3,532 research outputs found

    PILOT : Practical Privacy-Preserving Indoor Localization Using OuTsourcing

    Get PDF
    In the last decade, we observed a constantly growing number of Location-Based Services (LBSs) used in indoor environments, such as for targeted advertising in shopping malls or finding nearby friends. Although privacy-preserving LBSs were addressed in the literature, there was a lack of attention to the problem of enhancing privacy of indoor localization, i.e., the process of obtaining the users' locations indoors and, thus, a prerequisite for any indoor LBS. In this work we present PILOT, the first practically efficient solution for Privacy-Preserving Indoor Localization (PPIL) that was obtained by a synergy of the research areas indoor localization and applied cryptography. We design, implement, and evaluate protocols for Wi-Fi fingerprint-based PPIL that rely on 4 different distance metrics. To save energy and network bandwidth for the mobile end devices in PPIL, we securely outsource the computations to two non-colluding semi-honest parties. Our solution mixes different secure two-party computation protocols and we design size-and depth-optimized circuits for PPIL. We construct efficient circuit building blocks that are of independent interest: Single Instruction Multiple Data (SIMD) capable oblivious access to an array with low circuit depth and selection of the k-Nearest Neighbors with small circuit size. Additionally, we reduce Received Signal Strength (RSS) values from 8 bits to 4 bits without any significant accuracy reduction. Our most efficient PPIL protocol is 553x faster than that of Li et al. (INFOCOM'14) and 500× faster than that of Ziegeldorf et al. (WiSec'14). Our implementation on commodity hardware has practical run-times of less than 1 second even for the most accurate distance metrics that we consider, and it can process more than half a million PPIL queries per day.Peer reviewe

    Assorted algorithms and protocols for secure computation

    Get PDF

    Oblivious Sensor Fusion via Secure Multi-Party Combinatorial Filter Evaluation

    Get PDF
    This thesis examines the problem of fusing data from several sensors, potentially distributed throughout an environment, in order to consolidate readings into a single coherent view. We consider the setting when sensor units do not wish others to know their specific sensor streams. Standard methods for handling this fusion make no guarantees about what a curious observer may learn. Motivated by applications where data sources may only choose to participate if given privacy guarantees, we introduce a fusion approach that limits what can be inferred. Our approach is to form an aggregate stream, oblivious to the underlying sensor data, and to evaluate a combinatorial filter on that stream. This is achieved via secure multi-party computational techniques built on cryptographic primitives, which we extend and apply to the problem of fusing discrete sensor signals. We prove that the extensions preserve security under the semi- honest adversary model. Though the approach enables several applications of potential interest, we specifically consider a target tracking case study as a running example. Finally, we also report on a basic, proof-of-concept implementation, demonstrating that it can operate in practice; which we report and analyze the (empirical) running times for components in the architecture, suggesting directions for future improvement

    Assorted algorithms and protocols for secure computation

    Get PDF

    Oblivious Radix Sort: An Efficient Sorting Algorithm for Practical Secure Multi-party Computation

    Get PDF
    We propose a simple and efficient sorting algorithm for secure multi-party computation (MPC). The algorithm is designed to be efficient when the number of parties and the size of the underlying field are small. For a constant number of parties and a field with a constant size, the algorithm has O(\gm\log\gm) communication complexity, which is asymptotically the same as the best previous algorithm but achieves O(1)O(1) round complexity, where \gm is the number of items. The algorithm is constructed with the help of a new technique called ``shuffle-and-reveal.\u27\u27 This technique can be seen as an analogue of the frequently used technique of ``add random number and reveal.\u27\u27 The feasibility of our algorithm is demonstrated by an implementation on an MPC scheme based on Shamir\u27s secret-sharing scheme with three parties and corruption tolerance of 11. Our implementation sorts 1 million 32-bit word secret-shared values in 197 seconds

    Scalable and Robust Distributed Algorithms for Privacy-Preserving Applications

    Get PDF
    We live in an era when political and commercial entities are increasingly engaging in sophisticated cyber attacks to damage, disrupt, or censor information content and to conduct mass surveillance. By compiling various patterns from user data over time, untrusted parties could create an intimate picture of sensitive personal information such as political and religious beliefs, health status, and so forth. In this dissertation, we study scalable and robust distributed algorithms that guarantee user privacy when communicating with other parties to either solely exchange information or participate in multi-party computations. We consider scalability and robustness requirements in three privacy-preserving areas: secure multi-party computation (MPC), anonymous broadcast, and blocking-resistant Tor bridge distribution. We propose decentralized algorithms for MPC that, unlike most previous work, scale well with the number of parties and tolerate malicious faults from a large fraction of the parties. Our algorithms do not require any trusted party and are fully load-balanced. Anonymity is an essential tool for achieving privacy; it enables individuals to communicate with each other without being identified as the sender or the receiver of the information being exchanged. We show that our MPC algorithms can be effectively used to design a scalable anonymous broadcast protocol. We do this by developing a multi-party shuffling protocol that can efficiently anonymize a sequence of messages in the presence of many faulty nodes. Our final approach for preserving user privacy in cyberspace is to improve Tor; the most popular anonymity network in the Internet. A current challenge with Tor is that colluding corrupt users inside a censorship territory can completely block user\u27s access to Tor by obtaining information about a large fraction of Tor bridges; a type of relay nodes used as the Tor\u27s primary mechanism for blocking-resistance. We describe a randomized bridge distribution algorithm, where all honest users are guaranteed to connect to Tor in the presence of an adversary corrupting an unknown number of users. Our simulations suggest that, with minimal resource costs, our algorithm can guarantee Tor access for all honest users after a small (logarithmic) number of rounds

    Sub-logarithmic Distributed Oblivious RAM with Small Block Size

    Get PDF
    Oblivious RAM (ORAM) is a cryptographic primitive that allows a client to securely execute RAM programs over data that is stored in an untrusted server. Distributed Oblivious RAM is a variant of ORAM, where the data is stored in m>1m>1 servers. Extensive research over the last few decades have succeeded to reduce the bandwidth overhead of ORAM schemes, both in the single-server and the multi-server setting, from O(N)O(\sqrt{N}) to O(1)O(1). However, all known protocols that achieve a sub-logarithmic overhead either require heavy server-side computation (e.g. homomorphic encryption), or a large block size of at least Ω(log3N)\Omega(\log^3 N). In this paper, we present a family of distributed ORAM constructions that follow the hierarchical approach of Goldreich and Ostrovsky [GO96]. We enhance known techniques, and develop new ones, to take better advantage of the existence of multiple servers. By plugging efficient known hashing schemes in our constructions, we get the following results: 1. For any m2m\geq 2, we show an mm-server ORAM scheme with O(logN/loglogN)O(\log N/\log\log N) overhead, and block size Ω(log2N)\Omega(\log^2 N). This scheme is private even against an (m1)(m-1)-server collusion. 2. A 3-server ORAM construction with O(ω(1)logN/loglogN)O(\omega(1)\log N/\log\log N) overhead and a block size almost logarithmic, i.e. Ω(log1+ϵN)\Omega(\log^{1+\epsilon}N). We also investigate a model where the servers are allowed to perform a linear amount of light local computations, and show that constant overhead is achievable in this model, through a simple four-server ORAM protocol

    An Efficient Secure Three-Party Sorting Protocol with an Honest Majority

    Get PDF
    We present a novel three-party sorting protocol secure against passive adversaries in the honest majority setting. The protocol can be easily combined with other secure protocols which work on shared data, and thus enable different data analysis tasks, such as data deduplication, set intersection, and computing percentiles. The new sorting protocol is based on radix sort. It is asymptotically better compared to previous sorting protocols since it does not need to shuffle the entire length of the items after each comparison step. We further improve the concrete efficiency by using not only optimizations but also novel protocols, which are independent of interest. We implemented our sorting protocol with those optimizations and protocols. Our experiments show that our implementation is concretely fast. For example, sorting one million 2020-bit items takes 4.6 seconds in 1G connection. It enables a new set of applications on large-scale datasets since the known implementations handle thousands of items about 10 seconds
    corecore