 67] where the FCH equations were extended to describe

the network morphology of solvated functionalized polymer membranes, such as

bilayer in [23, 26], pearling bifurcation in [68, 26], pore-like and micelle network

structures in [41, 42, 68]. The FCH energy, which includes a negative multiple of the

Cahn-Hilliard energy balanced against the square of its own variational derivative,

is highly related to the standard Allen-Cahn (AC) and Cahn-Hilliard (CH) energy

[1, 10, 11], given by

FCH(φ) =

∫
Ω

{
1

4
φ4 − 1

2
φ2 +

ε2

2

∣∣∣∇φ∣∣∣2} dx, (4.51)

with Ω ⊂ RD, D = 2 or 3. The phase variable φ : Ω→ R is the concentration field,

and ε is the width of interface. We assume that Ω = (0, Lx)× (0, Ly)× (0, Lz), φ and

∆φ are periodic on Ω. In turn, the chemical potential becomes

µCH := δφFCH = φ3 − φ− ε2∆φ, (4.52)

where δφFCH denotes the variational derivative with respect to φ. Herein we consider

a dimensionless energy of a binary mixture:

F(φ) =
ε−2

2

∫
Ω

µ2
CHdx− ηFCH(φ), (4.53)

where η is the switch parameter. When η > 0 and η < 0, (4.53) represents the

FCH energy [26, 51, 67] and the Cahn-Hilliard-Willmore (CHW) energy [75, 76, 81],

respectively. Furthermore, (4.53) represents the strong FCH energy when η = ε−1

and weak FCH energy when η = 1 [26]. By the definition of CH energy in (4.51) and
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chemical potential in (4.52), we have

µ := δφF = 3ε−2φ5 −
(
4ε−2 + η

)
φ3 +

(
ε−2 + η

)
φ+ ε2∆2φ+

(
2 + ηε2

)
∆φ

+6φ |∇φ|2 − 6∇ ·
(
φ2∇φ

)
.

The conserved H−1 gradient flow [26, 55, 67] is given by

∂tφ = ∇ · (M(φ)∇µ) , (4.54)

where M(φ) > 0 is a diffusion mobility, and where we assume that µ is periodic on

Ω.

The FCH equation (4.54) is a sixth-order, highly nonlinear parabolic equation.

Numerical approximation of (4.54) is very challenging because of the high derivative

order and highly nonlinear nature. One of the biggest challenges is to overcome the

numerical stiffness encountered with time-space discretization. Roughly speaking,

since the equation is sixth-order parabolic, an explicit numerical scheme is expected

to encounter a severe CFL condition: s ≤ Ch6, with s and h the time and space step

sizes. On the other hand, a fully implicit scheme, such as the backward Euler method,

may still be only conditionally stable, and, very likely, will only be conditionally

solvable. Ideally, one would like a scheme that preserves some of the time-invariant

quantities of the PDE, such as mass conservation and the energy dissipation rate.

The first invariant is easily maintained, while the second one is a major challenge.

Often, one attempts only to design a scheme that will dissipate the free energy at

the numerical level, without attempting to directly control the rate of dissipation. In

particular, one wants F(φk+1) ≤ F(φk), where φk is the approximated phase variable

at time step k, given some mild CFL condition, or no CFL condition whatever. The

energy dissipativity imparts some stability notion for the PDE and the numerical

method, as we will see. If F(φk+1) ≤ F(φk), for all k ≥ 1, with no condition on

the time step size, we say that the scheme is unconditionally strongly energy stable.
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Finally, for large-scale calculations in practice, novel efficient numerical linear and

nonlinear solvers have to be carefully developed. We will address this issue in the

thesis as well.

There have been a few previous works on the numerical approximation of the

FCH equation. In [12], Chen et al. presented an efficient linear, first-order (in time)

spectral-Galerkin method for the FCH equation. Their scheme, which utilized linear

stabilization terms, are unconditionally solvable, but not necessary energy stable.

Jones studied a semi-implicit numerical scheme for the FCH equation in his Ph.D

thesis [55]; the energy stability was proved, while the unique solvability has not

been theoretically justified. In a more recent work [19], fully implicit schemes with

pseudo-spectral approximation in space for the FCH equation are proposed. While

they neither proved energy stability or solvability, they did carry out several tests

to show the accuracy and efficiency of their methods. In another work [46], Guo et

al. presented a Local Discontinuous Galerkin (LDG) method to overcome the difficulty

associated with the higher order spatial derivatives. Energy stability was established

for the semi-discrete (time-continuous) scheme. Their fully discrete scheme was based

on the time discretization in [12]. To our knowledge, there has been no rigorous

convergence analysis for the FCH model in the existing literature, because of its

highly nonlinear nature. In [79] the authors developed a Runge-Kutta exponential

time integration (EKR) method for the diffuse Willmore flow, an equation that is

closely related to the FCH and CHW models (4.54). This method works well when

M ≡ 1, but may need to be significantly modified otherwise. It enables one to generate

high-order single-step methods, which have a significant advantage over multistep

methods when the time step changes adaptively.

In this thesis we propose and analyze an efficient computational scheme for solving

the FCH equation primarily, though the theory will be applicable to the CHW

equation as well. The convex splitting method, which treats the convex part implicitly

and concave part explicitly, has been a popular approach for gradient flows, since

it ensures the unique solvability and unconditional stability; see the related works
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[2, 7, 13, 15, 16, 24, 25, 45, 52, 78, 77, 82] for a wide class of phase field models.

For the FCH equation (4.54), one key difficulty in the energy stability could be

observed in the fact that, one nonlinear energy functional in the expansion turns out

to be non-convex, non-concave, so that the convex splitting approach is not directly

available. To overcome this difficulty, we introduce two auxiliary terms in the energy

functional, so that their combination with the original term become convex. In turn,

a convex-concave decomposition for the FCH energy is available, and the first order in

time convex-splitting scheme could be appropriately designed. Because of its convex

splitting nature, both the unique solvability and unconditional energy stability could

be theoretically justified.

As a result of the proposed numerical scheme, a 4-Laplacian term has to be solved

in an H−1 gradient flow at each time step in the finite difference approximation,

which turns out to be very challenging. We apply the Preconditioned Steepest

Descent (PSD) solver, recently proposed and analyzed in [34], to solve the nonlinear

system. The main idea is to use a linearized version of the nonlinear operator as

a pre-conditioner, or in other words, as a metric for choosing the search direction.

Furthermore, the convexity of the nonlinear energy functional assures a geometric

convergence of such a PSD iteration. In practice, only a Poisson-like equation needs

to be solved at each iteration stage, and the geometric convergence of the nonlinear

iteration greatly improves the numerical efficiency.

On the theoretical side, we also present a global in time H2
per stability of the

numerical scheme. This uniform in time bound enables us to derive the full order

convergence analysis, with first order temporal accuracy and second order spatial

accuracy. In addition, such a convergence is unconditional, without any requirement

between the time step size s and the spatial mesh h. In the authors’ knowledge, this

is the first such theoretical result for the FCH/CHW model.
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4.4.2 The first order convex splitting scheme

The convex-concave energy decomposition with auxiliary terms

For any φ ∈ H2
per(Ω), the FCH energy in (4.53) could be expanded as

F(φ) =
ε−2

2
‖φ‖6

L6 −
(
ε−2 +

η

4

)
‖φ‖4

L4 +

(
ε−2

2
+
η

2

)
‖φ‖2 +

ε2

2
‖∆φ‖2

−
(

1 +
ηε2

2

)
‖∇φ‖2 + 3

∫
Ω

φ2 |∇φ|2 dx. (4.55)

Unlike the energies for the AC in [37], CH in [2, 25, 30, 38, 45], Phase Field Crystal

(PFC) and the modified version in [7, 52, 78, 82], epitaxial thin film growth in [13,

16, 72, 77], the convex splitting idea cannot be directly applied to the FCH energy

(4.53). The main difficulty is associated with the last term in (4.55):

G(φ) :=

∫
Ω

3φ2 |∇φ|2 dx, (4.56)

which is neither convex nor concave. To overcome this difficulty, we perform a careful

analysis for the following energy functional:

H(φ) :=

∫
Ω

(
A(φ4 + |∇φ|4) + 3φ2 |∇φ|2

)
dx. (4.57)

Lemma 4.4.1. H : W 1,4
per(Ω)→ R is convex provided that A ≥ 1.

Proof. We denote g(φ) := 3φ2 |∇φ|2 and h(φ) := A(φ4 + |∇φ|4) + g(φ), so that

G(φ) =
∫

Ω
g(φ) dx and H(φ) =

∫
Ω
h(φ) dx. Based on the following inequalities, which

come from the convexity of q2(x) = x2 and r2(χ) = χ · χ):

(
φ1 + φ2

2

)2

≤ φ2
1 + φ2

2

2
,

∣∣∣∣∇(φ1 + φ2

2

)∣∣∣∣2 ≤ |∇φ1|2 + |∇φ2|2

2
, ∀φ1, φ2,
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we get

g

(
φ1 + φ2

2

)
= 3

(
φ1 + φ2

2

)2 ∣∣∣∣∇(φ1 + φ2

2

)∣∣∣∣2 ≤ 3
φ2

1 + φ2
2

2
· |∇φ1|2 + |∇φ2|2

2
.

A careful comparison with g(φ1)+g(φ2)
2

=
3φ21|∇φ1|

2+3φ22|∇φ2|
2

2
shows that

g(φ1) + g(φ2)

2
− g

(
φ1 + φ2

2

)
≥ 3(φ2

1 − φ2
2)(|∇φ1|2 − |∇φ2|2)

4

≥ −3

8

(
(φ2

1 − φ2
2)2 + (|∇φ1|2 − |∇φ2|2)2

)
.(4.58)

Meanwhile, the convexity of q4(x) = x4 and r4(χ) = |χ|4 indicates the following

inequalities:

φ4
1 + φ4

2

2
−
(
φ1 + φ2

2

)4

≥ 3

8
(φ4

1 + φ4
2 − 2φ2

1φ
2
2) =

3

8
(φ2

1 − φ2
2)2, (4.59)

and

|∇φ1|4 + |∇φ2|4

2
−
∣∣∣∣∇(φ1 + φ2

2

)∣∣∣∣4 ≥ 3

8
(|∇φ1|4 + |∇φ2|4 − 2|∇φ1|2 · |∇φ2|2)

=
3

8
(|∇φ1|2 − |∇φ2|2)2. (4.60)

A combination of (4.58), (4.59) and (4.60) implies that

h(φ1) + h(φ2)

2
− h

(
φ1 + φ2

2

)
≥ 0, ∀φ1, φ2,

provided that A ≥ 1. As a result, an integration over Ω leads to the following fact:

H(φ1) +H(φ2)

2
−H

(
φ1 + φ2

2

)
≥ 0, ∀φ1, φ2, if A ≥ 1.

The convexity of H is assured under the condition A ≥ 1. Lemma 1 is proved.
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Corollary 4.4.2. The energy F : H2
per(Ω) → R possesses a convex splitting over

H2
per(Ω). In particular,

F(φ) = Fc(φ)−Fe(φ), (4.61)

with

Fc(φ) :=

∫
Ω

{
ε−2

2
φ6 +

(
ε−2

2
+
η

2

)
φ2 +

ε2

2
(∆φ)2 + A(φ4 + |∇φ|4) + 3φ2 |∇φ|2

}
dx,

(4.62)

and

Fe(φ) :=

∫
Ω

{(
ε−2 +

η

4

)
φ4 +

(
1 +

ηε2

2

)
|∇φ|2 + A(φ4 + |∇φ|4)

}
dx, (4.63)

where both Fc,Fe : H2
per(Ω)→ R are strictly convex.

We recall the following proposition from [82]:

Proposition 4.4.3. Suppose that φ, ψ ∈ H4
per(Ω) and that F admits a (not

necessarily unique) convex splitting into F = Fc −Fe then

F(φ)−F(ψ) ≤ (δφFc(φ)− δφFe(ψ), φ− ψ) . (4.64)

If φ, ψ ∈ H2
per(Ω) only, then (4.64) can be understood in the weak sense.

The first order convex splitting scheme

Based on the convex-concave decomposition in (4.62) and (4.63) for the physical

energy F(φ), we consider the following semi-implicit, first-order-in-time, convex

splitting scheme:

φk+1 − φk = s∇ ·
(
M(φk)∇µ̃

)
, µ̃

(
φk+1, φk

)
:= δφFc(φk+1)− δφFe(φk). (4.65)
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where, precisely,

µ̃
(
φk+1, φk

)
= 3ε−2(φk+1)5 + 4A(φk+1)3 + (ε−2 + η)φk+1 + ε2∆2φk+1

+ 6φk+1
∣∣∇φk+1

∣∣2 − 6∇ ·
(
(φk+1)2∇φk+1

)
− 4A∇ ·

(
|∇φk+1|2∇φk+1

)
(4.66)

− (4ε−2 + η)(φk)3 + (2 + ηε2)∆φk − 4A(φk)3 + 4A∇ ·
(
|∇φk|2∇φk

)
.

The scheme may be expressed in a weak form as follows: find the pair (φ, µ) ∈

H2
per(Ω)×H1

per(Ω) such that

(φ, ν) + s(M∇µ,∇ν) = (g, ν), (4.67)(
3ε−2φ5 + 4Aφ3 + (ε−2 + η)φ, ψ

)
+ ε2(∆φ,∆ψ) + 6(φ |∇φ|2 , ψ) (4.68)

+6
(
φ2∇φ,∇ψ

)
+ 4A

(
|∇φ|2∇φ,∇ψ

)
− (µ, ψ) = (f, ψ), (4.69)

where g = φk, M = M(φk), and

f = δφFe(φk) = (4ε−2 + η)(φk)3 − (2 + ηε2)∆φk + 4A(φk)3 − 4A∇ ·
(
|∇φk|2∇φk

)
.

Observe that, if φk ∈ H2
per(Ω) is given, we have g ∈ L2

per(Ω) = L2(Ω).

Theorem 4.4.4. The convex splitting scheme (4.65) is uniquely solvable and

unconditionally energy stable: F(φk+1) ≤ F(φk). In particular, if φk ∈ H2
per(Ω),

then φk+1 ∈ H2
per(Ω).

Proof. The existence and unique solvability follows from standard convexity analyses.

For the stability, let φ = φk+1 and ψ = φk in (4.64) to find

F(φk+1)−F(φk) ≤
(
δφFc(φk+1)− δφFe(φk), φk+1 − φk

)
= s

(
µ̃,∇ ·

(
M(φk)∇µ̃

))
= −s

(
∇µ̃,M(φk)∇µ̃

)
≤ 0,

where we have interpreted the right-hand-side of (4.64) in the weak sense.

80



Global-in-time H2
per stability of the numerical scheme

For simplicity, we will take the mobility M ≡ 1 in the remainder of the thesis.

Lemma 4.4.5. There are constants C0, C1 > 0 such that, for all φ ∈ H2
per(Ω),

ε−2

6
‖φ‖6

L6 + C0ε
2 ‖φ‖2

H2
per
≤ F(φ) + C1. (4.70)

Proof. For the concave diffusion term in (4.55), an application of Cauchy’s inequality

shows that

‖∇φ‖2 =

∫
Ω

φ ·∆φ dx ≤ ‖φ‖ · ‖∆φ‖ ≤ ε2

4(1 + ηε2

2
)
‖∆φ‖2 +

1 + ηε2

2

ε2
‖φ‖2 , ∀ η > 0.

(4.71)

Then we obtain

(1 +
ηε2

2
) ‖∇φ‖2 ≤ ε2

4
‖∆φ‖2 + C2 ‖φ‖2 , (4.72)

with C2 := (1 + ηε2

2
)2ε−2 = O(ε−2). Applications of Hölder’s inequality imply that

‖φ‖L6 ≥
1

|Ω|1/12
‖φ‖L4 , ‖φ‖L6 ≥

1

|Ω|1/3
‖φ‖ .

Now, define C3 := C2 −
(
ε−2

2
+ η

2

)
+ 1 > 0; we note that C3 = O(ε−2). As a

consequence of the last two inequalities, we get

1

6
‖φ‖6

L6 ≥
1

6|Ω|1/2
‖φ‖6

L4 ≥ (1 +
ηε2

4
) ‖φ‖4

L4 − C4, (4.73)

1

6
‖φ‖6

L6 ≥
1

6|Ω|2
‖φ‖6 ≥ ε2C3 ‖φ‖2 − C5, (4.74)

for some constants C4, C5 > 0, which are of order 1, where Young’s inequality was

repeated applied. Therefore, a combination of (4.55), (4.72), (4.73) and (4.74) yields

F(φ) ≥ ε−2

6
‖φ‖6

L6 + ‖φ‖2 +
ε2

4
‖∆φ‖2 − C1,

≥ ε−2

6
‖φ‖6

L6 + C0ε
2 ‖φ‖2

H2
per
− C1, (4.75)
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where C1 := ε−2 (C4 + C5) = O(ε−2) and the elliptic regularity estimate ‖φ‖2
H2 ≤

C0(‖φ‖2 + ‖∆φ‖2) was applied in the second step.

Corollary 4.4.6. Suppose that φ0 ∈ H2
per(Ω). For any positive integer k, we have

∥∥φk∥∥
H2

per
≤ C6 :=

F(φ0) + C1

C0ε2
. (4.76)

Proof. The unconditional energy stability in Theorem 4.4.4 implies that, for any

positive integer k,

F(φk) ≤ F(φ0). (4.77)

A combination of (4.70) and (4.77) yields the result.

Remark 4.4.7. Note that the constant C6 is independent of k and s, but does depends

on ε. In particular, C6 = O(ε−4).

4.4.3 Convergence analysis

Main result

The convergence result is stated in the following theorem.

Theorem 4.4.8. Let φe be the exact solution of the FCH equation (4.54) with the

periodic boundary condition and let φ be the numerical solution of (4.65). Then the

following convergence result holds as s goes to zero:

‖φe − φ‖`∞(0,T ;H̊−1
per)

+ ‖φe − φ‖`2(0,T ;H2
per)
≤ Cs, (4.78)

where the constant C depends only on the regularity of the exact solution.
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Proof of the main result

Consistency analysis

We denote the exact solution Φ(x, y, z, t) = φe(x, y, z, t). A detailed Taylor expansion

implies the following truncation error:

Φk+1 − Φk

s
= ∆

(
3ε−2(Φk+1)5 − (4ε−2 + η)(Φk)3 + (ε−2 + η)Φk+1 + ε2∆2Φk+1

+(2 + ηε2)∆Φk + 6Φk+1
∣∣∇Φk+1

∣∣2 − 6∇ ·
(
(Φk+1)2∇Φk+1

)
+4A(Φk+1)3 − 4A∇ ·

(
|∇Φk+1|2∇Φk+1

)
(4.79)

−4A(Φk)3 + 4A∇ ·
(
|∇Φk|2∇Φk

))
+ τ k,

with
∥∥τ k∥∥ ≤ Cs . Consequently, with an introduction of the error function

ek = Φk − φk, ∀ k ≥ 0, (4.80)

we get the following evolutionary equation, by subtracting (4.66) from (4.79):

ek+1 − ek

s
= ∆

(
3ε−2

(
(Φk+1)4 + (Φk+1)3φk+1 + (Φk+1)2(φk+1)2

+Φk+1(φk+1)3 + (φk+1)4

)
ek+1

−(4ε−2 + η + 4A)
(
(Φk)2 + Φkφk + (φk)2

)
ek

+(ε−2 + η)ek+1 + ε2∆2ek+1

+(2 + ηε2)∆ek + 6ek+1
∣∣∇Φk+1

∣∣2
+6φk+1

(
∇(Φk+1 + φk+1) · ∇ek+1

)
−6∇ ·

(
(Φk+1 + φk+1)ek+1∇Φk+1 + (φk+1)2∇ek+1

)
+4A(

(
(Φk+1)2 + Φk+1φk+1 + (φk+1)2

)
ek+1

−4A∇ ·
(
(∇(Φk+1 + φk+1) · ∇ek+1)∇Φk+1 + |∇φk+1|2∇ek+1

)
+4A∇ ·

(
(∇(Φk + φk) · ∇ek)∇Φk + |∇φk|2∇ek

))
+ τ k. (4.81)
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In addition, from the PDE analysis for the FCH equation and the global in time

H2
per stability (4.76) for the numerical solution, we also get the L∞, W 1,6 and H2

per

bounds for both the exact solution and numerical solution, uniform in time:

‖Φk‖L∞ , ‖Φk‖W 1,6 , ‖Φk‖H2
per
≤ C7, ‖φk‖L∞ , ‖φk‖W 1,6 , ‖φk‖H2

per
≤ C7, ∀ k ≥ 0,

(4.82)

where the 3-D embeddings of H2
per into L∞ and into W 1,6 have been applied. Also

note that C7 and C8 are time independent constants, that depend on ε as O(ε−4).

Stability and convergence analysis

First, we recall that the exact solution to the FCH equation (4.54) is mass

conservative: ∫
Ω

Φ(·, t) dx ≡
∫

Ω

Φ(·, 0) dx, ∀t > 0.

On the other hand, the numerical solution (4.65) is also mass conservative. In turn,

we conclude that the numerical error function ek ∈ H̊2
per(Ω):

ek :=

∫
Ω

ek dx =

∫
Ω

e0 = 0, since e0 ≡ 0.

Consequently, we define ψk := (−∆)−1ek ∈ H̊−1
per(Ω) as

−∆ψk = ek, with
∫

Ω

ψk dx = 0.

Define Ii, i = 1, · · · , 10 by

I1 : = −6ε−2s

∫
Ω

(
(Φk+1)4 + (Φk+1)3φk+1 + (Φk+1)2(φk+1)2

+Φk+1(φk+1)3 + (φk+1)4
) ∣∣ek+1

∣∣2 dx,
I2 : = −8As

∫
Ω

(
(Φk+1)2 + Φk+1φk+1 + (φk+1)2

) ∣∣ek+1
∣∣2 dx,

I3 : = 2(2 + ηε2)s(∇ek,∇ek+1),
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I4 : = 2(4ε−2 + η + 4A)s

∫
Ω

(
(Φk)2 + Φkφk + (φk)2

)
ekek+1dx,

I5 : = −12s

∫
Ω

|∇Φk+1|2(ek+1)2dx,

I6 : = −12s

∫
Ω

φk+1
(
∇(Φk+1 + φk+1) · ∇ek+1

)
ek+1dx,

I7 : = −12s
(
(Φk+1 + φk+1)ek+1∇Φk+1 + (φk+1)2∇ek+1,∇ek+1

)
,

I8 : = −8As
(
(∇(Φk+1 + φk+1) · ∇ek+1)∇Φk+1 + |∇φk+1|2∇ek+1,∇ek+1

)
,

I9 : = 8As
(
(∇(Φk + φk) · ∇ek)∇Φk + |∇φk|2∇ek,∇ek+1

)
,

I10 : = −2s(τ k, ek+1).

Therefore, taking an L2 inner product with the numerical error equation (4.81) by

2ψk gives

‖ek+1‖2
H̊−1

per
− ‖ek‖2

H̊−1
per

+ ‖ek+1 − ek‖2
H̊−1

per

+ 2(ε−2 + η)s‖ek+1‖2 + 2ε2s‖∆ek+1‖2 =
10∑
i=1

Ii, (4.83)

where integration-by-parts has been repeatedly applied.

The local truncation error term I10 can be bounded by the Cauchy inequality:

−2(τ k, ek+1) ≤ 2‖τ k‖ · ‖ek+1‖ ≤ ‖τ k‖2 + ‖ek+1‖2. (4.84)

Meanwhile, an application of weighted Sobolev inequality shows that

‖ek+1‖ ≤ C8‖ek+1‖2/3

H̊−1
per
· ‖ek+1‖1/3

H̊2
per
≤ C9‖ek+1‖2/3

H̊−1
per
· ‖∆ek+1‖1/3, (4.85)

where a standard estimate of elliptic regularity was applied at the second step,

considering the fact that ek+1 = 0. Subsequently, an application of Young’s inequality

gives

‖ek+1‖2 ≤ C10ε
−1‖ek+1‖2

H̊−1
per

+
ε2

8
‖∆ek+1‖2,
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and its combination with (4.84) yields

−2(τ k, ek+1) ≤ ‖τ k‖2 + C10ε
−1‖ek+1‖2

H̊−1
per

+
ε2

8
‖∆ek+1‖2. (4.86)

The first integral term I1 turns out to be non-positive,

I1 ≤ 0, (4.87)

due to the fact that

(Φk+1)4 + (Φk+1)3φk+1 + (Φk+1)2(φk+1)2 + Φk+1(φk+1)3 + (φk+1)4 ≥ 0.

Since (Φk+1)2 + Φk+1φk+1 + (φk+1)2 ≥ 0, similar estimates can be derived for I2

and I5:

I2 = −8As

∫
Ω

(
(Φk+1)2 + Φk+1φk+1 + (φk+1)2

) ∣∣ek+1
∣∣2 dx ≤ 0, (4.88)

I5 = −12s

∫
Ω

|∇Φk+1|2(ek+1)2dx ≤ 0. (4.89)

For the term I3, we denote C11 = 2 + ηε2 and observe that

I3 = 2C11s(∇ek,∇ek+1) ≤ C11s(‖∇ek‖2 + ‖∇ek+1‖2). (4.90)

Meanwhile, a similar estimate as (4.85) could be carried out to bound ‖∇ek+1‖:

‖∇ek+1‖ ≤ C12‖ek+1‖1/3

H̊−1
per
· ‖ek+1‖2/3

H2
per
≤ C13‖ek+1‖1/3

H̊−1
per
· ‖∆ek+1‖2/3, (4.91)

so that an application of Young’s inequality leads to

‖∇ek+1‖2 ≤ C14ε
−4‖ek+1‖2

H̊−1
per

+
ε2

8C11

‖∆ek+1‖2. (4.92)
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The term ‖∇ek‖ can be bounded in the same fashion:

‖∇ek‖2 ≤ C15ε
−4‖ek‖2

H̊−1
per

+
ε2

8C11

‖∆ek‖2. (4.93)

Substituting (4.92) and (4.93) into (4.90), we get

I3 ≤ C16s(‖ek+1‖2
H̊−1

per
+ ‖ek‖2

H̊−1
per

) +
ε2

8
s(‖∆ek+1‖2 + ‖∆ek‖2). (4.94)

For the term I4, we denote C17 = 4ε−2 + η + 4A. By the L∞ bound in (4.82) for

both the exact and numerical solutions, we see that

‖(Φk)2 + Φkφk + (φk)2‖L∞ ≤ 3C2
7 . (4.95)

This in turn implies that

I4 ≤ 2C17s‖(Φk)2 + Φkφk + (φk)2‖L∞ · ‖ek‖ · ‖ek+1‖

≤ 6C17C
2
7s‖ek‖ · ‖ek+1‖ ≤ 3C17C

2
7s(‖ek‖2 + ‖ek+1‖2). (4.96)

Meanwhile, the estimate (4.86) can be performed with alternate coefficients, so that

the following inequalities are available:

‖ej‖2 ≤ C18‖ej‖2
H̊−1

per
+

ε2

24C17C2
7

‖∆ej‖2, for j = k, k + 1. (4.97)

Subsequently, its combination with (4.96) yields

I4 ≤ C19s(‖ek‖2
H̊−1

per
+ ‖ek+1‖2

H̊−1
per

) +
ε2

8
s(‖∆ek+1‖2 + ‖∆ek‖2). (4.98)

For the term I6, we start from an application of Hölder inequality:

I6 = −12s

∫
Ω

φk+1
(
∇(Φk+1 + φk+1) · ∇ek+1

)
ek+1dx

≤ C20s‖φk+1‖L∞ · (‖∇Φk+1‖L6 + ‖∇φk+1‖L6) · ‖∇ek+1‖L3/2 · ‖ek+1‖L6
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≤ C21C
2
7s · ‖∇ek+1‖L3/2 · ‖ek+1‖L6 , (4.99)

in which the L∞ andW 1,6 stability bounds for the exact and numerical solutions were

recalled in the second step of (4.82). Moreover, the first term ‖∇ek+1‖L3/2 can be

bounded in the following way:

‖∇ek+1‖L3/2 ≤ C22‖∇ek+1‖ ≤ C23‖ek+1‖1/3

H̊−1
per
· ‖∆ek+1‖2/3, (4.100)

with an earlier estimate (4.91) recalled. For the second term ‖ek+1‖L6 , a 3-D Sobolev

embedding could be applied so that

‖ek+1‖L6 ≤ C24‖∇ek+1‖ ≤ C25‖ek+1‖1/3

H̊−1
per
· ‖∆ek+1‖2/3. (4.101)

We also note that the zero-mean property for ek+1 was used in the first step.

Therefore, a combination of (4.99)-(4.101) results in

I6 ≤ C26C
2
7s‖ek+1‖2/3

H̊−1
per
· ‖∆ek+1‖4/3 ≤ C27s‖ek+1‖2

H̊−1
per

+
ε2

8
s‖∆ek+1‖2, (4.102)

with the Young’s inequality applied in the last step.

For the term I7, we decompose it into two parts: I7 = I7,1 + I7,2, with

I7,1 = −12s
(
(Φk+1 + φk+1)ek+1∇Φk+1,∇ek+1

)
, (4.103)

I7,2 = −12s
(
(φk+1)2∇ek+1,∇ek+1

)
. (4.104)

It is clear that the second part is always non-positive:

I7,2 = −12s

∫
Ω

(φk+1)2|∇ek+1|2dx ≤ 0. (4.105)

For the first part, an application of Hölder inequality shows that

I7,1 ≤ C28s(‖Φk+1‖L∞ + ‖φk+1‖L∞) · ‖∇Φk+1‖L6 · ‖∇ek+1‖L3/2 · ‖ek+1‖L6
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≤ C29C
2
7s‖∇ek+1‖L3/2 · ‖ek+1‖L6 . (4.106)

Again, the L∞ and W 1,6 bounds (4.25) for the exact and numerical solutions were

recalled in the second step. Furthermore, by repeating the same analyses as (4.100)-

(4.101), we are able to arrive at the following estimate, similar to (4.102):

I7,1 ≤ C30C
2
7s · ‖ek+1‖1/3

H̊−1
per
· ‖∆ek+1‖2/3 ≤ C31s‖ek+1‖2

H̊−1
per

+
ε2

8
s‖∆ek+1‖2. (4.107)

Consequently, a combination of (4.104)), (4.105) and (4.107) leads to

I7 ≤ C31s‖ek+1‖2
H̊−1

per
+
ε2

8
s‖∆ek+1‖2. (4.108)

Similarly, the term I8 is also decomposed into two parts: I8 = I8,1 + I8,2, with

I8,1 = −8As
(
(∇(Φk+1 + φk+1) · ∇ek+1)∇Φk+1,∇ek+1

)
,

I8,2 = −8As
(
|∇φk+1|2∇ek+1,∇ek+1

)
= −8As

∫
Ω

|∇ek+1|4dx ≤ 0.

For the first part I8,1, the following estimate is available, in a similar way as (4.106)-

(4.107):

I8,1 ≤ C32s(‖∇Φk+1‖L6 + ‖∇φk+1‖L6) · ‖∇Φk+1‖L6 · ‖∇ek+1‖L6 · ‖∇ek+1‖

≤ C33C
2
7s‖∇ek+1‖L6 · ‖ek+1‖

≤ C34C
2
7s‖∆ek+1‖ · ‖ek+1‖1/3

H̊−1
per
· ‖∆ek+1‖2/3

≤ C35C
2
7s‖∆ek+1‖5/3 · ‖ek+1‖1/3

H̊−1
per
≤ C36s‖ek+1‖2

H̊−1
per

+
ε2

8
s‖∆ek+1‖2,

in which the W 1,6 bound (4.25) for the exact and numerical solutions was recalled in

the second step, the 3-D Sobolev embedding from H2
per into W 1,6 and the estimate

(4.91) were used in the third step, and the Young inequality was applied at the last
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step. Then we arrive at

I8 = I8,1 + I8,2 ≤ I8,1 ≤ C36s‖ek+1‖2
H̊−1

per
+
ε2

8
s‖∆ek+1‖2. (4.109)

The term I9 can be handled in the same way as I8. We begin with a decomposition

I9 = I9,1 + I9,2, with

I9,1 = 8As
(
(∇(Φk + φk) · ∇ek)∇Φk,∇ek+1

)
,

I9,2 = 8As
(
|∇φk+1|2∇ek,∇ek+1

)
.

The following estimates can be carried out:

I9,1 ≤ C37s(‖∇Φk‖L6 + ‖∇φk‖L6) · ‖∇Φk‖L6 · ‖∇ek‖L6 · ‖∇ek+1‖

≤ C38C
2
7s‖∇ek‖L6 · ‖ek+1‖

≤ C39C
2
7s‖∆ek‖ · ‖ek+1‖1/3

H̊−1
per
· ‖∆ek+1‖2/3

≤ C40s‖ek+1‖2
H̊−1

per
+
ε2

16
s(‖∆ek+1‖2 + ‖∆ek‖2),

I9,2 ≤ C41s‖∇φk‖2
L6 · ‖∇ek‖L6 · ‖∇ek+1‖ ≤ C42C

2
7s‖∇ek‖L6 · ‖ek+1‖

≤ C43C
2
7s‖∆ek‖ · ‖ek+1‖1/3

H̊−1
per
· ‖∆ek+1‖2/3

≤ C44s‖ek+1‖2
H̊−1

per
+
ε2

16
s(‖∆ek+1‖2 + ‖∆ek‖2).

Consequently, we get

I9 = I9,1 + I9,2 ≤ C45s‖ek+1‖2
H̊−1

per
+
ε2

8
s(‖∆ek+1‖2 + ‖∆ek‖2). (4.110)

Finally, a combination of (4.83), (4.86), (4.87), (4.88), (4.89), (4.94), (4.98),

(4.102), (4.108), (4.109) and (4.110) yields that

‖ek+1‖2
H̊−1

per
− ‖ek‖2

H̊−1
per

+ 2(ε−2 + η)s‖ek+1‖2 +
9

8
ε2s‖∆ek+1‖2
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≤ C46s(‖ek+1‖2
H̊−1

per
+ ‖ek‖2

H̊−1
per

) +
3

8
ε2s‖∆ek‖2 + s‖τ k‖2. (4.111)

Subsequently, an application of discrete Gronwall inequality leads to an `∞(0, T ; H̊−1
per)∩

`2(0, T ;H2
per) convergence of the numerical scheme (4.65):

‖ek‖2
H̊−1

per
+

3

4
ε2s

k∑
l=0

‖∆el‖2 ≤ Cs2, (4.112)

for any 1 ≤ k ≤ K. Note that the constant C depends on the exact solution, the

physical parameter ε, and final time T , independent on s. The proof of Theorem

4.4.8 is finished.

Fully discrete finite difference scheme

With the machinery in last subsection, the discrete energy of FCH can be rewritten

as:

Fh(φ) = Fc,h(φ)−Fe,h(φ) (4.113)

where

Fc,h(φ) =
ε−2

2
‖φ‖66 +

(
ε−2

2
+
η

2

)
‖φ‖22 +

ε2

2
‖∆hφ‖22 +Hh(φ), (4.114)

Fe,h(φ) =
(
ε−2 +

η

4

)
‖φ‖44 +

(
1 +

ηε2

2

)
‖∇v

hφ‖
2
2 +A ‖φ‖44 +A ‖∇v

hφ‖
4
4 , (4.115)

and

Hh(φ) = A ‖φ‖4
4 + A ‖∇v

hφ‖
4
4 + 3

(
φ2,A(|∇v

hφ|
2)
)

2
. (4.116)

Proposition 4.4.9. Suppose φ ∈ Cper. The first variational derivative of Hh(φ) is

δHh(φ) = 4Aφ3 − 4A
(
dx
(
[(Dxφ)2 + (Dyφ)2]Dxφ

)
+ dy

(
[(Dxφ)2 + (Dyφ)2]Dyφ

))
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+ 6φA[(Dxφ)2 + (Dyφ)2]− 6
(
dx
(
a
(
φ2
)
Dxφ

)
+ dy

(
a
(
φ2
)
Dyφ

))
.

Lemma 4.4.10. Suppose that φ ∈ Cper and A ≥ 1 then Hh(φ), Fc,h(φ) and Fe,h(φ)

are strictly convex.

Proof. The convexity proof of Hh(φ) is similar to Lemma 4.4.1. The convexities of

Fc,h(φ) and Fe,h(φ) follow from the convexity of Hh(φ).

According to Proposition 4.4.9 and some other standard calculations [72], the

fully discretized finite difference convex splitting scheme can be rewritten as: given

f, g ∈ Cper, find φk+1, µ̃k+1 ∈ Cper such that

φk+1 − s∆hµ̃
k+1 = g, (4.117)

where

µ̃k+1 = δφFc,h(φk+1)− δφFe,h(φk)

= 3ε−2(φk+1)5 + 4A(φk+1)3 + (ε−2 + η)φk+1

+ 6(φk+1)2A(|∇v
hφ

k+1|2) + ε2∆2
hφ

k+1

− 6∇v
h · (a

((
φk+1

)2)∇v
hφ

k+1)

−4A∇v
h · (|∇v

hφ
k+1|2∇v

hφ
k+1)− f, (4.118)

with

g := φk, f : = −(4ε−2 + η)(φk)3 + (2 + ηε2)∆v
hφ

k − 4A(φk)3

+4A∇v
h · (|∇v

hφ
k|2∇v

hφ
k). (4.119)

This scheme is mass-conservative in the sense that φ− g ∈ C̊per.

Theorem 4.4.11. The fully discrete scheme (4.117) – (4.119) is unconditionally

discrete energy stable: Fh(φk+1) ≤ Fh(φk).
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Proof. The proof follows from Lemma 4.4.10 and the discrete version of (4.4.3) found

in [82].

Following similar ideas as in the analyses for the semi-discrete case, we are able to

derive the unique solvability, unconditional energy stability and the `∞(0, T ;H−1) ∩

`2(0, T ;H2) convergence for the fully discrete scheme (4.117) – (4.119). The detailed

proofs are skipped for the sake of brevity and are left to interested readers.

Theorem 4.4.12. The fully discrete scheme (4.117) – (4.119) is uniquely solvable.

Let φe be the exact solution of the FCH equation (4.54) with the periodic boundary

condition and let φ be the numerical solution of (4.117) – (4.119). Then the following

convergence result holds as s, h goes to zero:

‖φe(tk)− φk‖−1 +

(
ε2s

k∑
l=0

‖∆h(φe(t
l)− φl)‖2

)1/2

≤ C(s+ h2), (4.120)

where the constant C depends only on the regularity of the exact solution.

4.4.4 Preconditioned steepest descent (PSD) solver

In this section we describe a preconditioned steepest descent (PSD) algorithm for

advancing the convex splitting scheme in time, following the practical and theoretical

framework in [34]. The fully discrete scheme (4.117) – (4.119) can be recast as a

minimization problem with an energy that involves the ‖·‖2
−1 norm: For any φ ∈ Cper,

Eh[φ] =
1

2
‖φ− g‖2

−1 +
sε−2

2
‖φ‖6

6 +
s(ε−2 + η)

2
‖φ‖2

2

+As ‖φ‖4
4 + As ‖∇v

hu‖
4
4 + 3

(
φ2,A

(
|∇v

hφ|2
))

2

+
sε2

2
‖∆hφ‖2

2 + s (g, φ)2 , (4.121)

which is strictly convex provided that A ≥ 1. One will observe that the fully discrete

scheme (4.117) – (4.119) is the discrete variation of the strictly convex energy (4.121)
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set equal to zero. The nonlinear scheme at a fixed time level may be expressed as

Nh[φ] = f, (4.122)

where

Nh[φ] = −∆−1
h (φ− g) + 3sε−2φ5 + 4sAφ3 + s(ε−2 + η)φ+ 6sφ2A(|∇v

hφ|2)

−6s∇v
h ·
(
a
(
φ2
)
∇v
hφ
)
− 4sA∇v

h · (|∇v
hφ|2∇v

hφ) + sε2∆2
hφ. (4.123)

The main idea of the PSD solver is to use a linearized version of the nonlinear

operator as a pre-conditioner, or in other words, as a metric for choosing the search

direction. A linearized version of the nonlinear operator N is defined as follows:

Lh : C̊per → C̊per,

Lh[ψ] := −∆−1
h ψ + s(4ε−2 + η + 4A+ 6)ψ − s(6 + 4A)∆hψ + sε2∆2

hψ.

Clearly, this is a positive, symmetric operator, and we use this as a pre-conditioner

for the method. Specifically, this “metric" is used to find an appropriate search

directtion for our steepest descent solver. Given the current iterate φn ∈ Cper, we

define the following search direction problem: find dn ∈ C̊per such that

Lh[dn] = f −Nh[φn] := rn,

where rn is the nonlinear residual of the nth iterate φn. This last equation can be

solved efficiently using the Fast Fourier Transform (FFT).

We then define the next iterate as

φn+1 = φn + αdn, (4.124)
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where α ∈ R is the unique solution to the steepest descent line minimization problem

α := argmax
α∈R

Eh[φ
n + αdn] = argzero

α∈R
δEh[φ

n + αdn](dn). (4.125)

We have the convergence φn → φk+1, as n → ∞, where Nh[φk+1] = f , i.e., φk+1 is

the solution of the scheme (4.117) – (4.119) at time level k + 1.

4.4.5 Numerical results

We perform some numerical experiments with PSD solver to support the theoretical

results in this section. The finite difference search direction equations and Poisson

equations are solved efficiently using the Fast Fourier Transform (FFT). Though we do

not present it here, we also implement the scheme by using pseudo-spectral method;

see the related descriptions in [9, 17, 34, 48].

Convergence test

In this numerical experiment, we apply the benchmark problem in [19, 55] to show

that our scheme is first order accurate in time. The convergence test is performed

with the initial data given by

φ(x, y, 0) = 2e
sin( 2πx

Lx
)+sin( 2πy

Ly
)−2

+ 2.2e
− sin( 2πx

Lx
)−sin( 2πy

Ly
)−2 − 1. (4.126)

We use a quadratic refinement path, i.e., s = Ch2. At the final time T = 0.32,

we expect the global error to be O(s) + O(h2) = O(h2) under either the `2 or `∞

norm, as h, s → 0. Since an exact solution is not available, instead of calculating

the error at the final time, we compute the Cauchy difference, which is defined as

δφ := φhf − Ifc (φhc), where Ifc is a bilinear interpolation operator. This requires

having a relatively coarse solution, parametrized by hc, and a relatively fine solution,

parametrized by hf , where hc = 2hf , at the same final time. The Cauchy difference

is also expected to be O(s) +O(h2) = O(h2), as h, s→ 0. The other parameters are
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given by Lx = Ly = 3.2, ε = 0.18, A = 1.0, η = 1.0, s = 0.1h2. The norms of Cauchy

difference, the convergence rates, average iteration number and average CPU time

(in seconds) can be found in Table 4.3. The results confirm our expectation for the

convergence order and also demonstrate the efficiency of our algorithm. Moreover,

the semi-log scale of the residual ‖rn‖∞ with respect to the PSD iterations can be

found in Fig. 4.12, which confirms the expected geometric convergence rate of the

PSD solver predicted by the theory in [34].

Table 4.3: Errors, convergence rates, average iteration numbers and average CPU
time (in seconds) for each time step. Parameters are given in the text, and the initial
data is defined in (4.126). The refinement path is s = 0.1h2.

hc hf ‖δφ‖2 Rate #iter Tcpu(hf )
3.2
16

3.2
32

1.8131× 10−2 - 27 0.0136
3.2
32

3.2
64

4.2725× 10−3 2.09 25 0.0493
3.2
64

3.2
128

7.7211× 10−4 2.47 19 0.1534
3.2
128

3.2
256

1.7075× 10−4 2.18 11 0.4809
3.2
256

3.2
512

4.0134× 10−5 2.09 05 2.1579

Long time simulation of benchmark problem

Time snapshots of the benchmark problem in [19, 55] for the long time test can be

found in Fig. 4.13. The initial data is defined in (4.126) and the other parameters are

given by Lx = Ly = 6.4, ε = 0.18, A = 1.0, η = 1.0, s = 1 × 10−4 and h = 6.4/256.

The numerical results in Fig. 4.13 are consistent with earlier work on this topic in

[19, 55].

Spinodal decomposition, energy dissipation and mass conservation

In the second test, we simulate the spinodal decomposition, energy-dissipation and

mass-conservation. We start with the following random initial condition:

φ(x, y, 0) = 0.5 + 0.05(2r − 1), (4.127)
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Figure 4.12: Solver convergence (complexity) test for the problem defined in
Section 5.2.1. The only difference is that for this test, we use a fixed time step
size, s = 1.0 × 10−5 for all runs. We plot on a Semi-log scale of the residual ‖rn‖∞
with respect to the PSD iteration count n at the 20th time step, i.e., t = 2.0× 10−4.
The initial data is defined in (4.126), Lx = Ly = 6.4, ε = 0.18, A = 1.0, η = 1.0, and
the grid sizes are as specified in the legend. We observe that the residual is decreasing
by a nearly constant factor for each iteration.

where r are the real random numbers in (0, 1). The rest of parameters are given

by Lx = Ly = 12.8, ε = 0.1, A = 1.0, η = 1.0, s = 1 × 10−4 and h =

12.8/256. The snapshots of spinodal decomposition with initial data in (4.127) can

be found in Fig. 4.14. This experiment also simulates the amphiphilic di-block co-

polymer mixtures of polyethylene. The numerical results are consistent with chemical

experiments on this topic in [54]. Fig. 4.15 indicates that the simulation has captured

all the structural elements with hyperbolic (saddle) surfaces identified in this work,

such as short cylinders with one and two beads, cylinder undulation, Y-junction and

bilayer-cylinder junction can be found in zoom boxes.
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t = 0, 0.2 t = 1, 10

t = 20, 50 t = 100, 200

Figure 4.13: Time snapshots of the benchmark problem with initial data in (4.126)
at t = 0, 0.2, 1, 10, 20, 50, 100 and 200. The parameters are ε = 0.18, Ω = (0, 6.4)2,
A = 1.0, η = 1.0, s = 1× 10−4 and h = 6.4/256. The numerical results are consistent
with earlier work on this topic in [19, 55].
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The evolutions of discrete energy and mass for the simulation depicted in Fig. 4.14

are presented in Fig. 4.16. The evolution of discrete energy in Fig. 4.16 demonstrates

the energy dissipation property, and the evolution of discrete mass clearly indicates

the mass conservation property.

t = 0.01, 0.05 t = 0.1, 0.5

t = 1, 2 t = 5, 10

Figure 4.14: Snapshots of spinodal decomposition with initial data in (4.127) at
t = 0.01, 0.05, 0.1, 0.5, 1, 2, 5 and 10. The parameters are ε = 0.1,Ω = [12.8]2, A = 1.0,
η = 1.0, s = 1× 10−4 and h = 12.8/256.
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Figure 4.15: Left: Snapshots of spinodal decomposition at t = 0.05. Right: Zoom
boxes. Yellow box: Short cylinders with an undulation; Red box: Short cylinders
with two undulations; Blue box: Bilayer- Cylinder junction; Orange box: Y-junction.
Those numerical results are consistent with chemical experiments on this topic in [54].
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Figure 4.16: The evolutions of discrete energy and mass for the simulation depicted
in Fig. 4.14. Left: Energy Dissipation; Right: Mass Conservation.
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Chapter 5

Linearly Preconditioned Nonlinear

Conjugate Gradient Solvers

The content in this chapter has been published in [35], for more details please refer

to [35].

5.1 Linearly Preconditioned Nonlinear Conjugate

Gradient Methods

Based on the PSD algorithm, we define gk = L−1
h (rk). Then our PNCG algorithms

are given by the following equations:

φk+1 = φk + αkd
k (5.1)

dk+1 = −gk+1 + βk+1d
k, d0 = −g0. (5.2)

And more details can be found in Algorithm 2.

However, there several different ways to choose the scaling parameter βk+1. And

two of the best known formulas for βk+1 are named after their deveiops:
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Algorithm 2 Linearly Preconditioned Nonlinear Conjugate Gradient (PNCG)
Method
1: Compute residual: r0 := f −Nh(φ0)
2: Set g0 = L−1

h (r0)
3: Set d0 ← −g0, k ← 0
4: while gk 6= 0 do
5: Compute αk . secant search
6: φk+1 ← φk + αkd

k . steepest descent algorithm
7: gk+1 ← L−1

h (rk+1) = L−1
h (f −Nh(φk+1))

8: Compute βk+1

9: dk+1 ← −gk+1 + βk+1d
k

10: k ← k + 1
11: end while

Fletcher-Reeves [40]:

β
FR

k+1 =
gTk+1gk+1

gTk gk
(5.3)

Polak-Ribière [65]:

β
PR

k+1 =
gTk+1(gk+1 − gk)

gTk gk
(5.4)

Based on those two best known formulas, we proposed the following two PNCG

solvers:

PNCG1:

βk+1 = max {0, βPRk+1} (5.5)

PNCG2 :

βk+1 = max {0,min{βFRk+1, β
PR

k+1}} (5.6)
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Remark 5.1.1. The PNCG2 is also called hybrid conjugate gradient algorithm in

[88].

5.2 Application to Epitaxial Thin Film Growth Model

with First-Order-In-Time Scheme

In this section we provide a brief introduction about SS model and recall the first-

order-in-time unconditional energy stable numerical schemes in [34, 71].

This epitaxial thin film model was first proposed by P. Aviles and Y. Giga to

study the dynamics of smectic liquid crystals in [4]. The energy of the SS model is

as follows:

F (φ) :=

∫
Ω

(
1

4

(
|∇φ|2 − 1

)2
+
ε2

2
(∆φ)2

)
dx , (5.7)

where Ω = (0, Lx)× (0, Ly), φ : Ω→ R is a scaled height function of thin film and ε

is a constant which represents the width of the rounded corner. The corresponding

chemical potential is defined to be the variational derivative of the energy (5.7), i.e.,

µ := δφF = −∇ · (|∇φ|2∇φ) + ∆φ+ ε2∆2φ. (5.8)

And the SS equation becomes the L2 gradient flow associated with the energy (5.7):

∂tφ = −µ = ∇ · (|∇φ|2∇φ)−∆φ− ε2∆2φ. (5.9)

Periodic boundary conditions are assumed for φ and µ in both spatial directions for

simplicity.

With the machinery in Section 2.2, the first-order-in-time unconditional energy

stable scheme in [34, 71] can be formulated as follows: for n ≥ 0, given φn ∈ Cper,

find φn+1 ∈ Cper such that

φn+1 − s∇h ·
(∣∣∇hφ

n+1
∣∣2∇n+1φ

)
+ sε2∆2

hφ
n+1 = φn − s∆hφ

n. (5.10)
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We now define a fully discrete energy that is consistent with the continuous space

energy (5.7) as h→ 0. In particular, the discrete energy Fh : Cper → R is defined as:

Fh(φ) =
1

4
‖∇hφ‖4

4 −
1

2
‖∇hφ‖2

2 +
1

2
ε2 ‖∆hφ‖2

2 . (5.11)

Theorem 5.2.1. The numerical scheme (5.10) is unconditionally energy stable, i.e.

the discrete energy Fh satisfies the following energy dissipation law:

Fh(φ
n+1)− Fh(φn) ≤ −s

∥∥µn+1
∥∥2

2
. (5.12)

Proof. The numerical scheme (5.10) can be rewritten as a nonlinear system:

φn+1 − φn = −sµn+1 (5.13)

µn+1 = −∇h · (|∇hφ
n+1|2∇hφ

n+1) + ∆hφ
n + ε2∆2

hφ
n+1. (5.14)

By taking the L2 inner product of (5.13) with µn+1, we obtain

−s
∥∥µn+1

∥∥2

2
=
(
µn+1, φn+1 − φn

)
. (5.15)

By taking the L2 inner product of (5.14) with φn+1 − φn yields

(
µn+1, φn+1 − φn

)
= −

(
∇h · (|∇hφ

n+1|2∇hφ
n+1), φn+1 − φn

)
+
(
∆hφ

n, φn+1 − φn
)

+ ε2
(
∆2
hφ

n+1, φn+1 − φn
)

=: I1 + I2 + I3. (5.16)

For the term I1 which involves with 4-Laplacian term, we have

−
(
∇h · (|∇hφ

n+1|2∇hφ
n+1), φn+1 − φn

)
=

(
|∇hφ

n+1|2∇hφ
n+1,∇h(φ

n+1 − φn)
)

≥ 1

4

(
‖∇hφ

n+1‖4
4 − ‖∇hφ

n‖4
4

)
. (5.17)
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For the explicit linear term I2, we have

(
∆hφ

n, φn+1 − φn
)

= −
(
∇hφn,∇h(φn+1 − φn)

)
= −1

2

∥∥∇hφn+1
∥∥2

2
+

1

2
‖∇hφn‖22 +

1

2

∥∥∇h(φn+1 − φn)
∥∥2

2
. (5.18)

For the highest-order diffusion term I3, we have

ε2
(
∆2
hφ

n+1, φn+1 − φn
)

= ε2
(
∆hφ

n+1,∆h(φ
n+1 − φn)

)
=

1

2
ε2
∥∥∆hφ

n+1
∥∥2

2
− 1

2
ε2 ‖∆hφ

n‖2
2

+
1

2
ε2
∥∥∆h(φ

n+1 − φn)
∥∥2

2
. (5.19)

A combination of (5.15), (5.17)-(5.19) yields

Fh(φn+1)− Fh(φn) +
1

2

∥∥∇h(φn+1 − φn)
∥∥2
2

+
1

2
ε2
∥∥∆h(φn+1 − φn)

∥∥2
2
≤ −s

∥∥µn+1
∥∥2
2
. (5.20)

The desired result (5.12) follows from dropping some positive difference terms from

(5.20).

5.2.1 Numerical Experiments

In this section we demonstrate the accuracy, complexity and efficiency of the PNCG

solvers. We present the results of the convergence tests and perform some sample

computations to demonstrate the complexity and the efficiency of PNCG solvers.

Moreover, We also provide some comparison results between the proposed PNCG

solvers and the PSD solver in [34]. The stop tolerances for all of the following

simulations are 1.0× 10−10.

Convergence tests and the complexity of the PNCG solvers

To simultaneously demonstrate the spatial accuracy and the efficiency of the solver,

we perform a typical time-space convergence test for the fully discrete scheme (5.10)

for the SS model. As in [34, 71, 77], we perform the Cauchy-type convergence test
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using the following periodic initial data [71]:

u(x, y, 0) = 0.1 sin2

(
2πx

L

)
· sin

(
4π(y − 1.4)

L

)
−0.1 cos

(
2π(x− 2.0)

L

)
· sin

(
2πy

L

)
, (5.21)

with Ω = [0, 3.2]2, ε = 1 × 10−1, s = 0.1h2 and T = 0.32. We use a quadratic

refinement path, i.e., s = Ch2. At the final time T = 0.32, we expect the global

error to be O(s) +O(h2) = O(h2) under either the `2 or `∞ norm, as h, s→ 0. The

Cauchy difference is defined as δφ := φhf−Ifc (φhc), where Ifc is a bilinear interpolation

operator (We applied Nearest Neighbor Interpolation in Matlab, which is similar to

the 2D case in [31, 34] the 3D case in [27]). This requires having a relatively coarse

solution, parametrized by hc, and a relatively fine solution, parametrized by hf , in

particular hc = 2hf , at the same final time T . The `2 norms of Cauchy difference and

the convergence rates can be found in Table 5.1 which confirms our expectation for

the first order in time and second order in space convergence.

Table 5.1: Errors, convergence rates, average iteration numbers and average CPU
time (in seconds) for each time step. Parameters are given in the text, and the initial
data is defined in (5.21). The refinement path is s = 0.01h.

PNCG1 PNCG2
hc hf ‖δφ‖2 Rate #iter Tcpu(hf ) ‖δφ‖2 Rate #iter Tcpu(hf )
3.2
16

3.2
32 5.9944× 10−3 - 4 0.0007 5.9944× 10−3 - 4 0.0007

3.2
32

3.2
64 1.1500× 10−3 2.38 2 0.0026 1.1500× 10−3 2.38 2 0.0025

3.2
64

3.2
128 2.4689× 10−4 2.22 2 0.0220 2.4688× 10−4 2.22 2 0.0129

3.2
128

3.2
256 5.8656× 10−5 2.07 2 0.0674 5.8656× 10−5 2.07 2 0.0653

3.2
256

3.2
512 1.4463× 10−5 2.02 2 0.4542 1.4463× 10−5 2.02 2 0.4533

In the second part of this test, we demonstrate the complexity of the PNCG

solvers with initial data (5.21). In Figure 5.1 (a) and (c), we plot the semi-log scale

of the relative residuals versus PNCG1 and PNCG2 iteration numbers for various

values of h, respectively. The other common parameters for the h-independence are

Ω = [0, 3.2]2, ε = 1× 10−1, s = 0.001, T = 1× 10−2 with time steps s = 1× 10−3 and

the initial data (5.21). And the semi-log scale of the relative residuals versus PNCG1
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and PNCG2 iteration numbers for various values of ε can be found in Figure 5.1

(b) and (d), respectively. The other common parameters for the ε-dependence are

Ω = [0, 3.2]2, h = 3.2/512, s = 0.001, T = 1 × 10−2 with time steps s = 1 × 10−3 and

the initial data (5.21). Figure 5.1(a) and (c) indicate that the convergence rates of

PNCG solvers (as gleaned from the error reduction) are nearly uniform and nearly

independent of h for a fixed ε. Figure 5.1(b) and (d) show that the number of

PNCG iterations increases with the decreasing of ε. Moreover, Figure 5.1(b) and

(d) indicate that the PNCG2 is more efficient and robust than PNCG1. Figure 5.1

provides the similar geometric convergence rate of the PNCG solvers predicted by the

theory in [34].
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Figure 5.1: Complexity tests showing the solver performance for changing values of
h and ε. Parameters are given in the text, and the initial data is defined in (5.21).
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In the third part of this test, we perform some comparisons between the proposed

PNCG solvers and the PSD solver. The parameters for the comparison simulations are

Ω = [0, 12.8]2, ε = 3×10−2, h = 12.8/512, s = 0.01, and T = 0.32. The average iteration

numbers, total CPU time (in seconds) and speedups for the preconditioned methods

can be found in Table 5.2. The Table 5.2 indicates that the PNCG1 solver and PNCG2

solver have provided a 1.34x and 1.39x speedup over PSD solver, respectively. The

error reductions at T = 1 (100th iteration) in Figure 5.2 (a) indicates the PNCG

solvers have less iteration numbers and faster error reduction at each time iteration.

And energy evolutions in Figure 5.2 (a) show that the preconditioned solvers have

the same energy evolutions.

Table 5.2: The average iteration numbers and total CPU time (in seconds) for
the preconditioned methods with fixed time steps s = 0.01 and initial data (5.21).
Parameters are given in the text.

Methods PSD PNCG1 PNCG2
#iter 17 13 12
Tcpu(s) 232.2665 173.2407 167.6591
Speedup - 1.34 1.39
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(b) Energy evolutions.

Figure 5.2: The error reductions at T = 1 and energy evolutions for the preconditioned
solvers. Parameters are given in the text, and the initial data is defined in (5.21).
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Long-time coarsening process, energy dissipation and mass conservation

Coarsening processes in thin film systems can take place on very long time scales [57].

In this subsection, we perform long time behavior tests for SS model. Such test, which

have been performed in many places, will confirm the expected coarsening rates and

serve as benchmarks for our solver. See, for example, [71, 77]. The initial data for

the simulations are taken as essentially random:

u0
i,j = 0.05 · (2ri,j − 1), (5.22)

where the ri,j are uniformly distributed random numbers in [0, 1]. Since all of the

solvers give similar results, we only present the results from PNCG2 in the fellowing

content of this subsection. Time snapshots of the evolution for the epitaxial thin

film growth model can be found in Figure 5.3. The coarsening rates are given in

Figure 5.4. The interface width or roughness is defined as

W (tn) =

√√√√ h2

mn

m∑
i=1

n∑
j=1

(φni,j − φ̄)2, (5.23)

where m and n are the number of the grid points in x and y direction and φ̄ is the

average value of φ on the uniform grid. The log-log plots of roughness and energy

evolution and the corresponding linear regression are presented in Figure. 5.4. The

linear regressions in Figure. 5.4 indicate that the surface roughness grows like t1/3

and the energy decays like t1/3. In particular, the linear fits have the form aet
be with

ae = 11.2, be = −0.3315 for energy evolution and artbr with ar = 0.0025, br = 0.3255

for roughness evolution. Those decay properties confirm the one-third power law in

[58]. Moreover, these simulation results are consistent with earlier work on this topic

in [34, 71, 77, 83].

The PNCG2 iterations and mass difference at each time steps for the simulation

depicted in Figure 5.3 are presented in 5.5. The PNCG2 iterations indicate that the
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average iteration number of PNCG2 solver is only 3. And the mass difference at each

time steps clearly shows the mass Conservative property.

t = 10 t = 100

t = 500 t = 1000

t = 6000 t = 10000

Figure 5.3: Time snapshots of the evolution with PSD solver for the epitaxial thin film
growth model at t = 10, 100, 500, 1000, 6000 and 10000. Left: contour plot of u, Right:
contour plot of ∆u. The parameters are ε = 0.03,Ω = [12.8]2 and s = 0.01. These
simulation results are consistent with earlier work on this topic in [34, 36, 71, 77, 83].
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Figure 5.4: The log-log plots of energy and roughness evolution and the corresponding
linear regression for the simulation depicted in Figure 5.3.
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Figure 5.5: PNCG2 iterations and mass difference at each time steps for the simulation
depicted in Figure 5.3.
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5.3 Adaptive time-stepping method for the First-

Order-In-Time Scheme

As we have proven in section 5.2, the proposed scheme is unconditionally energy

stable which allows us to adopt large time steps to the simulations. However, for the

sake of accuracy, large time steps are not proper for a rapidly phase transformation.

In order to make the proposed scheme much more practical, we apply the adaptive

time stepping strategy in [69, 85, 86] based on the change ratio of the free energy.

The adaptive time steps is defined as follows:

s = max

(
smin,

smax√
1 + α|δtFh(φ)|2

)
, (5.24)

where α is a constant, δt is the derivative w.r.t. time and smin and smax are pre-set

lower and upper bound of the time steps, respectively. By introducing the pre-set

time steps, the smin can force the adaptive time steps bounded from below to avoid

too small time steps and the smax gives the upper bound of the time steps to guarantee

the accuracy. Consequently,

smin ≤ s ≤ smax.

5.3.1 Numerical Experiments

In order to make the proposed scheme much more practical, we investigate the

adaptive time stepping strategy in this subsection. The Figure 5.24 (a) and (c)

indicate that the energy decays and adaptive time steps are the same, which

demonstrate the robustness of the proposed preconditioned methods. Moreover,

according to the t−1/3 reference line in Figure 5.24 (a), we can conclude that the

energy Eh decays like t−1/3. From the Figure 5.24 (b), we can observe that the

masses are conservative in sense of 10−11. The adaptive time steps and the number

of iterations at each time steps are presented in Figure 5.24 (c) and (d), respective.
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From Figure 5.24 (d), we can clearly see that the PNCG solvers have less iteration

numbers than the PSD solver. Moreover, the total CPU time in Table 5.3 shows

that the adaptive time stepping approach can greatly save CPU time without losing

accuracy.
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Figure 5.6: Adaptive time-stepping methods with adaptive time steps (5.24). The
rest of the parameters are Ω = [0, 12.8]2, ε = 3.0 × 10−2, h = 12.8/512, smin = 1.0−4,
smax = 1.0.
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Table 5.3: The total CPU time (in seconds) and speedups for the preconditioned
methods with adaptive time steps for the simulation depicted in Figure 5.6.
Parameters are given in the text.

Methods PSD PNCG1 PNCG2
Tcpu(s) 106968.8356 75029.2439 70657.7581
Speedup - 1.43 1.51

5.4 Application to Epitaxial Thin Film Growth Model

with Second-Order-In-Time Backward Differen-

tiation Formula Scheme

The content in this chapter has been published in [36], for more details please refer

to [36].

5.4.1 Convergence test and the complexity of the Precondi-

tioned solvers

In this subsection we demonstrate the accuracy and complexity of the preconditioned

solvers. We present the results of the convergence test and perform some sample

computations to investigate the effect of the time step s and stabilized parameter A

for the energy Fh(φ).

To simultaneously demonstrate the spatial accuracy and the efficiency of the

solver, we perform a typical time-space convergence test for the fully discrete scheme

(4.6) for the slope selection model. As in [14, 71, 77], we perform the Cauchy-type

convergence test using the following periodic initial data [71]:

u(x, y, 0) = 0.1 sin2

(
2πx

L

)
· sin

(
4π(y − 1.4)

L

)
−0.1 cos

(
2π(x− 2.0)

L

)
· sin

(
2πy

L

)
, (5.25)
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with Ω = [0, 3.2]2, ε = 0.1, s = 0.01h, A = 1/16 and T = 0.32. We use a linear

refinement path, i.e., s = Ch. At the final time T = 0.32, we expect the global

error to be O(s2) + O(h2) = O(h2), in either the `2 or `∞ norm, as h, s → 0. The

Cauchy difference is defined as δφ := φhf−Ifc (φhc), where Ifc is a bilinear interpolation

operator (with the Nearest Neighbor Interpolation applied in Matlab, which is similar

to the 2D case in [31, 34] and the 3D case in [27]). This requires a relatively coarse

solution, parametrized by hc, and a relatively fine solution, parametrized by hf , in

particular hc = 2hf , at the same final time. The `2 norms of Cauchy difference and

the convergence rates can be found in Table 5.4. The results confirm our expectation

for the second-order convergence in both space and time.

Table 5.4: Errors, convergence rates, average iteration numbers and average CPU
time (in seconds) for each time step. Parameters are given in the text, and the initial
data is defined in (5.25). The refinement path is s = 0.01h.

PSD PNCG1 PNCG2
hc hf ‖δφ‖2 Rate #iter Tcpu(hf ) #iter Tcpu(hf ) #iter Tcpu(hf )
3.2
16

3.2
32

1.3938× 10−2 - 11 0.0019 9 0.0016 9 0.0015
3.2
32

3.2
64

1.7192× 10−3 3.02 10 0.0103 9 0.0093 8 0.0085
3.2
64

3.2
128

3.8734× 10−4 2.15 08 0.0529 8 0.0486 7 0.0454
3.2
128

3.2
256

9.4766× 10−5 2.03 07 0.2512 7 0.2038 6 0.2046
3.2
256

3.2
512

2.3564× 10−5 2.01 07 1.6650 7 1.6268 6 1.5207

In the second part of this test, we demonstrate the complexity of the precondi-

tioned solvers with initial data (5.25). In Figure 5.7, we plot the semi-log scale of the

relative residuals versus preconditioned solvers’ iteration numbers for various values

of h and ε at T = 0.02, with time step s = 10−3. The other common parameters

are set as A = 1/16, Ω = [0, 3.2]2. The figures in the top row of Figure 5.7 indicate

that the convergence rate (as gleaned from the error reduction) is nearly uniform and

nearly independent of h for a fixed ε. And the plots in the bottom row of Figure 5.7

show that the number of preconditioned solvers’ iterations increases with a decreasing

value of ε, which confirms the theoretical results that the PSD solver is dependent on

parameter ε in [34]. Figure 5.7 confirms the expected geometric convergence rate of
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the PSD solver predicted by the theory in [34]. Moreover, the number of the interation

steps in Figure 5.7 also indicate that PNCG2 is the most efficient one and PNCG1 is

better than PSD, especially when ε is small.
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Figure 5.7: Complexity tests showing the solvers’ performance for changing values of
h and ε. Top row: h-independence with ε = 0.1; Bottom row: ε-dependence with
h = 3.2/512. The rest of the parameters are given in the text.

In the third part of this test, we perform CPU time comparison between the

proposed preconditioned solvers and the PSD solver with random initial data. The

initial data for the simulations are taken as essentially random:

u0
i,j = 0.05 · (2ri,j − 1), (5.26)

where the ri,j are uniformly distributed random numbers in [0, 1]. The parameters for

the comparison simulations are Ω = [0, 12.8]2, ε = 3×10−2, h = 12.8/512, s = 0.001 and

T = 1. The average iteration numbers, total CPU time (in seconds) and speedups

for the preconditioned methods can be found in Table 5.5. The Table 5.5 indicates

that the PNCG1 solver and PNCG2 solver have provided a 1.37x and 1.45x speedup

over PSD solver, respectively.
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Table 5.5: The average iteration numbers and total CPU time (in seconds) for the
preconditioned methods with fixed time steps s = 0.001. Parameters are given in the
text.

Methods PSD PNCG1 PNCG2
#iter 20 14 13
Tcpu(s) 4406.1764 3212.2898 3035.4369
Speedup - 1.37 1.45

In the fourth part of this test, we investigate the effect of the parameters s and

A for the energy Fh(φ) with initial data (5.25). Since the proposed solvers give the

same results, we only present the results from PSD solver in the rest of the thesis.

The evolutions of the energy with various time steps s and stabilized parameter A are

given in Figure 5.8. As can be seen in Figure 5.8(a), the larger time steps produce

inaccurate or nonphysical solutions. In turn, Figure 5.8(a) indicates the proper

time steps and provides the motivation of using adaptive time stepping strategy.

Figure 5.8(b) shows that the proposed scheme and PSD solver is not that sensitive

to the stabilized parameter A when A ≤ 1.
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Figure 5.8: The effect of time steps s and stabilized parameter A for the energy Fh(φ).
Left: the effect of time step s. The other parameters are Ω = [0, 3.2]2, ε = 3.0× 10−2

and A = 1/16; Right: the effect of stabilized parameter A. The other parameters are
Ω = [0, 3.2]2, ε = 1.0−2 and s = 0.001.
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5.4.2 Long-time coarsening process, energy dissipation and

mass conservation

Coarsening processes in thin film system can take place on very long time scales [57].

In this subsection, we perform long time simulation for the SS equation. Such a

test, which has been performed in many existing literature, will confirm the expected

coarsening rates and serve as a benchmarks for the proposed solver; see, for example,

[34, 71, 77].

The initial data for this simulations are taken as (5.26). Time snapshots of the

evolution for the epitaxial thin film growth model can be found in Figure 5.9. The

coarsening rates are given in Figure 5.10. The interface width or roughness is defined

as

W (tn) =

√√√√ h2

mn

m∑
i=1

n∑
j=1

(φni,j − φ̄)2, (5.27)

where m and n are the number of the grid points in x and y direction and φ̄ is the

average value of φ on the uniform grid. The log-log plots of roughness and energy

evolution and the corresponding linear regression are presented in Figure. 5.10. The

linear regression in Figure. 5.10 indicates that the surface roughness grows like t1/3,

while the energy decays like t−1/3, which verifies the one-third power law predicted

in [58]. More precisely, the linear fits have the form aet
be with ae = 3.09870, be =

−0.33554 for energy evolution and amt
bm with am = −5.35913, bm = 0.32555 for

roughness evolution. The linear regression is only taken up to t = 3000, since the

saturation time would be of the order of ε−2 under the scaling that we have adopted

[71]. These simulation results are consistent with earlier works on this topic in [34,

71, 77, 83].

118



t = 10 t = 100

t = 500 t = 2000

t = 4000 t = 10000

Figure 5.9: Time snapshots of the evolution with preconditioned solvers for the
epitaxial thin film growth model at t = 10, 100, 500, 2000, 4000 and 10000. Left:
contour plot of u, Right: contour plot of ∆u. The parameters are ε = 0.03,Ω =
[12.8]2, s = 0.001, h = 12.8/512 and A = 1/16. These simulation results are consistent
with earlier work on this topic in [34, 71, 77, 83].
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Figure 5.10: The log-log plots of energy and roughness evolution and the
corresponding linear regression for the simulation depicted in Figure 4.7.
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Chapter 6

Conclusions

A preconditioned steepest descent (PSD) solver is proposed and analyzed for fourth

and sixth-order regularized p-Laplacian equations. Solution of the highly nonlinear

finite difference equations are equivalent to the minimizations of associated strictly

convex energies. The energy dissipation property of the PSD solver leads to a bound

for the numerical solution at each iteration stage. This fact, coupled with an upper-

bound for the second derivative of the energy with respect to the metric induced by

the pre-conditioner, leads to a geometric convergence rate for our (PSD) solver, which

is proved rigorously for both the continuous and discrete space cases. In the present

setting the pre-conditioner is a linear, constant-coefficient, positive, and symmetric

finite difference operator. The key to the efficiency of our method is that this pre-

conditioner can be efficiently inverted using the FFT. Various numerical results are

presented in this thesis, including a convergence test and a complexity analysis for

the PSD solver, as well as long-time simulation results for the thin film epitaxy model

with slope selection (both p = 4 and p = 6) and the square phase field crystal model.

Since we have shown rigorously that our equations result as the gradients of strictly

convex functionals, it also possible to use Newton’s method (or a quasi Newton’s

method) to solve the nonlinear equations. One will still obtain global convergence,

and in fact, we expect the convergence rate to be faster than geometric. On the
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other hand, in the case of (3.34), say, Newton’s method requires one to invert a

complicated, non-constant coefficient, fourth-order linear finite difference equation.

One could not use FFT for the inversion of this operator but would have to design an

efficient solver for this purpose. This is a non-trivial task. So, in summary, although

the (quasi) Newton’s method would give a faster convergence rate than the PSD solver

– in particular, super-linear convergence ‖ek+1‖ ≤ C‖ek‖β, β > 1, versus a geometric

convergence rate – the PSD solver is, at least currently, much more efficient.

Based on the PSD solvers’ framework, we also proposed two efficient and practical

Preconditioned Nonlinear Conjugate Gradient (PNCG) solvers. In order to make the

proposed solvers and scheme much more practical, we also investigate the adaptive

time stepping strategy.

Numerical simulations for some important physical application problems –

including thin film epitaxy with slope selection, the square phase field crystal model

and functionalized Cahn-Hilliard equation – are carried out to verify the efficiency of

the schemes and solvers.
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Appendix A

Proof of discrete Sobolev inequality

A.1 Proof of Lemma 2.2.2

Herein we only present the proof of (2.2.2) in Lemma 2.2.2 with d = 2 and p = 4. The

other cases can be handled in the same way. Without loss of generality, we assume

that m = N = 2K + 1 is odd and Lx = Ly = L, so that h = L
N

= L
2K+1

. We use N ,

rather than m, for the mesh size, as it is more standard.

For simplicity of presentation, we are focused on the estimate of ‖Dxu‖4, and we

aim to establish the following estimate:

‖Dxu‖4 ≤ C
(1)
0 ‖u‖

1
4
2 · ‖∆hu‖

3
4
2 , ∀u ∈ C̊per (A.1)

where C(1)
0 > 0 depends upon L, but is independent of h and u. Due to the periodic

boundary conditions for u and its cell-centered representation, it has a corresponding

discrete Fourier transformation:

ui,j =
K∑

`,m=−K

ûN`,me2πi(`xi+myj)/L, (A.2)
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where xi = (i − 1
2
)h, yj = (j − 1

2
)h, and ûN`,m are discrete Fourier coefficients. Then

we make its extension to a continuous function:

uF(x, y) =
K∑

`,m=−K

ûN`,me2πi(`x+my)/L. (A.3)

Similarly, we denote the grid function f := Dxu ∈ Eew
per. The periodic

boundary conditions for f and its (east-west-edge-centered) mesh location indicates

the following discrete Fourier transformation:

fi+1/2,j =
K∑

`,m=−K

f̂N`,me2πi(`xi+1/2+myj)/L, (A.4)

with f̂N`,m the discrete Fourier coefficients. Its extension to a continuous function is

given by

fF(x, y) =
K∑

`,m=−K

f̂N`,me2πi(`x+my)/L. (A.5)

Meanwhile, we observe that ûN0,0 = 0 and f̂N0,0 = 0. The first identity comes from

the fact that u = 0, while the second one is due to the fact that f = Dxu = 0, for

any periodic grid function u.

The following preliminary estimates will play a very important role in the later

analysis.

Lemma A.1.1. We have

‖u‖2 = ‖uF‖, (A.6)
4

π2
‖∆uF‖ ≤ ‖∆hu‖2 ≤ ‖∆uF‖, (A.7)

‖∂xfF‖ ≤
∥∥∂2

xuF
∥∥ , ‖∂yfF‖ ≤ ‖∂x∂yuF‖ , (A.8)

‖fF‖H̊−1
per
≤ ‖uF‖ . (A.9)
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Proof. Parseval’s identity (at both the discrete and continuous levels) implies that

N−1∑
i,j=0

|ui,j|2 = N2

K∑
`,m=−K

|ûN`,m|2, (A.10)

‖uF‖2 = L2

K∑
`,m=−K

|ûN`,m|2. (A.11)

Based on the fact that hN = L, this in turn results in

‖u‖2
2 = ‖uF‖2 = L2

K∑
`,m=−K

|ûN`,m|2, (A.12)

so that (A.6) is proven.

For the comparison between f = Dxu and ∂xuF, we look at the following Fourier

expansions:

fi+1/2,j = (Dxu)i+1/2,j =
ui+1,j − ui,j

h

=
K∑

`,m=−K

w`û
N
`,me2πi(`xi+1/2+myj)/L, (A.13)

fF(x, y) =
K∑

`,m=−K

w`û
N
`,me2πi(`x+my)/L, (A.14)

∂xuF(x, y) =
K∑

`,m=−K

ν`û
N
`,me2πi(`x+my)/L, (A.15)

with

w` = −
2i sin `πh

L

h
, ν` = −2`πi

L
. (A.16)

A comparison of Fourier eigenvalues between |w`| and |ν`| shows that

2

π
|ν`| ≤ |w`| ≤ |ν`|, for −K ≤ ` ≤ K. (A.17)
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For the estimate (A.7), we look at similar Fourier expansions:

(∆hu)i,j =
K∑

`,m=−K

(
w2
` + w2

m

)
ûN`,me2πi(`xi+myj)/L, (A.18)

∆uF(x, y) =
K∑

`,m=−K

(
ν2
` + ν2

m

)
ûN`,me2πi(`x+my)/L. (A.19)

In turn, an application of Parseval’s identity yields

‖∆hu‖2
2 = L2

K∑
`,m=−K

∣∣w2
` + w2

m

∣∣2 |ûN`,m|2, (A.20)

‖∆uF‖2 = L2

K∑
`,m=−K

∣∣ν2
` + ν2

m

∣∣2 |ûN`,m|2. (A.21)

The eigenvalue comparison estimate (A.17) implies the following inequality:

4

π2

∣∣ν2
` + ν2

m

∣∣ ≤ ∣∣w2
` + w2

m

∣∣ ≤ ∣∣ν2
` + ν2

m

∣∣ , for −K ≤ `,m ≤ K. (A.22)

As a result, inequality (A.7) comes from a combination of A.20, (A.21) and (A.22).

For the estimate (A.8), we observe the following Fourier expansions:

∂xfF(x, y) =
K∑

`,m=−K

ν`w`û
N
`,me2πi(`x+my)/L, (A.23)

∂2
xuF(x, y) =

K∑
`,m=−K

ν2
` û

N
`,me2πi(`x+my)/L, (A.24)

which in turn leads to (with an application of Parseval’s identity)

‖∂xfF‖2 = L2

K∑
`,m=−K

|ν`w`|2 |ûN`,m|2, (A.25)

∥∥∂2
xuF
∥∥2

= L2

K∑
`,m=−K

|ν`|4|ûN`,m|2. (A.26)
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Similarly, the following inequality could be derived, based on the eigenvalue

comparison estimate (A.17):

|ν`w`|2 ≤ |ν`|4, for −K ≤ `,m ≤ K. (A.27)

Consequently, a combination of (A.25), (A.26) and (A.27) leads to the first inequality

in (A.8). The second inequality, ‖∂yfF‖ ≤ ‖∂x∂yuF‖, could be derived in the same

manner.

For the last estimate (A.9), we observe that

‖fF‖2
H̊−1

per
= L2

K∑
(`,m)6=0,`,m=−K

1

|ν2
` + ν2

m|
· |w`|2|ûN`,m|2. (A.28)

Meanwhile, the derivation of the following inequality is straight forward:

1

|ν2
` + ν2

m|
· |w`|2 =

|w`|2

|ν2
` + ν2

m|
≤ |ν`|

2

|ν`|2
≤ 1, ∀(`,m) 6= 0, (A.29)

in which the eigenvalue estimate (A.17) was used again in the second step. In

comparison with (A.11), we arrive at (A.9). The proof of Lemma A.1.1 is

complete.

The following lemma gives a bound of the discrete `4 norm of the grid function f ,

in terms of the continuous L4 norm of its continuous version fF.

Lemma A.1.2. We have

‖f‖4 ≤
√

2‖fF‖L4 . (A.30)

Proof. We denote the following grid function

gi+1/2,j =
(
fi+1/2,j

)2
. (A.31)
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A direct calculation shows that

‖f‖4 = (‖g‖2)
1
2 . (A.32)

Note that both norms are discrete in the above identity. Moreover, we assume the

grid function g has a discrete Fourier expansion as

gi+1/2,j =
K∑

`,m=−K

(ĝNc )`,me2πi(`xi+1/2+myj), (A.33)

and denote its continuous version as

G(x, y) =
K∑

`,m=−K

(ĝNc )`,me2πi(`x+my) ∈ PK . (A.34)

With an application of the Parseval equality at both the discrete and continuous

levels, we have

‖g‖2
2 = ‖G‖2 =

K∑
`,m=−K

∣∣(ĝNc )`,m
∣∣2 . (A.35)

On the other hand, we also denote

H(x, y) = (fF(x, y))2 =
2K∑

`,m=−2K

(ĥN)`,me2πi(`x+my) ∈ P2K . (A.36)

The reason for H ∈ P2K is because fF ∈ PK . We note that H 6= G, since H ∈ P2K ,

while G ∈ PK , although H and G have the same interpolation values on at the

numerical grid points (xi, yj+1/2). In other words, g is the interpolation of H onto

the numerical grid point and G is the continuous version of g in PK . As a result,

collocation coefficients ĝNc for G are not equal to ĥN for H, due to the aliasing error.
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In more detail, for −K ≤ `,m ≤ K, we have the following representations:

(ĝNc )`,m =



(ĥN)`,m + (ĥN)`+N,m + (ĥN)`,m+N + (ĥN)`+N,m+N , ` < 0,m < 0,

(ĥN)`,m + (ĥN)`+N,m, ` < 0,m = 0,

(ĥN)`,m + (ĥN)`+N,m + (ĥN)`,m−N + (ĥN)`+N,m−N , ` < 0,m > 0,

(ĥN)`,m + (ĥN)`−N,m + (ĥN)`,m−N + (ĥN)`−N,m−N , ` > 0,m > 0,

(ĥN)`,m + (ĥN)`−N,m, ` > 0,m = 0,

(ĥN)`,m + (ĥN)`−N,m + (ĥN)`,m+N + (ĥN)`−N,m+N , ` > 0,m < 0,

(ĥN)`,m + (ĥN)`,m+N , ` = 0,m < 0,

(ĥN)`,m, ` = 0,m = 0,

(ĥN)`,m + (ĥN)`,m−N , ` = 0,m > 0.

(A.37)

With an application of Cauchy inequality, it is clear that

K∑
`,m=−K

∣∣(ĝNc )`,m
∣∣2 ≤ 4

∣∣∣∣∣
2K∑

`,m=−2K

(ĥN)`,m

∣∣∣∣∣
2

. (A.38)

Meanwhile, an application of Parseval’s identity to the Fourier expansion (A.36)

gives

‖H‖2 =

∣∣∣∣∣
2K∑

`,m=−2K

(ĥN)`,m

∣∣∣∣∣
2

. (A.39)

Its comparison with (A.35) indicates that

‖g‖2
2 = ‖G‖2 ≤ 4 ‖H‖2 , i.e. ‖g‖2 ≤ 2 ‖H‖ , (A.40)

with the estimate (A.38) applied. Meanwhile, since H(x, y) = (fF(x, y))2, we have

‖fF‖L4 = (‖H‖)
1
2 . (A.41)
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Therefore, a combination of (A.32), (A.40) and (A.41) results in

‖f‖4 = (‖g‖2)
1
2 ≤ (2 ‖H‖)

1
2 ≤
√

2 ‖fF‖L4 . (A.42)

This finishes the proof of (A.30).

Now we proceed into the proof of Proposition 2.2.2.

Proof. We begin with an application of (A.30) in Lemma A.1.2:

‖Dxu‖4 = ‖f‖4 ≤
√

2‖fF‖L4 . (A.43)

Meanwhile, using the fact that fF = 0, we apply the 2-D Sobolev inequality and get

‖fF‖L4 ≤ C‖fF‖H 1
2
≤ C‖fF‖

1
4

H̊−1
per
· ‖∇fF‖

3
4 . (A.44)

Moreover, the estimates (A.6) – (A.9) (in Lemma A.1.1) indicate that

‖fF‖H̊−1
per
≤ ‖uF‖ = ‖u‖2, (A.45)

‖∂xfF‖ ≤
∥∥∂2

xuF
∥∥ ≤M0 ‖∆uF‖ ≤

π2M0

4
‖∆hu‖2, (A.46)

‖∂yfF‖ ≤ ‖∂x∂yuF‖ ≤M0 ‖∆uF‖ ≤
π2M0

4
‖∆hu‖2, (A.47)

so that

‖∇fF‖ ≤
√

2π2M0

4
‖∆hu‖2, (A.48)

where the following elliptic regularity estimate is applied:

∥∥∂2
xuF
∥∥ , ‖∂x∂yuF‖ ≤M0 ‖∆uF‖ .

Therefore, a substitution of (A.102), (A.105) and (A.101) into (A.100) results in

‖Dxu‖4 ≤ C
(1)
0 ‖u‖

1
4
2 · ‖∆hu‖

3
4
2 , with C

(1)
0 = 2−5/8M

3
4

0 π
3/2.
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The estimate for ‖Dyu‖4 could be derived in the same fashion. The result is stated

below; its proof is skipped for the sake of brevity.

‖Dyu‖4 ≤ C
(1)
0 ‖u‖

1
4
2 · ‖∆hu‖

3
4
2 .

Moreover, by the definition of Dxu and Dyu we get

‖Dxu‖4 = ‖Ay(Dxu)‖4 ≤ ‖Dxu‖4, ‖Dyu‖4 = ‖Ax(Dyu)‖4 ≤ ‖Dyu‖4.

As a consequence, the first case of (2.2.2) (with d = 2, p = 4) is valid, by setting

C0 =
√

2C
(1)
0 . The other cases could be analyzed in the same way. This finishes the

proof of Proposition 2.2.2.

A.2 Proof of Lemma 4.4.10

We will need the following discrete inequality:

Lemma A.2.1. For any vertex-centered grid function f ∈ Vper, we have

〈f, f〉 = 〈1, f 2〉 ≥
(
1, (Af)2

)
2
. (A.49)

Proof. Based on the definition of the average operator A, we have the following

expansion and estimate:

(Af)2
i,j =

(
1

4
(fi−1/2,j−1/2 + fi+1/2,j−1/2 + fi−1/2,j+1/2 + fi+1/2,j+1/2)

)2

≤ 1

4

(
f 2
i−1/2,j−1/2 + f 2

i+1/2,j−1/2 + f 2
i−1/2,j+1/2 + f 2

i+1/2,j+1/2

)
. (A.50)
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Therefore, by summing over the grid index, in combination with the index counting,

we arrive at

∑
i,j

(Af)2
i,j ≤

∑
i,j

f 2
i+1/2,j+1/2. (A.51)

In turn, estimate (3.21) is a direct consequence of this inequality. This finishes the

proof of this lemma.

Using the last lemma, we are ready to prove Lemma 4.4.10:

Proof. We denote g(φ) := 3φ2A |∇v
hφ|

2, at each cell center grid point (i, j).

Consequently, we obtain Gh(φ) = (1, g(φ))2 and Hh(φ) = Gh(φ) +A(‖φ‖4
4 + ‖∇v

hφ‖
4
4).

The following inequalities are evaluated at a point-wise level, for any φ1, φ2:(
φ1 + φ2

2

)2

≤ φ2
1 + φ2

2

2
, at (i, j),∣∣∣∣∇v

h

(
φ1 + φ2

2

)∣∣∣∣2 ≤ |∇v
hφ1|2 + |∇v

hφ2|2

2
, at (i+ 1/2, j + 1/2),

which come from the convexity of q2(x) = x2 and r2(χ) = χ · χ. Moreover, taking an

average operator A to the second inequality leads to the following estimate:

A
(∣∣∣∣∇v

h

(
φ1 + φ2

2

)∣∣∣∣2) ≤ A(|∇v
hφ1|2) + A(|∇v

hφ2|2)

2
, at (i, j).

These inequalities in turn imply that

g

(
φ1 + φ2

2

)
= 3

(
φ1 + φ2

2

)2

· A
(∣∣∣∣∇v

h

(
φ1 + φ2

2

)∣∣∣∣2)
≤ 3

φ2
1 + φ2

2

2
· A(|∇v

hφ1|2) + A(|∇v
hφ2|2)

2
,
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at a point-wise level. A careful comparison with g(φ1)+g(φ2)
2

=
3φ21|∇vhφ1|

2
+3φ22|∇vhφ2|

2

2

shows that

g(φ1) + g(φ2)

2
− g

(
φ1 + φ2

2

)
≥ 3(φ2

1 − φ2
2)(A(|∇v

hφ1|2)− A(|∇v
hφ2|2))

4

≥ −3

8

(
(φ2

1 − φ2
2)2 + (A(|∇v

hφ1|2 − |∇v
hφ2|2))2

)
. (A.52)

Similarly, the convexity of q4(x) = x4 and r4(χ) = |χ|4 indicates the following

inequalities:

φ4
1 + φ4

2

2
−
(
φ1 + φ2

2

)4

≥ 3

8
(φ4

1 + φ4
2 − 2φ2

1φ
2
2) =

3

8
(φ2

1 − φ2
2)2, at (i, j),(A.53)

and

|∇v
hφ1|4 + |∇v

hφ2|4

2
−
∣∣∣∣∇v

h

(
φ1 + φ2

2

)∣∣∣∣4 (A.54)

≥ 3

8
(|∇v

hφ1|4 + |∇v
hφ2|4 − 2|∇v

hφ1|2 · |∇v
hφ2|2)

≥ 3

8
(|∇v

hφ1|2 − |∇v
hφ2|2)2, at (i+ 1/2, j + 1/2). (A.55)

Meanwhile, the following estimate is available, with an application of inequality (A.49)

in Lem. A.2.1, by taking f = |∇v
hφ1|2 − |∇v

hφ2|2:

〈1, (|∇v
hφ1|2 − |∇v

hφ2|2)2〉 ≥
(
1,A(|∇v

hφ1|2 − |∇v
hφ2|2))2

)
2
. (A.56)

As a result, a combination of (A.52), (A.53), (A.55) and (A.56) yields

Hh(φ1) +Hh(φ2)

2
−Hh

(
φ1 + φ2

2

)
≥ 0, ∀φ1, φ2, if A ≥ 1.

The convexity of Hh(φ) is assured under the condition A ≥ 1.
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A.3 Proof of Proposition 4.4.9

We will need the following average-shift identity:

Lemma A.3.1. (φ,Aψ)2 = 〈aφ, ψ〉 for any φ ∈ Cper, ψ ∈ Vper.

Now, we are ready to prove Proposition. 4.4.9.

Proof. From the definitions of the discrete norms, we have

Hh[φ] = A ‖φ‖4
4 + A ‖∇v

hφ‖
4
4 + 3

(
φ2,A(|∇v

hφ|
2)
)

2

= A
(
|φ|4, 1

)
2

+ A〈|∇v
hφ|4, 1〉+ 3

(
φ2,A(|∇v

hφ|
2)
)

2

= A
(
|φ|4, 1

)
2

+ A
〈
[(Dxφ)2 + (Dyφ)2]2, 1

〉
+ 3

(
φ2,A[(Dxφ)2 + (Dyφ)2]

)
2
.

So the perturbation of the discrete energy is

Hh[φ+ sψ] = A
(
|φ+ sψ|4, 1

)
2

+ A
〈
[(Dx(φ+ sψ))2 + (Dy(φ+ sψ))2]2, 1

〉
+3
(
(φ+ sψ)2,A[(Dx(φ+ sψ))2 + (Dy(φ+ sψ))2]

)
2
.

and the first variational derivative is

δHh

δs
[φ+ sψ] = 4A

(
(φ+ sψ)3, ψ

)
2

+ 4A〈[(Dxφ+ sDxψ)2 + (Dyφ+ sDyψ)2]

×[(Dxφ+ sDxψ)Dxψ + (Dyφ+ sDyψ)Dyψ], 1〉

+ 6
(
(φ+ sψ)ψ,A[(Dxφ+ sDxψ)2 + (Dyφ+ sDyψ)2]

)
2

+ 6
(
(φ+ sψ)2,A[(Dxφ+ sDxψ)Dxψ + (Dyφ+ sDyψ)Dyψ]

)
2
.

setting s = 0 yields

δHh

δs
[φ+ sψ]|s=0 = 4A

(
φ3, ψ

)
2

+ 4A〈[(Dxφ)2 + (Dyφ)2][DxφDxψ + DyφDyψ], 1〉

146



+ 6
(
φψ,A[(Dxφ)2 + (Dyφ)2]

)
2

+ 6
(
φ2,A[DxφDxψ + DyφDyψ]

)
2

= 4A
(
φ3, ψ

)
2

+ 4A〈[(Dxφ)2 + (Dyφ)2][Dxφ,Dxψ〉+ 4A〈[(Dxφ)2 + (Dyφ)2]Dyφ,Dyψ〉

+ 6
(
φA[(Dxφ)2 + (Dyφ)2], ψ

)
2

+ 6
(
φ2A (DxφDxψ) , 1

)
2

+ 6
(
φ2A (DyφDyψ) , 1

)
2
.

Applying Lem.A.3.1 yields

δHh

δs
[φ] = 4A

(
φ3, ψ

)
2

+ 4A〈[(Dxφ)2 + (Dyφ)2]Dxφ,Dxψ〉+ 4A〈[(Dxφ)2 + (Dyφ)2]Dyφ,Dyψ〉

+ 6
(
φA[(Dxφ)2 + (Dyφ)2], ψ

)
2

+ 6
〈
a
(
φ2
)
Dxφ,Dxψ

〉
+ 6

〈
a
(
φ2
)
Dyφ,Dyψ

〉
.

By using the summation-by-parts formula, we have

δHh

δs
[φ] = 4A

(
φ3, ψ

)
2

− 4A
(
dx
(
[(Dxφ)2 + (Dyφ)2]Dxφ

)
, ψ
)

2
− 4A

(
dy
(
[(Dxφ)2 + (Dyφ)2]Dyφ

)
, ψ
)

2

+ 6
(
φA[(Dxφ)2 + (Dyφ)2], ψ

)
2
− 6

(
dx
(
a
(
φ2
)
Dxφ

)
, ψ
)

2
− 6

(
dy
(
a
(
φ2
)
Dyφ

)
, ψ
)

2
.

The proof of Proposition. 4.4.9 is complete. Hence the discrete variational derivative

of Hh is

δHh[φ] = 4Aφ3 − 4A
(
dx
(
[(Dxφ)2 + (Dyφ)2]Dxφ

)
+ dy

(
[(Dxφ)2 + (Dyφ)2]Dyφ

))
+ 6φA[(Dxφ)2 + (Dyφ)2]− 6

(
dx
(
a
(
φ2
)
Dxφ

)
+ dy

(
a
(
φ2
)
Dyφ

))
.
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A.4 Proof of Proposition 2.2.7

For simplicity of presentation, in the analysis of ‖∇hφ‖6, we are focused on the

estimate ofDxφ‖6. Due to the periodic boundary conditions for φ and its cell-centered

representation, it has a corresponding discrete Fourier transformation:

φi,j =
K∑

`,m=−K

φ̂N`,me2πi(`xi+myj)/L, (A.57)

where xi = (i − 1
2
)h, yj = (j − 1

2
)h, and φ̂N`,m are discrete Fourier coefficients. Then

we make its extension to a continuous function:

φF(x, y) =
K∑

`,m=−K

φ̂N`,me2πi(`x+my)/L. (A.58)

Similarly, we denote a grid function fi+ 1
2
,j+ 1

2
= Dxφi+ 1

2
,j+ 1

2
= Ay(Dxφ)i+ 1

2
,j+ 1

2
.

The periodic boundary conditions for f and its mesh location indicates the following

discrete Fourier transformation:

fi+ 1
2
,j+ 1

2
=

K∑
`,m=−K

f̂N`,me
2πi(`x

i+1
2

+my
j+1

2
)/L
, (A.59)

with f̂N`,m the discrete Fourier coefficients. And also, its extension to a continuous

function is given by

fF(x, y) =
K∑

`,m=−K

f̂N`,me2πi(`x+my)/L. (A.60)

Meanwhile, we also observe that φ̂N0,0 = 0 and f̂N0,0 = 0. The first identity comes

from the fact that φ = 0, while the second one is due to the fact that f = Dxφ = 0,

for any periodic grid function φ.

The following preliminary estimates will play a very important role in the later

analysis.
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Lemma A.4.1. We have

‖φ‖2 = ‖φF‖, (A.61)
2

π
‖∇φF‖ ≤ ‖∇hφ‖2 ≤ ‖∇φF‖,

4

π2
‖∆φF‖ ≤ ‖∆hφ‖2 ≤ ‖∆φF‖, (A.62)

‖∂xfF‖ ≤
∥∥∂2

xφF

∥∥ , ‖∂yfF‖ ≤ ‖∂x∂yφF‖ . (A.63)

Proof. Parseval’s identity (at both the discrete and continuous levels) implies that

N−1∑
i,j=0

|φi,j|2 = N2

K∑
`,m=−K

|φ̂N`,m,n|2, ‖φF‖2 = L2

K∑
`,m=−K

|φ̂N`,m|2. (A.64)

Based on the fact that hN = L, this in turn results in

‖φ‖2
2 = ‖φF‖2 = L2

K∑
`,m=−K

|φ̂N`,m|2, (A.65)

so that (A.61) is proven.

For the comparison between f = Dxφ and ∂xφF, we look at the following Fourier

expansions:

fi+ 1
2
,j+ 1

2
=

φi+1,j − φi,j + φi+1,j+1 − φi,j+1

2h
=

K∑
`,m=−K

µ`,mφ̂
N
`,me

2πi(`x
i+1

2
+my

j+1
2

)/L
,(A.66)

fF(x, y) =
K∑

`,m=−K

µ`,mφ̂
N
`,me2πi(`x+my)/L, (A.67)

∂xφF(x, y) =
K∑

`,m=−K

ν`φ̂
N
`,me2πi(`x+my)/L, (A.68)

with

µ`,m = −
2i sin `πh

L

h
cos(mπh), ν` = −2`πi

L
. (A.69)
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A comparison of Fourier eigenvalues between |µ`,m| and |ν`| shows that

2

π
|ν`| ≤ |µ`,m| ≤ |ν`|, for −K ≤ `,m ≤ K, (A.70)

which in turn leads to

2

π
‖∂xφF‖ ≤ ‖Dxφ‖2 ≤ ‖∂xφF‖. (A.71)

A similar estimate could also be derived:

2

π
‖∂yφF‖ ≤ ‖Dyφ‖2 ≤ ‖∂yφF‖. (A.72)

A combination of (A.71) and (A.72) yields the first inequality of (A.62).

For the second estimate of (A.62), we look at similar Fourier expansions:

(∆hφ)i,j =
K∑

`,m=−K

(
µ2
` + µ2

m

)
φ̂N`,me2πi(`xi+myj)/L, (A.73)

∆φF(x, y) =
K∑

`,m=−K

(
ν2
` + ν2

m

)
φ̂N`,me2πi(`x+my)/L, (A.74)

with µ` = −2i sin `πh
L

h
, µm = −2i sin mπh

L

h
. It is also clear that 2

π
|ν`| ≤ |µ`| ≤ |ν`|, for any

−K ≤ ` ≤ K. In turn, an application of Parseval’s identity yields

‖∆hφ‖2
2 = L2

K∑
`,m=−K

∣∣µ2
` + µ2

m

∣∣2 |φ̂N`,m|2, (A.75)

‖∆φF‖2 = L2

K∑
`,m=−K

∣∣ν2
` + ν2

m

∣∣2 |φ̂N`,m|2. (A.76)

The eigenvalue comparison estimate (A.70) implies the following inequality:

4

π2

∣∣ν2
` + ν2

m

∣∣ ≤ ∣∣µ2
` + µ2

m

∣∣ ≤ ∣∣ν2
` + ν2

m

∣∣ , for −K ≤ `,m ≤ K. (A.77)
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As a result, inequality (A.62) comes from a combination of (A.75), (A.76) and (A.77).

For the estimate (A.63), we observe the following Fourier expansions:

∂xfF(x, y) =
K∑

`,m=−K

ν`µ`,mφ̂
N
`,me2πi(`x+my)/L, (A.78)

∂2
xφF(x, y) =

K∑
`,m=−K

ν2
` φ̂

N
`,me2πi(`x+my)/L, (A.79)

which in turn leads to (with an application of Parseval’s identity)

‖∂xfF‖2 = L2

K∑
`,m=−K

|ν`µ`,m|2 |φ̂N`,m|2, (A.80)

∥∥∂2
xφF

∥∥2
= L2

K∑
`,m=−K

|ν`|4|φ̂N`,m|2. (A.81)

Similarly, the following inequality could be derived, based on the eigenvalue

comparison estimate (A.70):

|ν`µ`,m|2 ≤ |ν`|4, for −K ≤ `,m ≤ K. (A.82)

Consequently, a combination of (A.80), (A.81) and (A.82) leads to the first inequality

in (A.63). The second inequality, ‖∂yfF‖ ≤ ‖∂x∂yφF‖, could be derived in the same

manner. The proof of Lemma A.4.1 is complete.

With the estimates in Lemma A.4.1, we are able to make the following derivations:

‖φ‖2
H2
h

= ‖φ‖2
2 + ‖∇hφ‖2

2 + ‖∆hφ‖2
2 ≤ ‖φF‖2 + ‖∇φF‖2 + ‖∆φF‖2 ≤ ‖φF‖2

H2
h
,(A.83)

‖φF‖2
H2
h
≤ B0‖∆φF‖2, (elliptic regularity, since

∫
Ω
φF dx = 0), (A.84)

so that ‖∆hφ‖2
2 ≥

4

π2
‖∆φF‖2 ≥ 4

π2B0

‖φF‖2
H2
h
≥ 4

π2B0

‖φ‖2
H2
h
, (A.85)

so that (2.15) (in Proposition 2.2.7) is proved with C1 = 4
π2B0

.
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Inequality (2.16) could be proved in a similar way. The following fact is observed:

‖φ‖∞ ≤ ‖φF‖L∞ ≤ C‖φF‖H2
h
≤ C‖φ‖H2

h
, (A.86)

in which the first step is based on the fact that, φ is the grid interpolation of the

continuous function φF, the second step comes from the Sobolev embedding, while

the last step comes from the the estimates in Lemma A.4.1.

For the proof of (2.17), the last inequality in Proposition 2.2.7, the following

lemma is needed, which gives a bound of the discrete `p (with p = 4, 6) norm of the

grid functions φ and f , in terms of the continuous Lp norm of its continuous version

fF.

Lemma A.4.2. For φ ∈ Cper, f ∈ Vper, we have

‖φ‖p ≤
√
p

2
‖φF‖Lp , ‖f‖p ≤

√
p

2
‖fF‖Lp , with p = 4, 6. (A.87)

Proof. For simplicity of presentation, we only present the analysis for ‖f‖p ≤√
p
2
‖fF‖Lp ; the analysis for φ could be carried out in the same fashion. And also, we

are focused on the case of p = 4. The case with p = 6 could be handled in a similar,

yet more tedious way.

We denote the following grid function

gi+ 1
2
,j+ 1

2
=
(
fi+ 1

2
,j+ 1

2

)2

. (A.88)

A direct calculation shows that

‖f‖4 = (‖g‖2)
1
2 . (A.89)
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Note that both norms are discrete in the above identity. Moreover, we assume the

grid function g has a discrete Fourier expansion as

gi+ 1
2
,j+ 1

2
=

K∑
`,m=−K

(ĝNc )`,me
2πi(`xi+1/2+my

j+1
2

)
, (A.90)

and denote its continuous version as

G(x, y) =
K∑

`,m=−K

(ĝNc )`,me2πi(`x+my) ∈ PK . (A.91)

With an application of the Parseval equality at both the discrete and continuous

levels, we have

‖g‖2
2 = ‖G‖2 =

K∑
`,m=−K

∣∣(ĝNc )`,m
∣∣2 . (A.92)

On the other hand, we also denote

H(x, y) = (fF(x, y))2 =
2K∑

`,m=−2K

(ĥN)`,me2πi(`x+my) ∈ P2K . (A.93)

The reason for H ∈ P2K is because fF ∈ PK . We note that H 6= G, since H ∈ P2K ,

while G ∈ PK , although H and G have the same interpolation values on at the

numerical grid points (xi+ 1
2
, yj+ 1

2
). In other words, g is the interpolation of H onto

the numerical grid point and G is the continuous version of g in PK . As a result,

collocation coefficients ĝNc for G are not equal to ĥN for H, due to the aliasing error.
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In more detail, for −K ≤ `,m ≤ K, we have the following representations:

(ĝNc )`,m =



(ĥN)`,m + (ĥN)`+N,m + (ĥN)`,m+N + (ĥN)`+N,m+N , ` < 0,m < 0,

(ĥN)`,m + (ĥN)`+N,m, ` < 0,m = 0,

(ĥN)`,m + (ĥN)`+N,m + (ĥN)`,m−N + (ĥN)`+N,m−N , ` < 0,m > 0,

(ĥN)`,m + (ĥN)`−N,m + (ĥN)`,m−N + (ĥN)`−N,m−N , ` > 0,m > 0,

(ĥN)`,m + (ĥN)`−N,m, ` > 0,m = 0,

(ĥN)`,m + (ĥN)`−N,m + (ĥN)`,m+N + (ĥN)`−N,m+N , ` > 0,m < 0,

(ĥN)`,m + (ĥN)`,m+N , ` = 0,m < 0,

(ĥN)`,m, ` = 0,m = 0,

(ĥN)`,m + (ĥN)`,m−N , ` = 0,m > 0.

(A.94)

With an application of Cauchy inequality, it is clear that

K∑
`,m=−K

∣∣(ĝNc )`,m
∣∣2 ≤ 4

∣∣∣∣∣
2K∑

`,m=−2K

(ĥN)`,m

∣∣∣∣∣
2

. (A.95)

Meanwhile, an application of Parseval’s identity to the Fourier expansion (A.93)

gives

‖H‖2 =

∣∣∣∣∣
2K∑

`,m=−2K

(ĥN)`,m

∣∣∣∣∣
2

. (A.96)

Its comparison with (A.92) indicates that

‖g‖2
2 = ‖G‖2 ≤ 4 ‖H‖2 , i.e. ‖g‖2 ≤ 2 ‖H‖ , (A.97)

with the estimate (A.95) applied. Meanwhile, since H(x, y) = (fF(x, y))2, we have

‖fF‖L4 = (‖H‖L2)
1
2 . (A.98)
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Therefore, a combination of (A.89), (A.97) and (A.98) results in

‖f‖4 = (‖g‖2)
1
2 ≤ (2 ‖H‖L2)

1
2 ≤
√

2 ‖fF‖L4 . (A.99)

This finishes the proof of (A.87) with p = 4, the inequality with p = 6 could be proved

in the same fashion.

Now we proceed into the proof of (2.17) in Proposition 2.2.7.

Proof. We begin with an application of (A.87) in Lemma A.4.2:

‖Dxφ‖6 = ‖f‖6 ≤
√

3‖fF‖L6 . (A.100)

Meanwhile, using the fact that fF = 0, we apply the 2-D Sobolev inequality and get

‖fF‖L6 ≤ B
(1)
0 ‖fF‖H1 ≤ C(‖fF‖+ ‖∇fF‖). (A.101)

Moreover, the estimates (A.61)-(A.63) (in Lemma A.4.1) indicate that

‖fF‖ ≤ ‖∂xφF‖ ≤
π

2
‖∇hφ‖2, (A.102)

‖∂xfF‖ ≤
∥∥∂2

xφF

∥∥ ≤M0 ‖∆φF‖ ≤
π2M0

4
‖∆hφ‖2, (A.103)

‖∂yfF‖ ≤ ‖∂x∂yφF‖ ≤M0 ‖∆φF‖ ≤
π2M0

4
‖∆hφ‖2, (A.104)

so that ‖fF‖+ ‖∇fF‖ ≤
√

2π2M0

4
(‖∇hφ‖2 + ‖∆hφ‖2), (A.105)

in which the following elliptic regularity estimate is applied:

∥∥∂2
xφF

∥∥ , ‖∂x∂yφF‖ ≤M0 ‖∆φF‖ . (A.106)
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Therefore, a substitution of (A.103), (A.105) and (A.101) into (A.100) results in

‖Dxφ‖6 ≤
√

6π2M0B
(1)
0

4
‖φ‖H2

h
. (A.107)

The estimate for ‖Dyφ‖6 could be derived in the same fashion:

‖Dyφ‖6 ≤
√

6π2M0B
(1)
0

4
‖φ‖H2

h
. (A.108)

As a consequence, (2.17) is valid, by setting C =
√

2B
(1)
0 . The proof of

Proposition 2.2.7 is complete.
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