261 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Scanless Fast Handoff Technique Based on Global Path Cache for WLANs

    Get PDF
    Wireless LANs (WLANs) have been widely adopted and are more convenient as they are inter-connected as wireless campus networks and wireless mesh networks. However, timesensitive multimedia applications, which have become more popular, could suffer from long end-to-end latency in WLANs.This is due mainly to handoff delay, which in turn is caused by channel scanning. This paper proposes a technique called Global Path-Cache (GPC) that provides fast handoffs in WLANs.GPC properly captures the dynamic behavior of the network andMSs, and provides accurate next AP predictions to minimize the handoff latency. Moreover, the handoff frequencies are treated as time-series data, thus GPC calibrates the prediction models based on short term and periodic behaviors of mobile users. Our simulation study shows that GPC virtually eliminates the need to scan for APs during handoffs and results in much better overall handoff delay compared to existing methods

    Scanless Fast Handoff Technique Based on Global Path Cache for WLANs

    Get PDF
    Wireless LANs (WLANs) have been widely adopted and are more convenient as they are inter-connected as wireless campus networks and wireless mesh networks. However, timesensitive multimedia applications, which have become more popular, could suffer from long end-to-end latency in WLANs.This is due mainly to handoff delay, which in turn is caused by channel scanning. This paper proposes a technique called Global Path-Cache (GPC) that provides fast handoffs in WLANs.GPC properly captures the dynamic behavior of the network andMSs, and provides accurate next AP predictions to minimize the handoff latency. Moreover, the handoff frequencies are treated as time-series data, thus GPC calibrates the prediction models based on short term and periodic behaviors of mobile users. Our simulation study shows that GPC virtually eliminates the need to scan for APs during handoffs and results in much better overall handoff delay compared to existing methods

    MeshScan: a Fast and Efficient Handoff Scheme for IEEE 802.11 Wireless Mesh Networks

    Get PDF
    As a next generation network solution, Wireless Mesh Networks (WMN) provides fast Internet access to a large area, which is from university campus to city scale. In order to provide an uninterrupted Internet experience to a mobile client, a process called handoff is required to maintain the network connection from one Mesh Node (MN) to another MN. Ideally, handoff should be completely transparent to mobile users. A critical application like VoIP will require a handoff capability that transfers a call from one mesh node (MN) to another in less than 50 msec. However the current IEEE 802.11 standards do not address the handoff well. Studies have revealed that standard handoff on IEEE 802.11 WLANs incurs a latency of the order of hundreds of milliseconds to several seconds. Moreover, the discovery step in the handoff process accounts for more than 99% of this latency. The study addresses the latency in the discovery step by introducing an efficient and powerful client-side scan technique called MeshScan which replaces the discovery step with a unicast scan that transmits Authentication Request frames to potential MNs. A prototype of MeshScan has been developed based on the MadWifi WLAN driver on Linux operating systems. The feasibility of MeshScan to support fast handoff in WMNs has been demonstrated through extensive computer simulations and experiments under same given conditions. The results from the simulations and experiments show that the latency associated with handoff can be reduced from seconds to a few milliseconds by using the MeshScan technique. Furthermore, it is shown that MeshScan can continue to function effectively even under heavy traffic loads

    Why It Takes So Long to Connect to a WiFi Access Point

    Full text link
    Today's WiFi networks deliver a large fraction of traffic. However, the performance and quality of WiFi networks are still far from satisfactory. Among many popular quality metrics (throughput, latency), the probability of successfully connecting to WiFi APs and the time cost of the WiFi connection set-up process are the two of the most critical metrics that affect WiFi users' experience. To understand the WiFi connection set-up process in real-world settings, we carry out measurement studies on 55 million mobile users from 44 representative cities associating with 77 million APs in 0.40.4 billion WiFi sessions, collected from a mobile "WiFi Manager" App that tops the Android/iOS App market. To the best of our knowledge, we are the first to do such large scale study on: how large the WiFi connection set-up time cost is, what factors affect the WiFi connection set-up process, and what can be done to reduce the WiFi connection set-up time cost. Based on the measurement analysis, we develop a machine learning based AP selection strategy that can significantly improve WiFi connection set-up performance, against the conventional strategy purely based on signal strength, by reducing the connection set-up failures from 33%33\% to 3.6%3.6\% and reducing 80%80\% time costs of the connection set-up processes by more than 1010 times.Comment: 11pages, conferenc

    Behavior-Based Mobility Prediction for Seamless Handoffs in Mobile Wireless Networks

    Get PDF
    The field of wireless networking has received unprecedented attention from the research community during the last decade due to its great potential to create new horizons for communicating beyond the Internet. Wireless LANs (WLANs) based on the IEEE 802.11 standard have become prevalent in public as well as residential areas, and their importance as an enabling technology will continue to grow for future pervasive computing applications. However, as their scale and complexity continue to grow, reducing handoff latency is particularly important. This paper presents the Behavior-based Mobility Prediction scheme to eliminate the scanning overhead incurred in IEEE 802.11 networks. This is achieved by considering not only location information but also group, time-of-day, and duration characteristics of mobile users. This captures short-term and periodic behavior of mobile users to provide accurate next-cell predictions. Our simulation study of a campus network and a municipal wireless network shows that the proposed method improves the next-cell prediction accuracy by 23~43% compared to location-only based schemes and reduces the average handoff delay down to 24~25 ms

    Behavior-Based Mobility Prediction for Seamless Handoffs in Mobile Wireless Networks

    Get PDF
    The field of wireless networking has received unprecedented attention from the research community during the last decade due to its great potential to create new horizons for communicating beyond the Internet. Wireless LANs (WLANs) based on the IEEE 802.11 standard have become prevalent in public as well as residential areas, and their importance as an enabling technology will continue to grow for future pervasive computing applications. However, as their scale and complexity continue to grow, reducing handoff latency is particularly important. This paper presents the Behavior-based Mobility Prediction scheme to eliminate the scanning overhead incurred in IEEE 802.11 networks. This is achieved by considering not only location information but also group, time-of-day, and duration characteristics of mobile users. This captures short-term and periodic behavior of mobile users to provide accurate next-cell predictions. Our simulation study of a campus network and a municipal wireless network shows that the proposed method improves the next-cell prediction accuracy by 23~43% compared to location-only based schemes and reduces the average handoff delay down to 24~25 ms

    Mobility and Handoff Management in Wireless Networks

    Get PDF
    With the increasing demands for new data and real-time services, wireless networks should support calls with different traffic characteristics and different Quality of Service (QoS)guarantees. In addition, various wireless technologies and networks exist currently that can satisfy different needs and requirements of mobile users. Since these different wireless networks act as complementary to each other in terms of their capabilities and suitability for different applications, integration of these networks will enable the mobile users to be always connected to the best available access network depending on their requirements. This integration of heterogeneous networks will, however, lead to heterogeneities in access technologies and network protocols. To meet the requirements of mobile users under this heterogeneous environment, a common infrastructure to interconnect multiple access networks will be needed. In this chapter, the design issues of a number of mobility management schemes have been presented. Each of these schemes utilizes IP-based technologies to enable efficient roaming in heterogeneous network. Efficient handoff mechanisms are essential for ensuring seamless connectivity and uninterrupted service delivery. A number of handoff schemes in a heterogeneous networking environment are also presented in this chapter.Comment: 28 pages, 11 figure

    Attention to Wi-Fi Diversity: Resource Management in WLANs with Heterogeneous APs

    Get PDF
    Many home networks integrate a small number (typically 2-4) of Wi-Fi Access Points (APs), with heterogeneous characteristics: different 802.11 variants, capabilities and security schemes. This paper proposes the consideration of these specific characteristics in order to improve the management of network resources. Three use cases are presented in order to showcase the potential benefits. By the use of a user-space AP, which works in coordination with a controller, the network is able to assign each connected station to the AP that best fits with its characteristics. The system also manages security, avoiding the need of adding specific elements for authentication, encryption or decryption. Extensions are proposed to an existing protocol that defines the communication between the AP and the controller, in order to communicate and store the specific characteristics of each AP and end device. This includes new association and handoff schemes that do not introduce any additional delay. The system has been implemented in a real environment, and a battery of tests has been run using three hardware platforms of different characteristics. The results show that handoffs between bands are possible, and estimate the processing delays, the Round-Trip Time and the handoff delay, which is small enough in order not to produce any significant disruption to the user (10-50 ms). Finally, the scenarios of interest have been replicated in a simulation environment, showing that significant benefits can be achieved if the specific characteristics of each AP and station are considered

    Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.Comment: 32 pages, 10 figures. The work is an extended version of the author's previous works submitted in CoRR: arXiv:1107.5538v1 and arXiv:1102.1226v
    corecore