8 research outputs found

    From low-rank approximation to an efficient rational Krylov subspace method for the Lyapunov equation

    Full text link
    We propose a new method for the approximate solution of the Lyapunov equation with rank-11 right-hand side, which is based on extended rational Krylov subspace approximation with adaptively computed shifts. The shift selection is obtained from the connection between the Lyapunov equation, solution of systems of linear ODEs and alternating least squares method for low-rank approximation. The numerical experiments confirm the effectiveness of our approach.Comment: 17 pages, 1 figure

    Least Squares Based Iterative Algorithm for the Coupled Sylvester Matrix Equations

    Get PDF
    By analyzing the eigenvalues of the related matrices, the convergence analysis of the least squares based iteration is given for solving the coupled Sylvester equations AX+YB=C and DX+YE=F in this paper. The analysis shows that the optimal convergence factor of this iterative algorithm is 1. In addition, the proposed iterative algorithm can solve the generalized Sylvester equation AXB+CXD=F. The analysis demonstrates that if the matrix equation has a unique solution then the least squares based iterative solution converges to the exact solution for any initial values. A numerical example illustrates the effectiveness of the proposed algorithm

    Preconditioners based on the Alternating-Direction-Implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients

    Get PDF
    In this paper, we combine the Alternating Direction Implicit (ADI) algorithm with the concept of preconditioning and apply it to linear systems discretized from the 2D steady-state diffusion equations with orthotropic heterogeneous coefficients by the finite element method assuming tensor product basis functions. Specifically, we adopt the compound iteration idea and use ADI iterations as the preconditioner for the outside Krylov subspace method that is used to solve the preconditioned linear system. An efficient algorithm to perform each ADI iteration is crucial to the efficiency of the overall iterative scheme. We exploit the Kronecker product structure in the matrices, inherited from the tensor product basis functions, to achieve high efficiency in each ADI iteration. Meanwhile, in order to reduce the number of Krylov subspace iterations, we incorporate partially the coefficient information into the preconditioner by exploiting the local support property of the finite element basis functions. Numerical results demonstrated the efficiency and quality of the proposed preconditioner. © 2014 Elsevier B.V. All rights reserved

    Numerical methods for large-scale Lyapunov equations with symmetric banded data

    Full text link
    The numerical solution of large-scale Lyapunov matrix equations with symmetric banded data has so far received little attention in the rich literature on Lyapunov equations. We aim to contribute to this open problem by introducing two efficient solution methods, which respectively address the cases of well conditioned and ill conditioned coefficient matrices. The proposed approaches conveniently exploit the possibly hidden structure of the solution matrix so as to deliver memory and computation saving approximate solutions. Numerical experiments are reported to illustrate the potential of the described methods

    Matrix Equation Techniques for Certain Evolutionary Partial Differential Equations

    No full text
    We show that the discrete operator stemming from time-space discretization of evolutionary partial differential equations can be represented in terms of a single Sylvester matrix equation. A novel solution strategy that combines projection techniques with the full exploitation of the entry-wise structure of the involved coefficient matrices is proposed. The resulting scheme is able to efficiently solve problems with a tremendous number of degrees of freedom while maintaining a low storage demand as illustrated in several numerical examples

    Métodos numéricos para resolução de equações de Lyapunov

    Get PDF
    O objectivo desta dissertação é descrever, analisar e aplicar alguns métodos numéricos para resolver a equação clássica de Lyapunov. Estudamos condições que garantem a solubilidade das equações e estabelecemos relações entre a fórmula contínua AX + X A* + Q = 0 e a fórmula discreta AX A* − X + Q = 0 . O produto de Kronecker é usado de modo a permitir representações de equações matriciais e o desenvolvimento de alguns métodos numéricos Analisamos algumas decomposições matriciais que vão ser utilizadas no desenvolvimento de alguns métodos numéricos directos nomeadamente Bartels-Stewart e Hessenberg-Schur. Por fim, os subespaço de Krylov e alguns processos de ortogonalização permitem desenvolver os métodos iterativos de Arnoldi e GMRES e os métodos directos de Ward e Kirrinnis
    corecore