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Chapter 1

Introduction

In this thesis we present an assortment of algorithms and protocols for use in
cryptography and in particular in secure multiparty computation. These results
are united by their efficiency under diverse complexity measures. We contribute
to a variety of results in the area of secure computation and most of our results
pertain to secure multiparty computation (MPC) in various ways.

We make use of existing MPC protocols as foundational building blocks for
our own secure protocols, as well as develop novel protocols for specific problems
in MPC. Therefore, we will first give a brief overview and introduction of MPC
and how it pertains to this thesis in Section 1.1.

This work includes fundamental complexity studies, novel secure protocols,
and advanced algorithms to deal with specific functionalities under particu-
lar types of complexity measures. In Section 1.2 we will give an overview of
the challenges addressed in this thesis and the features typical of our results.
We give a more structured and detailed outline of the problems and results
discussed in each of the chapters of this thesis in Section 1.3.

1.1 Secure Multiparty Computation

Summarized in one sentence, secure multiparty computation (MPC) is the col-
lective name of techniques and protocols that allow multiple, mutually distrust-
ing parties to compute a function on their joint input data without revealing
anything but the result to each other. In his seminal works, Yao formally in-
troduces the notion of secure two-party computation and gives a protocol for
general secure two-party computation [Yao82, Yao86]. The work by Goldreich,

1



2 Chapter 1. Introduction

Micali, and Wigderson generalizes this to secure computation involving any
number of parties [GMW87]. The authors furthermore show that any com-
putable function on inputs held by any number of mutually distrusting parties
can be computed as long as at least half of the parties follow the prescribed
protocol. These results are in the so-called cryptographic setting, assuming the
existence of one-way functions and computational limitations on the adversary.

Ben-Or, Goldwasser and Wigderson give information-theoretically secure
protocols, which are secure against adversaries with unlimited computational
capabilities [BGW88]. They show that in this setting, security can only be
achieved assuming that none of the participants deviate from the prescribed
protocol and at most a minority of the participants collaborate to try to ob-
tain private information from the other parties. Alternatively, if participants
are assumed to deviate from the protocol in arbitrary ways then protocols for
general computation can only be secure if fewer than one third of the partici-
pants behaves dishonestly.

The early works on MPC were mostly of theoretical interest. In recent years,
however, due to both the increase in computational power, and implementation
efforts in which much attention has been given to efficiently adapting theoret-
ical protocols to real-world applications, MPC is more often also considered as
practically applicable. Thus, the attention has shifted from purely theoretical
problems to issues focusing on practical efficiency of protocols. This trend is
reflected in this thesis, in which we focus on efficiency and practical applica-
bility of protocols for solving specific problems within the context of secure
computation.

There are many kinds of adversarial behavior that MPC protocols must
withstand to be secure. Adversarial behavior is typically modelled as a single
adversary which can corrupt parties participating in an MPC protocol, meaning
that it can observe and act through corrupted parties. Protocols are proved
secure under particular assumptions on the adversary.

Above we have already noted two kinds of such assumption. The first as-
sumption was on the computational capabilities of the adversary. We distin-
guished the cryptographic setting from the information-theoretic setting. In the
cryptographic setting, we assume that one-way functions exist and that the ad-
versary is computationally bounded. In the information-theoretic setting, we
permit the adversary unlimited computational capabilities and we rely on the
existence of private communication channels between parties.

The second kind of assumption on adversarial behavior noted above is
whether the adversary is assumed to follow the prescribed protocol and only
attempts to obtain as much information as possible, which is known as the
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passive, semi-honest or honest-but-curious adversary. The other kind of adver-
sary mentioned above is the active or malicious adversary, which is allowed
arbitrary deviations from the protocol.

Another kind of adversarial behavior that must be considered is whether
the corruptions are static, i.e., fixed at the outset of the protocol, or adap-
tive, meaning that the adversary can decide to corrupt parties as the protocol
progresses and depending on messages exchanged so far.

Commonly, the security of a protocol is defined against a particular kind
of adversary using the simulation paradigm. Informally, for security proofs in
the simulation paradigm, we aim to show that any information obtained by the
adversary can be simulated only based on information the adversary is allowed
to know. Somewhat more formally, to prove that a protocol securely imple-
ments a given functionality, we must give a simulator which interacts with the
adversary and the functionality simulating a protocol execution on behalf of
the honest, i.e., uncorrupted parties. The simulator must accomplish this with-
out interacting with the honest parties, as the honest parties themselves only
interact directly with the functionality. We must then prove that the output
of the adversary and the honest parties in this setting cannot be distinguished
from the output of the adversary and the honest parties running the actual
protocol.

For most of this thesis, we will not give formal security proofs in the simu-
lation paradigm, as instead we assume the existence of secure protocols in the
so-called arithmetic black box model [DN03]. In the arithmetic black box model
we assume the existence of secure protocols for elementary arithmetic opera-
tions. Security of protocols composed out of such elementary operations then
follows from the security of the component protocols. As secure protocols for
elementary arithmetic operations exist for various adversarial models, our pro-
tocols built on top of the arithmetic black box simply ‘inherit’ the adversarial
model, i.e., the security properties, of the underlying arithmetic protocols.

The existence of secure arithmetic black box protocols does not suffice to
prove the security of all protocols in this thesis. Where needed, we complement
the use of secure elementary arithmetic with specific security proofs of our
protocols. For a more in-depth discussion, we refer to Chapter 6, in which we
define a specific security model for outsourced computation.

Throughout this thesis we rely on secret sharing to conceal sensitive data
from participants to MPC protocols. Secret sharing schemes allow a secret value
to be distributed among multiple parties in such a way that any individual
party, or any subset of parties deemed unqualified by the distributor cannot
learn any information about the secret, but any (necessarily larger) qualified set
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can combine their shares to reconstruct the secret value. Various forms of secret
sharing exist in both the cryptographic and information-theoretic settings. The
protocols that make up our arithmetic black box are specific to a particular
secret sharing scheme. In most of this thesis, we also take a generic approach,
assuming the existence of secure arithmetic black box protocols, and take the
same attitude regarding the underlying secret sharing scheme.

However, for concreteness, we will briefly discuss Shamir’s secret sharing
scheme [Sha79] and the elementary secure protocols for arithmetic on Shamir
secret-shares in the style of [BGW88]. We will first assume that our data can be
represented as elements of some finite field, the order of which is at least greater
than the number of parties involved in the computation. We will further assume
that there exist reasonable bounds on the size of input values such that the
characteristic of the field is large enough so that arithmetic results computed
over the field correspond to the same arithmetic result when computed over
the integers. For simplicity, the order of the field may be considered prime in
the following discussion.

An element of the field can be secret-shared among n parties, such that at
least k + 1 of them need to cooperate to reconstruct the secret using Shamir’s
scheme, by taking a random univariate polynomial of degree (at most) k such
that the constant coefficient is equal to the secret. Each party is then given the
evaluation of the polynomial at one particular point, where each of these points
are mutually distinct. If more than k parties collaborate, they can reconstruct
the secret by determining the unique polynomial that interpolates their secret
shares. Conversely, k or fewer parties cannot learn any information about the
secret, as the number of polynomials interpolating their set of points and any
potential secret is identical for each potential secret. This makes Shamir secret
sharing information-theoretically secure.

Shamir’s secret sharing scheme has the property that it allows for linear ma-
nipulation without interaction between the parties. Two secrets can be added
by adding the secret sharing polynomials and a secret can be multiplied by a
constant by multiplying the secret sharing polynomial by this constant, i.e., the
parties can simply apply linear transformations to their shares of the secret.

Multiplication of two secrets is more involved. The parties can multiply
their own shares of the secret. This will result in a sharing of a polynomial that
represents the product of the secrets, however, the degree of this polynomial is
(at most) 2k and, furthermore, this polynomial is not uniformly random. The
parties can resolve these two problems by simply secret sharing the product
of their secret shares. This results in a secret sharing of the product poly-
nomial. Since polynomial interpolation and evaluation (in given points) is a
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linear operation, the parties can simply extrapolate the secret product from
the shared polynomial. We call this operation resharing. This is the secure
protocol of [BGW88] in a nutshell.

Because at least 2k + 1 secret shares are needed to represent the product
polynomial, this protocol requires that n ≥ 2k+ 1, therefore, this protocol can
only be secure if at least half of the participants are honest.

The multiplication protocol can be generalized, because further linear op-
erations can be carried out before resharing. Therefore, we can actually eval-
uate arbitrary quadratic formulas with a single resharing. More generally, for
n ≥ `k+ 1, it is possible to evaluate `-linear forms using a single resharing. We
will exploit these properties in Chapters 2 and 5.

Although we have tried to keep our basis for MPC as general as possible,
the protocols described in this thesis were designed with BGW-style MPC on
Shamir secret shares in mind.

1.2 Overview of the Work

Most results in the thesis relate to MPC in one way or another. We make use of
MPC to provide data privacy in our secure outsourced computation protocol,
we develop novel and efficient protocols for securely sampling and manipulat-
ing permutations and for the secure computation of the Moore–Penrose pseu-
doinverse in MPC, and we study the multiplicative complexity of polynomial
evaluation and its generalization and a novel multi-pivot variant of quicksort,
both of which lead to algorithms that are particularly suitable for application
in MPC.

The techniques and protocols used in MPC give rise to a unique model of
computation in which operations do not only take computational time, but
also require communication between protocol participants. The time required
for communication typically exceeds the computational time requirements by
some orders of magnitude. This requires us to balance the computational time
required by a protocol against the communication time to obtain efficient pro-
tocols. Under various models of computation for MPC we can carry out some-
what complex operations locally in time negligible to the communication time
of one elementary secure multiplication, but we can not perform arbitrary com-
putation without considering the computation time. Furthermore, as commu-
nication is bound by both throughput and latency, we must consider both of
these aspects. This gives rise to unique complexity measures for determining
the efficiency of secure MPC protocols.
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In this thesis, we focus on practically applicable secure protocols for a va-
riety of problems. By practically applicable, we mean that we give particular
attention to reducing the pertinent complexities of the protocols and algorithms
discussed and aim to exploit the parallelism inherent in MPC, as well as lever-
age the unique fact that some operations can be considered free of cost and
some complex operations can be considered equally costly as their elementary
counterpart.

For example, in some MPC schemes, the secure evaluation of a dot prod-
uct between two vectors can be performed using the same amount of com-
munication as an elementary multiplication. We fully exploit this property in
our study of the complexity of polynomial evaluation in which it leads to the
surprising result that the number of elementary secure operations needed to
obliviously evaluate a secret-shared polynomial in a secret-shared point scales
with the square root of the degree of the polynomial. If the polynomial is pub-
licly known, the number of elementary secure operation scales as the cube root
of the degree instead. This kind of surprising complexity result is typical of
MPC. Having secure dot products as elementary secure operation also leads to
efficient protocols for linear algebra and we also employ this property in our
efficient secure protocol for computing the Moore–Penrose pseudoinverse.

For Trinocchio, our secure outsourced computation protocol, on the other
hand, we leverage the relative efficiency of linear transformations in for both
privacy preserving computation and verifiable computation, and combine these
two models of computation into the Trinocchio protocol.

Where possible, we have taken the effort to generalize our solutions to allow
for a configurable trade-off between the number of secure operations and the
number of communication rounds of our protocols. In practice this means that
throughput and latency bounds can be balanced against each other to obtain
the most efficient configuration of our protocols.

We have taken care to describe our results with the right degree of generality
so that our results are directly applicable for implementation on top of a range
of MPC protocols, while retaining the properties of underlying schemes that
make our protocols efficient. Our protocols should also be very straightforward
to implement, given a framework for general MPC, providing the arithmetic
black box.

Although our results on asymptotically optimal hash chain reversal are not
related to MPC, also these share the common theme of efficiency under a
particular complexity measure in which not the total computation time must
be minimized, but the computation time of many different rounds must be
balanced and optimized under stringent space limitations.
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1.3 Thesis Outline

We will give a brief outline of the remaining chapters of this thesis.
In Chapter 2 we study the multiplicative complexity of polynomial evalua-

tion and its generalization to the d-linear complexity. From these results, lower
bounds are derived for the secure evaluation of symmetric functions using se-
cure arithmetic. The results can also be applied directly to efficiently imple-
ment secure functions with small domains, which is relevant, for example, in the
construction of the comparison protocol of [ABSdV19] (not discussed in this
thesis), for implementation of oblivious arrays or RAM computing in MPC,
as discussed in various application examples throughout Chapters 2 and 3, or
this can in turn be combined with the results of Chapters 3 and 4 for secure
computation on lists of complex objects.

Chapter 3 is dedicated to novel protocols for securely sampling random
permutations and obliviously manipulating secret-shared permutations. We de-
scribe a representation of secret-shared permutations that is tailored to our
efficient protocols. We also consider the issue of securely sampling random
permutations with a particular structure. We show that permutations in our
secret-shared representation can be efficiently applied to obliviously permute
secret-shared lists of arbitrary data. Such protocols are a useful building block
for more complex protocols for secure computation and also find application in
anonymous communication. As perhaps the most well-known form of random
permutation is shuffling a deck of playing cards, we also briefly discuss how the
results of this chapter apply to cards games in particular.

In Chapter 4 we construct a multi-pivot variant of quicksort, which is par-
ticularly suited for practically efficient application in secure computation when
used in conjunction with the aforementioned protocols for oblivious permuta-
tion. We consider this result both of independent merit, and to demonstrate the
relevance of the protocols from Chapter 3. We combine the results of Chapters
3 and 4 into a secure protocol for obliviously sorting a secret-shared list.

In Chapter 5, we study secure protocols for the computation of the Moore–
Penrose pseudoinverse. Existing, more theoretical results, resolve this problem
in a constant number of rounds. Our novel protocol sacrifices the constant
round property and trades it for greater efficiency in terms of the number
of secure operations. The communication complexity of our protocol is both
asymptotically smaller than that of existing protocols and is more practically
efficient. Furthermore, our protocol is very straightforward to implement. We
also identify the conditions under which the pseudoinverse computed over a
finite field corresponds to the pseudoinverse over the rational numbers, since



8 Chapter 1. Introduction

many MPC protocols perform computation over a finite field, but the pseudoin-
verse over the rational numbers is necessary for most real-world applications.

In Chapter 6 we introduce Trinocchio, our protocol for secure outsourced
computation. For outsourced computation we distinguish data privacy and cor-
rectness of computation as separate security concerns and define a security
model in which correctness of computation is achieved unconditionally and in-
dependent of data privacy. This is a useful security notion for settings in which
parties that do not actively participate in the computation protocol are inter-
ested in the computation results, as in outsourced computation, but, e.g., also
for computations in which members of the public have an interest in the result.
We construct our protocol using a combination of MPC techniques and results
in verifiable computation.

In Chapter 7 we study the problem of asymptotically optimal hash chain
reversal (which is not related to MPC). Hash chains find practical application
in authentication protocols for computationally limited devices. Algorithms
for hash chain reversal are called pebblers. We give a novel framework for
describing and analysing pebblers, which allows us to compose smaller pebblers
into larger pebblers, i.e., to compose several algorithms for reversing short hash-
chains into one algorithm for reversing a longer chain. Our framework is tailored
to higher order compositions of pebblers. Existing works achieve 1/2(log2 n)2

space-time complexity, where n is the length of the hash chain, and show that
this is within a factor 2 from the optimum. Using our higher order composition
we obtain a fundamental result, demonstrating the existence of pebblers with
space-time complexity arbitrarily close to 1/4(log2 n)2.

As indicated above, we mostly take a generic arithmetic black box approach
to MPC, specifying neither the concrete protocols used to carry out arithmetic
operations, nor the exact security model. In this way we ‘inherit’ the security
model from the underlying protocols. Only in Chapter 6 do we formally specify
the security model in which we prove our construction secure and even here we
rely on the proven security of MPC based on Shamir secret sharing ([BGW88]).
In Chapters 3, 4, and 5 we build on top of an arithmetic black box for secure
computation and argue that any information revealed as part of our protocols
does not leak information about the input and output. Chapter 2, instead, is
only concerned with multiplicative complexity of polynomial evaluation, and,
although motivated by application in MPC, we study this topic independently
of MPC. Chapter 7, finally, does not concern MPC.



Chapter 2

Multiplicative Complexity of
Polynomial Evaluation

Secure multiparty computation is typically carried out over some algebraic
structure which features addition and multiplication as elementary operations.
Even more so than for plaintext computation, secure multiplication tends to
be far more computationally intensive than secure addition, to the point that
we will often treat addition as a free operation. This is because typically ad-
dition is a local operation that parties can carry out independently, whereas
multiplication requires a communication step. Scalar multiplication, i.e., mul-
tiplying a secret value with a known constant can be computed by repeated
addition of the secret value to itself and will therefore also be treated as a free
operation. In general, we thus treat linear transformations on secret data as
free. To accurately represent the communication cost of securely evaluating a
particular function using secure operations, we therefore count the number of
non-scalar multiplications required to evaluate that function. This number is
called the multiplicative complexity of the function.

In this chapter we will study the multiplicative complexity of polynomial
evaluation over some finite field F. Although this topic does not deal directly
with secure computation, these results are relevant for determining the perfor-
mance of secure polynomial evaluation using secure computation. Since some
secure computation schemes feature elementary operations that are more gen-
eral or higher order than simple multiplication, e.g., taking dot products of
vectors, or, more generally, evaluating k-linear forms for some integer k > 1,
we will also generalize our complexity results to such operations.

9
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The results of this chapter do not rely on special protocols or properties of
a secure computation scheme other than the fact that we treat linear opera-
tions as free. As such, we will focus on computational processes which consist
entirely of addition and multiplication operations in a fixed structure. Such
computational structures can be represented as arithmetic circuits or, equiva-
lently, straight line programs. Because we are interested in the multiplicative
complexity, rather than the arithmetic complexity, we will introduce our own
definition of straight line programs that incorporates the fact that we consider
taking linear combinations a free operation.

2.1 Motivation

In [Sch88] Schnorr proves that the multiplicative complexity of a Boolean cir-
cuit evaluating a function f : {0, 1}n → {0, 1}, i.e., the minimum number of
logical-and gates required to evaluate f , is at least deg f − 1, where deg f is
the degree of f expressed as a polynomial in n variables. It turns out that this
so-called degree lower bound does not hold for arithmetic circuits evaluating f .
Bounds on the multiplicative complexity of Boolean circuits evaluating sym-
metric Boolean functions were studied by Boyar and Peralta [BP08]. Again, the
bounds on the multiplicative complexity do not apply to arithmetic circuits.
The original motivation for the work presented in this chapter was to study
the multiplicative complexity of arithmetic circuits for evaluating symmetric
Boolean functions.

The problem of evaluating symmetric Boolean functions f : {0, 1}n → {0, 1}
by arithmetic circuits over a finite field F with sufficiently large characteristic
q > n can be straightforwardly related to the problem of evaluating polynomials
of degree n over F as follows. The value of a symmetric function is invariant
under permutation of the tuple of values it is applied to. A Boolean symmetric
function in n variables therefore only depends on the Hamming weight of the
variables. The Hamming weight of n variables taking on values in {0, 1} can be
computed by simply summing up all variables, provided that the characteristic,
q, of the field in which the computation is carried out is such that q > n.
The Hamming weight can take on all values between 0 and n, inclusive. Let
f̂ : {0, . . . , n} → {0, 1} be the function such that f̂(H(x)) = f(x) for all x,

where H denotes the Hamming weight. Then f̂ is a polynomial of degree at
most n that can be determined simply through interpolation. The problem
of evaluating f(x) is now reduced to the problem of evaluating a univariate
polynomial of degree at most n, which is the main topic of this chapter.
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2.2 Multiplicative Complexity

The original motivation for this work was to investigate the multiplicative
complexity of symmetric Boolean functions. Having resolved the question of
the multiplicative complexity of univariate polynomial evaluation, our initial
results, Theorems 2.6 and 2.7, led us through a literature study to the work
of Paterson and Stockmeyer [PS73]. Although the results presented in this
section were independently rediscovered, more general results were already re-
ported in [PS73]. This section is included for three reasons. First, in addition
to the multiplicative complexity, we also study the depth complexity. Second,
in Section 2.3, we will generalize the notion of multiplication and the results in
this section serve as a basis for the generalized results. Third, the proof of our
lower bound of Theorem 2.6 is more straightforward, because it is tailored to
the case of finite fields.

Definition 2.1. A multiplicative straight line program with n input values, x1,
. . . , xn, and m output values y1, . . . , ym, is a sequence of n+k+m gates g1, . . . ,
gn+k+m, where k is the number of computation gates. Each gate is specified
as a number of parameters that describe the computation it represents. For
1 ≤ i ≤ n, gate gi is the ith input gate. For n < i ≤ n+k, the ith computation
gate gi = (li, ri), where li, ri ∈ Fi−1. For i > n+k, the ith output gate gi = ci,
where ci ∈ Fn+k+1.

The number of parameters specifying gate gi is 0 if gi is an input gate,
2i−2 if it is a computation gate and n+k+ 1 if it is an output gate. The total
number of parameters specifying the program is k(2n+ k− 1) +m(n+ k+ 1).

Definition 2.2. To compute a program is to assign values to its gates. The
value of a gate g is denoted [g]. The value of an input gate, 1 ≤ i ≤ n, is simply
its corresponding input value, [gi] = xi. For computation gates, n < i ≤ n+ k,
the value is computed as [gi] = (li · ([g1], . . . , [gi−1]))(ri · ([g1], . . . , [gi−1])), i.e.,
we take a linear combination of gate values computed so far specified by li and
multiply by the linear combination of gate values specified by ri. Finally, output
gates, n+k < i ≤ n+k+m, are computed as [gi] = ci ·(1, [g1], . . . , [gn+k]), i.e.,
output gates are linear combinations of all input and computation gate values
augmented with the constant 1, specified by ci.

Computation gates carry out exactly one multiplication of two linear com-
binations of all preceding gate values. Output gates, instead, perform a lin-
ear combination on the preceding gate values augmented with the constant 1,
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but do not perform any non-scalar multiplication. Having only output gates
perform such an augmented linear combination while the computation gates
are restricted to ordinary linear combinations is not a limitation, as any aug-
mented linear combination that could be carried out in computation gates can
be ‘pushed forward’ to subsequent gates until only the output gates perform
augmented linear combinations.

To clarify, suppose that we have a multiplicative straight line program as
defined above, except that the computation gates are specified as augmented
linear combinations. Then the ith computation gate is specified by two addi-
tional parameters, λi and ρi, compared to computation gates specified in terms
of ordinary linear combinations. The value of the ith gate is then computed as

[gi] = (λi + li · ([g1], . . . , [gi−1]))(ρi + ri · ([g1], . . . , [gi−1]))

= [g′i] + (λiri + λiρi + ρili) · ([g1], . . . , [gi−1]),

where g′i is the computation gate taking ordinary linear combinations specified
by (li, ri). We can then replace gi by g′i and all subsequent augmented linear
combinations dj by d′j = dj + ((λiρi)‖(λiri + ρili)), for j > i, whether dj
is one of the augmented linear combinations taken by a computation gate,
or the augmented linear combination taken by an output gate. Here ‖ denotes
concatenation of two vectors. This replacements yields a multiplicative straight
line program computing the same function in which the ith gate is specified in
terms of ordinary linear combinations. We can apply this procedure iteratively
over all computation gates in order until all augmented linear combinations
in computation gates have been eliminated and replaced by ordinary linear
combinations.

In the following example we will show the construction of a program that
evaluates a fixed polynomial.

Example 2.3. Consider the univariate polynomial in x of degree N specified
by
∑N
n=0 anx

n. We will construct a straight line program that takes as input
a point x and produces as output the evaluation of the polynomial at x.

The first gate will be the input gate: [g1] = x. Let enk denote the vector of
length n containing a 1 at the kth position and 0 at all other positions. For
2 ≤ n ≤ N , the nth gate is specified by gn = (en−11 , en−1n−1). Then the values of
the gates are given by [gn] = [g1][gn−1] = xn. The output gate is specified as

gN+1 = (a0, . . . , aN ) and has value [gN+1] = a0 +
∑N
n=1 an[gn] =

∑N
n=0 anx

n,
as required.
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Because the specification of gates in terms of the coefficient vectors (the l,
r and c vectors) is rather cumbersome, we will often specify gates directly in
terms of their values, as shown in the next example. For this example, we will
show the construction of a program that takes both a polynomial and a point
as input and evaluates the polynomial at that point.

Example 2.4 (Horner’s rule). Let the polynomial be specified by
∑N
n=0 anx

n

as before, however, now the coefficients are treated as additional input to the
program. The first N +2 gates are the input gates: [g1] = x and [gn] = aN+2−n
for 2 ≤ n ≤ N + 2, i.e., the coefficients are input in reverse order. De-
fine [gN+3] = [g1][g2] = aNx and [gN+2+n] = [g1]([gN+1+n] + [gn+1]) =∑n
k=1 aN−n+kx

k for 2 ≤ n ≤ N . Finally, the output gate is [g2N+3] = [g2N+2]+

[gN+2] =
∑N
n=0 anx

n, as required.
This scheme is known as Horner’s rule and uses exactly N additions and

N multiplications for the evaluation of a degree N polynomial. It was proved
optimal by Pan [Pan66] in the sense that any scheme for the evaluation of a
degree N polynomial without initial conditioning of the coefficients requires at
least N additions and N multiplications. The phrase “without initial condi-
tioning of the coefficients” concretely means that any constants appearing in
the scheme do not depend on the values of the coefficients.

The multiplicative complexity of a straight line program is simply the num-
ber of computation gates k. For application in secure computation, we are also
interested in the round complexity, i.e., the number of communication rounds
required. For circuit-based approaches, the round complexity scales linearly
with the depth of the circuit. The depth of our straight line programs is de-
fined as follows. Let gi and gj = (lj , rj) be computation gates with i < j. We
say that a gate gj depends on gate gi if lj,i 6= 0 or rj,i 6= 0. The depth of a
computation gate is defined as one more than the maximum of the depths of
all gates it depends on (or zero if it does not depend on any gate). The input
gates have depth zero by definition and the depth of an output gate is the
maximum of the depths of the gates it depends on. The depth of a program is
the maximum of the depths of its output gates.

Example 2.5. The multiplicative complexity of the program of Example 2.3
is N−1, since there are simply that many computation gates. The depth of the
program is also N − 1, as the depth of the input gate g1 is zero by definition
and for 2 ≤ n ≤ N , the depth of gn is one greater than the depth of gn−1
because gn depends only on gn−1 and g1. Because the output gate depends on
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all computation gates, the depth of the program is the maximum of the depths
of the computation gates.

Example 2.3 shows how to construct a program for the evaluation for a
fixed polynomial. This construction achieves linear multiplicative and depth
complexities. In the remainder of this section, we shall show that this is not
optimal. We shall first prove a lower bound on the multiplicative complexity.

Theorem 2.6. For each N , there exists a polynomial of degree at most N such
that a straight line program evaluating that polynomial requires at least

√
N −1

multiplications.

Proof. Let q be the order of F. Then there are exactly qN+1 polynomials of
degree at most N . A program to evaluate a univariate polynomial has only
one input and one output gate. Any such program with k computation gates
has k(k + 1) + k + 2 = (k + 1)2 + 1 parameters. Because each parameter is an

element of F, there are exactly q(k+1)2+1 distinct programs with one input gate,
k computation gates and one output gate. Furthermore, because we can specify
programs in which the output gate is independent of some computation gates,
the programs with k computation gates also cover all programs with fewer
gates. Therefore, if N > (k + 1)2 then there must exist a polynomial of degree
at most N that cannot be evaluated by a circuit with at most k computation
gates. This means there exists a polynomial of degree at most N , which requires
at least

√
N − 1 multiplications to evaluate.

Note that two programs with distinct parameters are not necessarily func-
tionally distinct.

Theorem 2.7. For each polynomial p(x) of degree N ≥ 1 over F, there exists
a straight line program which evaluates p(x) using d2

√
Ne − 2 multiplications.

Proof. We first rewrite the polynomial

p(x) =

N∑
i=0

aix
i =

dN` e−1∑
i=0

min(`,N−`i)∑
j=1

a`i+jx
j

(x`)i + a0, (2.1)

for some ` ≥ 1, i.e., we consider a polynomial of degree N in x as a polynomial
of degree dN` e in x`. The coefficients of this latter polynomial are evaluations of
polynomials of degree at most ` at x. To efficiently evaluate p(x), we therefore
first compute all powers of x up to the `th, i.e., we compute x, x2, x3, . . . , x`.
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If we compute xi+1 as x · xi, then each of these, except the first, costs a single
multiplication, for a total of ` − 1 multiplications. We can then evaluate the
coefficients of the right hand polynomial of (2.1) for free. It is well known
that the polynomial can then be evaluated by, for example, Horner’s rule using
dN` e−1 multiplications. If we now optimize for `, we find that using ` = d

√
Ne

leads to a total of exactly d2
√
Ne − 2 multiplications.

Although the number of multiplications required in Theorem 2.7 is within a
factor 2 from the lower bound given in Theorem 2.6, the depth of the program
is linear in the degree of the polynomial. For Theorem 2.9 we will refine the
construction of Theorem 2.7 to a construction which only has logarithmic (in
the degree of the polynomial) overhead compared to Theorem 2.7, but achieves
logarithmic depth. This refinement is also based on (2.1), however, because this
approach reduces the evaluation of a fixed polynomial to the evaluation of a
lower degree polynomial for which the coefficients are no longer fixed, we will
first consider the problem of evaluating an unknown polynomial.

Lemma 2.8. For N > 2, there exists a straight line program that given the
coefficients of a degree N polynomial p and a point x evaluates p(x) over F. This
program uses N+dlog2(N+1)e−1 multiplications and has depth dlog2(N+1)e.

Proof. Let h0 be the input gate x. For 1 ≤ i < dlog2(N + 1)e, let hi = h2i−1 =

x2
i

. Then gate hi has depth i, since h0 has depth 0 and the depth of hi is one
greater than the depth of hi−1.

For 0 ≤ j ≤ N , let f0,j = aj . For 1 ≤ i ≤ dlog2(N + 1)e and 0 ≤ j ≤ N ,
where j is an integer multiple of 2i, let

fi,j = hi−1

min(i−1,dlog2(N−j−2i−1+1)e)∑
k=0

fk,j+2i−1 .

A gate fi,j has depth i, since each gate f0,j has depth 0 and the depth of fi,j is
one greater than the maximum of the depths of hi−1 and gates fi′,j+2i , where
i′ < i.

Finally, let y =
∑dlog2(N+1)e
k=0 fk,0.

The sequence of gates, as specified above, forms a valid straight line pro-
gram. We will now show that this program computes

∑N
i=0 aix

i. We first prove
that

fi,j =

min(2i−1,N−j)∑
`=b2i−1c

a`+jx
`
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for all appropriate i and j as defined above. In the base case, i = 0, we have
that f0,j =

∑0
`=0 a`+jx

` = aj . Using induction we have that

fi+1,j = hi

min(i,dlog2(N−j−2i+1)e)∑
k=0

fk,j+2i

= x2
i

min(i,dlog2(N−j−2i+1)e)∑
k=0

min(2k−1,N−j−2i)∑
`=b2k−1c

a`+j+2ix
`

=

min(2i−1,N−j−2i)∑
`=0

a`+j+2ix
`+2i

=

min(2i+1−1,N−j)∑
`=b2ic

a`+jx
`.

We then substitute this into

y =

dlog2(N+1)e∑
k=0

fk,0

=

dlog2(N+1)e∑
k=0

min(2k−1,N)∑
`=b2k−1c

a`x
`

=

N∑
`=0

a`x
`.

Computing all h gates requires dlog2(N +1)e−1 multiplications. The num-
ber of multiplications required to compute the gates fi,j for all appropriate i

and j is equal to
∑dlog2(N+1)e
i=1 bN+2i−1

2i c = N . Thus, the multiplicative com-
plexity of this program is N + dlog2(N + 1)e − 1.

Based on Lemma 2.8 we construct a program for the evaluation of a fixed
polynomial that has only logarithmic (in the degree of the polynomial) depth.
The overhead in multiplicative complexity, compared to Theorem 2.7 is only
logarithmic in the degree of the polynomial.

Theorem 2.9. For each polynomial p(x) of degree N over F, there exists
a straight line program which evaluates p(x) using at most 2

√
N + 1

2 log2N
multiplications and has depth at most log2N + 2.
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Proof. We rewrite p(x) as in (2.1). We again evaluate the lowest ` powers of
x, but now explicitly at depth dlog2 `e. Concretely, once we have evaluated the

powers of x up to x2
i

at depth i, we can compute x2
i+1, . . . , x2

i+1

at depth
i + 1 by multiplying x2

i

by xj for 1 ≤ j ≤ min(2i, `). This requires ` − 1
multiplications and has depth dlog2 `e.

We then evaluate each ci =
∑min(`,N−`i)
j=1 a`i+jx

j for 0 ≤ i ≤ dN/`e− 1 and

we write p(x) =
∑bN/`c−1
i=0 ciu

i + a0, where u = x`, i.e., we write p(x) as an
unknown polynomial of degree dN/`e − 1, where each of the coefficients is the

evaluation of a low degree polynomial ci =
∑min(`,N−i`)
j=1 a`i+jx

j . Because the
coefficients ci are unknown, we use the technique of Lemma 2.8 to evaluate this
polynomial, which requires dN/`e+ dlog2dN/`ee− 2 multiplications at a depth
of dlog2dN/`ee.

The total number of multiplications is then ` + dN/`e + dlog2dN/`ee − 3.
We find the minimum at approximately, but no more than 2

√
N + 1

2 log2N

multiplications, where ` is close to
√
N . The total depth is then at most log2N+

2, due to rounding.

The multiplicative complexity given by both Theorem 2.7 and Theorem 2.9
is dominated by 2

√
N , where N is the degree of the polynomial. In both cases

we construct the programs using the values of the coefficients without any
processing. By preprocessing the coefficients, it is possible to reduce the number
of multiplications needed by a factor

√
2. However, in the following, we will

study the bounds on the evaluation of polynomials for programs in a more
general model of computation, for which we will focus on the case of unknown
polynomials, i.e., the case where the polynomial itself is also considered part of
the input, just as in Lemma 2.8 and Example 2.4 of Horner’s rule. The results of
this section serve as introduction to the following sections and, because we will
focus on the evaluation of unknown polynomials, we have disregarded programs
which require preprocessing of the coefficients. For details on preprocessing we
refer to [PS73].

2.3 Degree d Complexity

Some computation schemes feature more general primitive operations than
elementary multiplication. In particular, [BGW88]-style secure computation
based on Shamir secret sharing, secure computation based on replicated secret
sharing or generalizations of techniques using precomputed Beaver triples allow
for the evaluation of any multivariate polynomial of degree at most 2 using
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a single secure operation. Depending on the configuration, it may even be
possible to evaluate polynomials of higher degree in one operation. In this
section, we will take the evaluation of a degree d multivariate polynomial as our
primitive operation, i.e., our gates, and generalize our results on the complexity
of polynomial evaluation to programs consisting of such gates.

Definition 2.10. A degree d straight line program over F is a multiplicative
straight line program in which each computation gate represents an arbitrary
degree d form in terms of all preceding gates and the constant 1. Each com-
putation gate gi for n < i ≤ n + k is specified by

(
d+i−1
d

)
elements from F,

which represent the coefficients of each term in the degree d form. The depth
of a degree d straight line program is defined analogously to the depth of a
multiplicative straight line program. Similarly, the output gates are specified
as a linear combination of all input and computation gates and the constant
1. A degree d straight line program with n input gates, m output gates and
k computation gates is specified by exactly

(
d+n+k
d+1

)
−
(
d+n
d+1

)
+ m(n + k + 1)

parameters.

Note that by including the constant 1 as input to each gate, we can effec-
tively include terms of any degree lower than d in the form.

Example 2.11 (Dot product). For two vectors a and b of length n, the dot
product is defined as

∑n
i=1 aibi. This is clearly a quadratic form and can there-

fore be evaluated using a single degree 2 gate.

Theorem 2.12. For each N ≥ d, there exists a degree d straight line program
that takes as input the coefficients of a degree N polynomial p and a point x

and evaluates p(x) over F. This program uses fewer than d
∑dlogd logdNe+1
k=1

dk
√
N

degree d gates. The depth of this program is logd n+O(logd logdN).

Proof. Let C(N) be the minimal number of degree d gates required to evaluate

a degree N polynomial and let B(N) = d
∑dlogd logdNe+1
k=1

dk
√
N . Note that both

C and B are monotonic. We prove our claim that C(N) < B(N) for all N ≥ d
by induction. Clearly C(2) ≤ 2 < 2

√
2 = B(2) and C(3) ≤ 3 < 2

√
2 + 2 4

√
3 =

B(3).
For N ≥ 4, we write the polynomial as in (2.1) and evaluate it as follows.

Let Lj =
∏j−1
i=1 `i for some `i, where 1 ≤ i ≤ d. First, we evaluate the powers

xiLj for 1 ≤ j < d and 0 ≤ i ≤ `j . This requires exactly Ld − d + 1 degree d
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gates. Then, for each i, such that 0 ≤ i ≤ d NLd e − 1, we evaluate

bi =
∑
k

aiLd+
∑d−1
j=1 kjLj

d−1∏
i=1

xkjLj ,

where k ranges over all length d − 1 vectors of integers such that 1 ≤ kj ≤ `j
for 1 ≤ j ≤ d−1 and

∑d−1
j=1 kjLj ≤ N− iLd. This requires d NLd e degree d gates.

Finally, we treat these evaluations as the coefficients of a polynomial of degree
d NLd e − 1 in xLd :

p(x) =

N∑
i=0

aix
i = a0 +

dNLde−1∑
i=0

bi(x
Ld)i.

To evaluate the right hand polynomial requires C(dN` e − 1) degree d gates.
Now, assume that C(m) < B(m) holds for all 2 ≤ m < k. Then

C(N) = min
`
`− 1 + dN

Ld
e+ C(dN

Ld
e − 1)

< min
`
`+

N

Ld
+B(

N

Ld
).

If we take `i = d
√
N for all i, then N

Ld
= d
√
N , and

C(N) ≤ d d
√
N +B(

d
√
N)

< d
d
√
N + d

dlogd logd
d√
Ne+1∑

k=1

dk
√

d
√
N

= d

dlogd logdNe+1∑
k=1

dk
√
N.

In the final step we use the fact that logd logd
d
√
N = logd logdN − 1.

Note that the powers of x are evaluated at depth dlogd Lde = dd−1d logdNe
or lower. By the induction hypothesis, the depth of the program is equal to
dd−1d logdNe+ 1 + logd

d
√
N +O(logd logd

d
√
N) = logd n+O(logd logdN).

The use of degree 2 gates is of special interest for application in multiparty
computation. We mention the case d = 2 separately for emphasis.
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Corollary 2.13. For each N ≥ 2, there exists a degree 2 straight line program
that takes as input the coefficients of a degree N polynomial p and a point x

and evaluates p(x) over F. This program uses fewer than 2
∑dlog2 log2Ne+1
k=1

2k
√
N

degree 2 gates. The depth of this program is log2N +O(log logN).

Example 2.14. A useful application for efficient polynomial evaluation is array
indexing. Suppose we are given N values v1, . . . , vN and an index 1 ≤ n ≤ N
and we wish to determine vn. This problem can be solved by computing the
polynomial interpolating v and evaluating it at n. Since polynomial interpo-
lation (on a fixed set of points) is a linear operation, which we consider free,
the only cost is the evaluation of a polynomial of degree N − 1. In Chapter 3
we will extend this example to oblivious arrays that can also be modified, i.e.,
written to, at an oblivious index.

For completeness, we will give the generalizations of Theorems 2.6 and 2.9
to degree d gates.

Theorem 2.15. For each N , there exists a polynomial of degree at most N such
that a straight line program evaluating that polynomial requires O((d+1) d+1

√
N)

degree d gates.

Proof. The proof is similar to that of Theorem 2.6. Let q be the order of F.
There are exactly qN+1 polynomials of degree at most N over F. A degree d
straight line program evaluating a univariate polynomial has 1 input, 1 output
and k computation gates and is therefore specified by exactly

(
d+1+k
d+1

)
−
(
d+1
d+1

)
+

k + 2 parameters from F. These straight line programs are not all functionally
distinct. For any program which computes only a single value, we can actually
eliminate the output gate parameters entirely by absorbing the parameters for
the linear combination taken in the output gate into the final computation gate
and simply set the output value to the value of that gate. Such a program would
compute the same function as the original program and consist of the same
number of computation gates, but could be specified using only

(
d+1+k
d+1

)
− 1

parameters. The depth of such a program could be 1 greater than the depth
of the original program, but that is of no concern for this theorem. We can
therefore safely take

(
d+1+k
d+1

)
− 1 as the number of parameters.

If the number of distinct straight line programs consisting of k degree d
computation gates is smaller than the number of polynomials of degree at

most N , i.e., if q(
d+1+k
d+1 )−1 < qN+1, then there exists a polynomial of degree

at most N which cannot be evaluated by such a program. Using the well-

known fact that
(
n
k

)
<
(
en
k

)k
, where e is Euler’s constant we can rewrite this
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condition as
(
d+1+k
d+1

)
<
(
e(d+1+k)
d+1

)d+1

< N + 2 or, solving for k, as k <
d+1
e

d+1
√
N + 2−d−1. We can therefore conclude that there exists a polynomial

of degree at most N which requires a degree d straight line program with
O((d+ 1) d+1

√
N) computation gates to evaluate.

Theorem 2.16. For each polynomial p(x) of degree N over F, there exists a
straight line program which evaluates p(x) using (d+ 1) d+1

√
N + O(d d(d+1)

√
N)

degree d gates and has depth logdN +O(logd logdN).

Proof. We rewrite the polynomial as in (2.1). We then compute the necessary
powers of x that will allow us to evaluate polynomials of degree ` with only a

single degree d gate. The powers xid`
j/de for 1 ≤ i ≤ d`1/de and 0 ≤ j ≤ d− 1

are sufficient for this purpose and can be computed using d(d`1/de − 1) < d d
√
`

degree d gates at depth at most dlogd `e. We then evaluate the dN` e degree `
polynomials of (2.1) with one degree d gate each, which increases the depth by
one.

We can evaluate the full polynomial with O(d d

√
dN` e) degree d gates by

applying Theorem 2.12. This adds logddN` e+O(logd logddN` e) to the depth.

Using ` = N
d
d+1 , the degree d complexity is (d + 1) d+1

√
N + O(d d(d+1)

√
N)

and the depth logdN +O(logd logdN).





Chapter 3

Secure Shuffle

3.1 Introduction

In this chapter we will study the problem of securely shuffling a list of secret-
shared values. Shuffling a list of secret-shared data obliviously is a useful primi-
tive for various applications. One particular application is that after obliviously
shuffling a list, the list can be sorted using a general sorting algorithm, rather
than an oblivious one, without revealing the order of the original. Such a pro-
tocol for securely sorting lists is the subject of Chapter 4. Section 3.9 focuses
on another application, namely securely shuffling playing cards for online cards
games and deals with the issues of that application.

We break down the task of obliviously shuffling a given secret-shared list
into two component tasks. The first is to obliviously sample a uniformly random
secret-shared permutation of a publicly given size; the second is to obliviously
rearrange the elements in the secret-shared input list according to a given
secret-shared permutation. We will present secure protocols for each subtask, as
well as a representation of secret-shared permutations which allows for efficient
application and composition. For clarity, we distinguish the full shuffle protocol
from the rearrangement protocol where needed.

Dividing the task of shuffling a list in this way permits us to shuffle com-
posite objects by obliviously sampling a single permutation and applying it
to multiple lists independently. Furthermore, sampling the random permuta-
tion depends only on the size of the input list and can therefore, in certain
applications, be considered data-independent and suitable for precomputation.

The multiplicative complexity of our protocol for shuffling a list of length N

23
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is O(N logN) and the round complexity is O(logN). These complexities arise
from using a binary tree withN leaves as part of our data structure representing
permutations. The internal nodes of the tree correspond to multiplications.
The technique from [BB89] for constant round unbounded fan-in multiplication
enables us to use M -ary trees, rather than binary trees. The shuffling protocol
then requires O(N logM N) fan-in M multiplications and O(logM N) rounds.
Since the complexity of performing M multiplications using the unbounded fan-
in multiplication protocol is linear in M , when expressed in terms of primitive,
fan-in 2 multiplications, we state the multiplicative complexity of the shuffling
protocol as O(MN logM N) in terms of ordinary multiplications.

The use of unbounded fan-in multiplication allows for a trade-off between
multiplicative complexity and round complexity. Letting M = N1/c for some
parameter c will lead to a protocol whose round complexity, O(c), is inde-
pendent of N , with multiplicative complexity O(cN1+1/c). In any case, the
constants in the big-O notation are fairly small and practical. However, taking
values for M other than 2 may be mostly of theoretical importance, due to the
overhead of unbounded fan-in multiplication.

The permutation protocol is a data-independent protocol that can be used
to obliviously sample a random permutation of given length N . The protocol is
based on the observation that a product is invariant under permutation of its
factors. By obliviously sampling random irreducible polynomials and revealing
the product, we can retrieve the set of original polynomials using polynomial
factorization, but not the order they were sampled in. The correspondence
between the secret-shared originals and the publicly known factors establishes
a permutation. Concretely, we take monic polynomials of degree 1 for our
random irreducible polynomials and perform our computations directly on the
roots of the product polynomial, rather than its factors.

The rearrangement protocol applies a random permutation obtained from
the permutation protocol to a list of secret-shared values. To do so, first each
of the publicly known roots from the permutation protocol is assigned a secret
value of the list to be reordered. This gives a set of points for which we then
obtain the interpolating polynomial. As it is derived from secret-shared data,
this polynomial exists in secret-shared form. To create an oblivious rearrange-
ment of the input data we then evaluate the interpolating polynomial in each
of the secret roots. We must use efficient multi-point polynomial evaluation to
keep the complexity in check.
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Related Work

There is a large body of literature on secret shuffles for the purpose of mix-
nets, which were first introduced by Chaum [Cha81]. In this context a mixer is
given a list of encryptions and tasked with producing a list of encryptions that
would decrypt to the same plaintexts as the original list, but in random order.
Such constructions are useful, for example, in secure voting and anonymous
communication applications. Some key works in this area are [SK95, Abe99,
FS01, Nef01]

Mixing protocols are typically constructed from encryption schemes that
allow for random re-encryption and a zero-knowledge proof of correct permu-
tation and re-encryption. As such, these works are not concerned with the issue
of obliviously sampling and representing a secret-shared permutation, which is
the topic of this chapter. Our topic has received far less attention in the litera-
ture. It should be noted, however, that the key observation behind our oblivious
protocol—i.e., that multiplication of polynomials preserves its factors, but due
to the commutativity of multiplication, it is invariant under permutation of
the order of the multiplicands—is the same observation which enables zero-
knowledge proofs of correct permutation first described in [Nef01].

Laur et al. [LWZ11] give three methods for oblivious shuffling. In the first,
a sufficient number of parties secret shares a permutation matrix and the ran-
dom permutation is computed as the product of these matrices. An intuitive
argument against the practical use of this method is that manipulation of per-
mutation matrices necessarily involve some steps that exhibit quadratic com-
munication complexity (in the size of the permutation). By not representing
permutations as matrices, our methods do not incur a quadratic lower bound
on the communication complexity.

The second method consists of the parties jointly creating a list of secret-
shared random values. The permutation which sorts the list is then obliviously
computed and is uniformly random. This method features better asymptotic
complexity than the first method, however, this requires an oblivious sorting
protocol. As we shall see in the following chapter, we can obtain more efficient
oblivious sorting by first shuffling the input list. Such sorting method can not
be used to construct the shuffle itself, however.

Their third method is actually analogous to mixing in an MPC setting. The
communication complexity of this method is linear in the size of the permu-
tation, but suffers from combinatorial explosion in the number of parties, or,
more accurately, is linear in the number of maximal unqualified sets implied
by the access structure. Furthermore, this method leaves open the issue of effi-
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ciently representing the permutation for use in further operations without, for
example, making use of potentially inefficient permutation matrices.

3.2 Notation

Throughout this chapter, the symbol N will denote the size of the permutation,
M will denote the fan-in of multiplication. For convenience, let k = dlogM Ne.

Tree data structures will be denoted using capitals, e.g., T . All trees will
be balanced M -ary trees with N leaves. We refer to nodes (or leaves) of a tree
T explicitly as Ti,j , where 0 ≤ i ≤ k and 0 ≤ j < Ni = d NMi e. Here, the first
index refers to the height of the node and the second to the position of the
node in relation to all other nodes at that height. Ni is the number of nodes
at height i. Leaves have height 0 by definition and we refer to the root of a
tree T as Tk,0. Trees are not necessarily full trees and, as such, the number of
children is not equal for all nodes at the same height, however, because trees
are balanced, the difference in number of children between any two nodes at
the same height is at most one. The number of children of node Ti,j in tree T
is equal to

Mi,j =

⌈
Ni−1 − j

Ni

⌉
. (3.1)

For i > 0, the children of node Ti,j are Ti−1,j+`Ni for all 0 ≤ ` < Mi,j .
The parent of a node Ti,j is Ti+1,j mod Ni+1

. An example of a tree is given in
Figure 3.1. The exact representation of the tree is not necessary to understand
our algorithms, but is chosen so that it is possible to refer to the parent or
children of a given node using only arithmetic on the indices, which aids in the
analysis of our protocols.

For a polynomial p, we denote by p[i] the ith coefficient of p, where p[i] = 0
for any i greater than the degree of p. We may therefore write p(x) as

∑
i p[i]x

i.
The derivative of p is denoted p′ and p′[i− 1] = ip[i] for any i > 0.

We will denote the application of a permutation π by multiplication from
the left, for example, πv is the vector v permuted by π. We will use the same
notation for permuting the rows of a matrix, or for the composition of per-
mutations as well. For simplicity, the permutation can be thought of as a per-
mutation matrix in this notation. However, we aim to treat permutations as
abstract objects in this chapter and do not explicitly rely on the representation
of permutations as matrices. For secret-shared permutations, we will explicitly
specify the representation and rather than denote application of a secret-shared
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T0,0 T0,1 T0,2 T0,3 T0,4 T0,5 T0,6 T0,7 T0,8 T0,9

T1,0 T1,1 T1,2 T1,3

T2,0 T2,1

T3,0

Figure 3.1: Structure of a ternary tree with 10 leaves. The leaves and nodes are
presented in the same order as in the data structure. Note how the children
of node Ti,j are interleaved at distance Ni apart and that at each level of the
three the number of children per node differs by at most one.

permutation as a multiplication, we will explicitly refer to the secure protocol
for rearrangement or composition.

For any object x, be it a field element, a vector of field elements, a polyno-
mial over the field, or a tree whose nodes contain other objects, we denote the
secret sharing of that object as JxK. For composite objects, we always consider
the structure of the object publicly known and secret share the coefficients
representing the object over the field. For example, we consider the size of
a secret-shared vector publicly known and, for a vector of size N , the secret
sharing simply consists of the N secret-shared coefficients that make up the
vector.

3.3 Common Polynomial Operations

Before we delve into the details of the permutation and rearrangement proto-
cols, we will first describe some auxiliary protocols for common operations on
secret-shared polynomials. Secret-shared polynomials are represented by vec-
tors of secret-shared coefficients. We consider the degree of a polynomial to be
public information and therefore do not have to hide the length of the coeffi-
cient vector. In many cases, we will work with monic polynomials, i.e., we know



28 Chapter 3. Secure Shuffle

that the leading coefficient is 1, however in some cases the leading coefficient
is secret. In that case it is possible that the polynomial is actually of a lower
degree than is publicly known and the value of the supposed leading coefficient
is 0. As we shall see, this does not cause any problems for our purposes and
we will simply compute with a publicly known upper bound on the degree,
without actually knowing whether this bound is exact.

The protocols in this section are based on well-known algorithms, see for
example [vzGG03, Chapter 10]. Several of these well-known techniques for poly-
nomial manipulation were first adapted to the shared coefficient setting by Mo-
hassel and Franklin [MF06b]. We will briefly review their protocols for poly-
nomial multiplication and polynomial division with remainder. We will also
adapt algorithms for efficient polynomial interpolation and, its counterpart,
multipoint evaluation to secure protocols in the shared coefficient setting.

Polynomial Multiplication

Multiplication of secret-shared polynomials is remarkably straightforward when
we make use of the more general secure evaluation of quadratic forms, as op-
posed to ordinary secure multiplications. Because the coefficients of the prod-
uct polynomial are all quadratic forms, these can be evaluated directly, and no
special protocol is needed for efficient polynomial multiplication. Each player
should still use an algorithm for efficient polynomial multiplication for the local
computations required for the evaluation of the coefficients.

We must also look at polynomial multiplication in terms of secure ordi-
nary multiplications for two reasons. First, for the sake of generality, we do
not assume our secure computation scheme directly supports the evaluation
of quadratic forms. Second, we are also interested in the more general case of
multiplying many polynomials using unbounded fan-in multiplication.

We represent secret-shared polynomials as a list of secret-shared coefficients.
To multiply polynomials directly in this representation is rather costly, i.e., it
would take a number of multiplications quadratic in the degree of the result.
Instead of direct multiplication, we can make use of the fact that any set of
N+1 points that are distinct in their x-coordinate uniquely define a polynomial
of degree at most N that interpolates those points. To multiply polynomials,
we first evaluate each of these polynomials in N + 1 points, where N is the
degree of the product polynomial. Then we perform point-wise multiplication
of these points. Finally, we interpolate the product polynomial.

Let N1, N2 up to NM be the respective degrees of M polynomials. Then
the degree of the product of these polynomials is N =

∑M
i=1Ni. Using the
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above technique, evaluating the product of these M polynomials would require
exactly N + 1 fan-in M multiplications. These multiplications can be carried
out in parallel in a constant number of rounds.

Polynomial evaluation and interpolation on a fixed set of x-coordinates
are linear operations. Therefore, these can be carried out locally by each party,
without interaction. To do so näıvely would result in O(N2) complexity of local
operations. There are textbook techniques, however, which can be used to re-
duce the complexity of these local operations to O(N logN), see, e.g., [vzGG03,
Chapter 10]. The secure multipoint evaluation and interpolation protocols de-
scribed in this section are secure adaptations of such techniques. The most well
known of these techniques is the Fast Fourier Transform, which relies on the
existence of roots of unity. We will, however, use different techniques, to avoid
this requirement.

For our permutation protocol, we can use the fact that we only work with
monic polynomials, i.e., polynomials with leading coefficient equal to 1. A prod-
uct of monic polynomials will itself be monic. Furthermore, the second coef-
ficient of the product will be equal to the sum of the second coefficients of
its factors. Since this is a linear operation, it can be computed locally with-
out interaction. Knowing the two leading coefficients of the product allows us
to compute it using two fewer multiplications. If we simply evaluate the con-
stituent polynomials in two fewer points and subtract the evaluations of the
known part of the polynomial, we can then interpolate the remaining coeffi-
cients.

Although the number of multiplications saved this way is asymptotically
negligible, it allows us to show how our permutation protocol can be seen as a
generalization of the random bit protocol from [DFK+06] in Section 3.4

Polynomial Division with Remainder

Another technique needed to efficiently carry out our protocols is to determine
the remainder of polynomial division. Let f and g be two polynomials of degree
n and m respectively, with n > m. The protocol to compute the quotient, q, of
division of f by g is given in Protocol 3.1, which we will briefly describe here.
For a more thorough description, see [MF06b].

Computation on polynomials in the polynomial division protocol is carried
out over the ring F[X]/Xn−m+1. Operationally, this corresponds to truncating
all polynomials to degree (at most) n − m. On line 6, we take the inverse
of the polynomial u. By this inverse, we mean the inverse of u in the ring
F[X]/Xn−m+1, which exists if the constant term u0 is non-zero. Note that,
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Protocol 3.1 PolDiv(JfK, JgK), computed over F[X]/Xn−m+1

1: JsK $← F[X]/Xn−m+1

2: JtK← revm(JgK)JsK
3: u← reveal(JtK)
4: if u0 = 0 then
5: abort with failure
6: JvK← u−1JsK
7: JqK← revn−m(revn(JfK)JvK)
8: return JqK

because we will only perform polynomial division where the degree of the divisor
g is exactly m, the constant term u0 will be equal to zero only if the constant
term of s is equal to zero, which happens with probability 1/|F|. If the field is
sufficiently large, this will happen with negligible probability. Otherwise, the
protocol will have to be repeated multiple times, either in parallel or iteratively,
so that the probability of all repetitions failing would be negligible.

In the polynomial division protocol revn(f) denotes a polynomial such that
revn(f)(x) = xnf(1/x) defines the reversal of the polynomial. If the degree of
f is at most n, revn(f)(x) represents the polynomial of degree n which has the
same coefficients as f , if necessary padded with zeroes, but in reversed order.
Note that computing the reversal is a local operation which does not require
any interaction.

Consider the equation f(x) = g(x)q(x) + r(x), where we take the degree of
r as m− 1. Substituting 1/x for x and multiplying by xn allows us to rewrite
it as

xnf(1/x) = (xmg(1/x))(xn−mq(1/x)) + xn−m+1(xm−1r(1/x))

⇐⇒ revn(f)(x) = revm(g)(x) revn−m(q)(x) + xn−m+1 revm−1(r)(x)

=⇒ revn(f)(x) = revm(g)(x) revn−m(q)(x) (mod xn−m+1)

=⇒ revn−m(q)(x) = revn(f)(x) revm(g)−1(x) (mod xn−m+1)

=⇒ q(x) = revn−m(revn(f)(x) revm(g)−1(x) mod xn−m+1),

where the last implication holds, because the degree of q is n−m. The protocol
essentially evaluates the final equation to find the quotient. To evaluate this
equation, it uses the technique for computing inverses from [BB89].

Protocol 3.2 uses the quotient protocol to compute the remainder after
polynomial division as r = f − qg and is given for completeness.
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Protocol 3.2 PolRem(JfK, JgK)
1: JqK← PolDiv(JfK, JgK)
2: JrK← JfK− JqKJgK
3: return JrK

Protocol 3.3 PolTree(JLK)
Input: JLK, a list of N polynomials

1: for j ∈ {0, 1, . . . , N − 1} do
2: JT0,jK← JLj+1K
3: for i← 1 to k do
4: for j ∈ {0, 1, . . . , Ni − 1} do

5: JTi,jK←
∏Mi,j

`=0 JTi−1,j+`NiK
6: return JT K

The Polynomial Product Tree

In this section we will show a protocol for building the polynomial product tree.
This tree enables an efficient multipoint evaluation protocol, which is needed
for the rearrangement protocol. Additionally, the same tree forms the core of
the permutation protocol.

The leaves of a polynomial product tree contain a polynomial. Each of the
nodes contains the product of the polynomials contained by its children. The
root, thus, contains the product of all leaf polynomials. The protocol, displayed
in Protocol 3.3 follows a typical divide and conquer strategy, but is specified in
iterative form to clearly demonstrate the round and multiplicative complexity.

Recall that we denote the secret-shared list L and trees, such as T as JLK
and JT K, respectively. By this we mean that the values in the list or tree are
secret-shared, but the structure is publicly known. Similarly, for the secret-
shared polynomials in L, we mean that the coefficients are secret-shared, but
the degree of the polynomials is publicly known.

Note that the only step involving secure computation is step 5. The multi-
plication in step 5 uses fan-in M secure polynomial multiplication. The com-
putations taking place in the inner loop, step 4, can be parallelized.

In the following, we will only compute polynomial product trees for lists of
monic non-constant polynomials. Therefore the following theorem is restricted
to that particular case.
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Theorem 3.1. Let L be a vector of N monic non-constant polynomials. Let
d be the sum of the degrees of the polynomials in L. Protocol 3.3 on JLK ter-
minates after O(logM N) rounds of communication in which O(dM logM N)
secure operations are performed.

Proof. Step 5 is the only step involving secure computation. Computing the
product of the monic polynomials involves d′ − 1 invocations of the fan-in M
multiplication protocol, where d′ is the degree of the resulting polynomial.

For any level of the tree, the polynomial multiplications can be carried out
in parallel. The total number of multiplications of fan-in at most M for level i
is equal to d minus the number of nodes at that level of the tree. Computing a
single level of the tree takes a constant number of rounds.

Let k = dlogM Ne be the number of levels in the tree, excluding the leaves,
which require no secure operations to compute. Summing the costs per level
over the k levels gives us a total of kd minus the total number of internal nodes
in the tree fan-in at most M multiplications. The total number of internal
nodes is equal to

∑k
`=1d

N
M` e. This translates to O(Mkd) elementary secure

operations in O(k) rounds.

For ordinary, binary multiplication, i.e., M = 2, each level of the tree takes
exactly one round to compute and the total number of multiplications is exactly
equal to kd−

∑k
`=1d

N
2`
e ≤ kd−N + 1. Note that if all polynomials in L are of

degree one, then we can take d = N .

Multipoint Polynomial Evaluation

In this section we will combine the protocols from the previous sections to
create a protocol for multipoint polynomial evaluation. Multipoint polynomial
evaluation is the problem of, given a polynomial f and a list of N points
x1, x2, . . . , xN to evaluate f(x1), f(x2), . . . , f(xN ). For our purposes we restrict
our protocol to the evaluation of polynomials of degree at most N − 1. The
protocol, shown in Protocol 3.4 is simply composed of two sub-protocols. The
first sub-protocol is Protocol 3.3, PolTree, to construct the polynomial product
tree with N leaves containing the polynomials x− xi for all 1 ≤ i ≤ N . In the
second sub-protocol, shown in Protocol 3.5, the tree is traversed from the root
to the leaves, evaluating the polynomial.

The protocol is simply the well-known efficient algorithm for multipoint
polynomial evaluation, as described in, for example, [vzGG03, Chapter 10],
where the inputs, outputs and intermediate values are all secret-shared and the
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Protocol 3.4 MultiEval(JfK, JxK)
Input: • JfK, a polynomial of degree at most N − 1

• JxK, a list of N points
1: JT K← PolTree((x− JxiK)Ni=1)
2: return TreeEval(JfK, JT K)

Protocol 3.5 TreeEval(JfK, JT K)
Input: • JfK, a polynomial of degree at most N − 1

• JT K, a polynomial product tree with N leaves
1: JEk,0K← JfK
2: for i← k − 1 down to 0 do
3: for j ∈ {0, 1, . . . , Ni − 1} do
4: JEi,jK← PolRem(JEi+1,j mod Ni+1

K, JTi,jK)
5: return (JE0,jK)Nj=1

construction of the polynomial product tree and evaluations of remainders after
polynomial division have been replaced by the corresponding secure protocols.

The correctness of the protocol follows from two observations. First, for any
constant x0, it holds that f(x0) ≡ f(x) (mod x−x0). Second, for polynomials
f1, f2, f3, g1 and g2, if f2 ≡ f1 (mod g1g2) and f3 ≡ f2 (mod g1), then f3 ≡ f1
(mod g1).

Theorem 3.2 (Complexity). On input of size N , the round complexity of
Protocol 3.5 is O(logM N) and the multiplicative complexity is O(MN logM N).

Proof. The only step which requires the parties to interact is step 4. A con-
stant round protocol for polynomial modular reduction is given in Protocol 3.2,
due to [MF06b]. The complexity of Protocol 3.2 is linear in the degree of the
polynomial to be reduced.

At the ith layer of the tree, for 0 ≤ i < k, we need to perform Ni polynomial
modular reductions of polynomials of degree smaller than M i+1. Summing
over all levels of the tree, this gives a round complexity of O(k) = O(logM N)

and multiplicative complexity of less than
∑k−1
i=0 NiO(M i+1) = kO(MN) =

O(MN logM N).

The trade-off between round complexity and multiplicative complexity of
Protocol 3.5 matches that of Protocol 3.3 due to the use of the same tree
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Protocol 3.6 Interpolate(JxK, JyK)
Input: • JxK, a list of N distinct points

• JyK, a list of N points
1: JT K← PolTree((x− JxiK)Ni=1)
2: return InterpTree(JT K, JyK)

structure.
Note that the only secure operation needed in Protocol 3.5 is secure poly-

nomial modular reduction (step 4). Given the security of Protocol 3.2 [MF06b],
we can conclude that Protocol 3.10 securely performs multipoint polynomial
evaluation.

Polynomial Interpolation

Polynomial interpolation is the inverse problem to multipoint polynomial eval-
uation: given a list of N distinct points, x1, x2, . . . , xN and another list of N
not necessarily distinct points y1, y2, . . . , yN , find the unique polynomial f of
degree less than N , such that y1 = f(x1), y2 = f(x2), . . . , yN = f(xN ).

The protocol for polynomial interpolation is a secure adaptation of a well-
known algorithm as described in, e.g., [vzGG03, Chapter 10], just as the pro-
tocol for multipoint polynomial evaluation. The protocol is shown in Proto-
col 3.6. Also this protocol simply consists of two sub-protocols, where the first
constructs the same polynomial product and the second, shown in Protocol 3.7,
performs the interpolation traversing the tree from the root to the leaves by,
in fact, relying on the TreeEval protocol, and then constructing a tree with the
same structure from the leaves back to the root. As we will show, asymptoti-
cally, polynomial interpolation has the same complexity as multipoint polyno-
mial evaluation, however, because the tree has to be traversed in both direc-
tions, secure polynomial interpolation is a somewhat more costly operation.

We will give an outline of why the interpolation protocol is correct. Given
y1, y2, . . . , yN and distinct x1, x2, . . . xN , the Lagrange interpolation polynomial

L(x) =

N∑
i=1

yi

N∏
j=1
j 6=i

x− xj
xi − xj

(3.2)

has the desired properties of having degree less than N and L(xi) = yi for all
1 ≤ i ≤ N .
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Protocol 3.7 TreeInterp(JT K, JyK)
Input: • JT K, a polynomial product tree with N leaves

• JyK, a list of N points
1: JpK← JTk,0K
2: for i ∈ {1, 2, . . . , N} do
3: Jp′[i− 1]K← iJp[i]K
4: JvK← TreeEval(Jp′K, JT K)
5: for i ∈ {1, 2, . . . , N} do
6: Jv−1i K← JviK−1
7: JC0,iK← JyiKJv−1i K
8: for i← 1 to k do
9: for j ∈ {1, 2, . . . , Ni} do

10: JCi,jK←
∑Mi,j

`=1 JCi−1,j+`NiK
∏Mi,j

q=1
q 6=`

JTi+1,qK

11: return JCk,0K

Protocol 3.6 builds the polynomial product tree for (x−xi)Ni=1 and passes it
to Protocol 3.7. Protocol 3.7 assigns the root of the given polynomial product
tree,

∏N
i=1(x − xi), to p and then computes the derivative with respect to x,

which, due to the product rule for derivatives, can be expressed as

p′(x) =

N∑
i=1

N∏
j=1
j 6=i

(x− xj). (3.3)

Using the protocol for secure multipoint polynomial evaluation, the values

vi = p′(xi) =

N∏
j=1
j 6=i

(xi − xj) (3.4)

are evaluated for all 1 ≤ i ≤ N . Note that these are precisely the values of the
product appearing in the denominator of the Lagrange interpolation polyno-
mial. These values are inverted, multiplied by the corresponding yi values and
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assigned to C0,i for all 1 ≤ i ≤ N , i.e.,

C0,i = yi

 N∏
j=1
j 6=i

(xi − xj)


−1

. (3.5)

What remains is to multiply these values by the polynomial
∏N
j=1
j 6=i

(x− xj) and

sum the results together. This is performed in the final loop of Protocol 3.7.
The intuition is that the protocol goes up the polynomial product tree and, at
every level, multiplies in the product of all other product polynomials within
a set of siblings so that eventually each C0,i is multiplied by the product of all
(x− xj) except for j = i, as required.

Theorem 3.3 (Complexity). On input of size N , the round complexity of
Protocol 3.7 is O(logM N) and the multiplicative complexity is O(MN logM N).

Proof. The only steps requiring interaction are steps 4, 6, 7, and 10. In total,
steps 6 and 7 require N secure multiplications and N secure inversions in a
constant number of rounds, which is negligible with respect to the complexities
of subprotocol TreeEval, step 4.

The Ci,j are polynomials of degree less than M i, so the computation of each
Ci,j requires at most Mi,jM

i ≤ M i+1 secure multiplications. The total num-

ber of secure multiplications required for step 10 is at most
∑k
i=1NiM

i+1 ≤
kNM = MN logM N . Due to the parallelizability of the inner loop, the round
complexity is O(k).

3.4 The Permutation Protocol

The permutation protocol allows us to sample a uniformly random permutation
of given size N . It is based on the observation that the product of polynomi-
als is invariant under permutation of its factors. Protocol RandomPermutation,
displayed in Protocol 3.8, consists of three stages. First, N random monic
degree 1 polynomials are sampled obliviously. Then, the product of these poly-
nomials is computed securely. Finally, the product polynomial is made public
and factored by each party individually to retrieve the degree 1 polynomials, or
rather, their roots, from the first stage. These roots are sorted in an arbitrary,
but canonical order. If there are any collisions, the protocol fails. Otherwise,
the correspondence between the secret-shared and publicly known lists of roots
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Protocol 3.8 RandomPermutation(N)

1: Jr̂K $← FN
2: JT K← PolTree((x− Jr̂iK)Ni=1)
3: f ← reveal(JTk,0K)
4: find the (ordered) list of roots r of f
5: if ri = rj for any i 6= j then
6: abort with failure
7: else
8: return (r, Jr̂K, JT K).

establishes a permutation. These two lists are returned together with the poly-
nomial product tree as a representation of the permutation. The inclusion of
the polynomial product tree later allows for more efficient operations involving
the random permutation.

Protocol RandomPermutation imposes two restrictions. First, we must be
able to factor polynomials efficiently and uniquely. For this reason, we have
chosen to confine ourselves to secure schemes that compute over finite fields. In
particular, a scheme based on Shamir secret sharing is entirely suitable. Second,
the range of values we can express must be sufficiently large to avoid collisions.
We require that the order of the field in which we compute is sufficiently greater
than N , such that the probability of sampling the same element more than
once when sampling N elements uniformly and independently from the finite
field is negligible. This establishes a hidden dependency of the communication
complexity, in terms of bits, on the size of the permutation N .

The secret-shared representation of a permutation π is given as the triple
(r, Jr̂K, JT K), where r is a vector of pairwise distinct coefficients, r̂ = πr and T
is the polynomial product tree of (x − r̂i)Ni=1. The polynomial product tree is
not necessary to represent the permutation, but is used to efficiently compute
operations involving the permutation. We choose to explicitly incorporate the
polynomial product tree in the representation of a permutation, so that it is
computed only once, instead of every time an operation involving the permu-
tation is performed.

Theorem 3.4. Protocol 3.8 terminates after O(logM N) rounds of communica-
tion in which O(MN logM N) secure operations are performed. Upon successful
termination, r will be a uniformly random vector of N distinct elements and r̂
will securely establish a uniformly random permutation of r.
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Proof. The complexity of this protocol is dominated by step 2, which requires
O(MN logM N) secure operations in O(logM N) rounds by Theorem 3.1.

The only other steps that require any interaction between the parties are 1
and 3 and for each of these steps the amount of interactions is equivalent to at
most N elementary multiplications. This brings the total complexity of secure
operations, expressed in elementary multiplications to O(MN logM N). These
steps have constant round complexity, since these operations can be carried
out in parallel.

Because factorization of polynomials over finite fields is unique up to the
order of the factors and multiplication by constants, it is straightforward to see
that, if this protocol succeeds, then there exists a unique permutation π such
that r̂ = πr. Since the values of r were sampled independently, their order is
uniformly random, meaning the permutation is uniformly random.

To argue that this permutation is established securely, note that the only
information revealed by this protocol is the product polynomial at the root of
the multiplication tree (given the fact that revealing a secret value does not
leak any information other than the value itself and that the remaining se-
cure operations reveal no information at all, by the universal composability of
our arithmetic black box). Due to commutativity of multiplication, the prod-
uct polynomial is invariant under permutation of its factors, i.e., the product
polynomial remains the same regardless of the order in which the constituent
polynomials were multiplied.

For this protocol to function correctly, the parties must establish an order
of the recovered list of roots r. This can be achieved using an additional round
of communication. However, because the order of r is independent of the order
of r̂, the parties can simply sort the list of roots into r using some canonical
ordering.

The failure probability of Protocol 3.8 is dictated by the birthday paradox.
A simple approximation of the probability of sampling only unique elements
when sampling N elements uniformly and independently from a set of |F| ele-
ments is given by

Pr[no collisions] =
|F|
|F|
|F| − 1

|F|
· · · |F| −N + 1

|F|
>

(
1− N

|F|

)N
≥ 1−N

2

|F|
, (3.6)

where the second inequality is Bernoulli’s inequality. This shows that field
order |F| ≥ 2κN2 is sufficient to ensure that the probability of encountering
any collisions is smaller than 2−κ. For this chapter, we will simply assume
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that the order of the field over which we compute is large enough to make the
probability of collisions negligible. If we do not have the freedom to choose the
field over which we compute, and the order of the field is too small to make
the failure probability of the protocol negligible, we can sample the random
permutation by taking the random roots from an extension field. To permute
a given list, as is the topic of Section 3.5, then requires to convert the input
list of secret-shared data to secret-shares over the extension field and convert
the secret-shared output list back to secret-shares over the base field. For MPC
based on Shamir’s secret sharing scheme the conversion between the base field
and the extension field and vice versa is possible without interaction, if the
players use the same share reconstruction coefficients, taken from the base field,
for both types of secret-shares. Alternatively, the protocol can be run multiple
times in parallel. Both methods lead to obvious increases in the communication
complexity.

Aside from the complexity of secure operations, we should also pay some
attention to the computation complexity of local operations. The local compu-
tation complexity is determined by the polynomial factorization step (step 4).
The complexity of an algorithm for our problem of finding the N distinct roots
of the product polynomial is O(N(logN)3) operations in F [vzGG03, Chap-
ter 14]. Asymptotically, this easily dominates the complexity of the protocol,
however, due to the enormous difference between local computation and secure
operations involving communication, this is no object in practice.

We will briefly illustrate how the RandomPermutation protocol can be seen
as a generalization of the random bit protocol of [DFK+06], shown in Proto-
col 3.9. The random bit protocol starts by sampling a random element a ∈ F
and then computes s2, revealing the product. This corresponds to the first three
steps of RandomPermutation, for N = 2, where we restrict the sampling of r̂
to vectors such that r̂ = (a,−a). For such vectors, the root of the polynomial
product tree will be equal to x2 − a2 and revealing this polynomial is equiv-
alent to revealing a2. The protocol then aborts if a2 = 0, which corresponds
to x2 − a2 not having two distinct roots. If the random bit protocol does not
abort, it can be seen as having sampled a random permutation of size two. The
remainder of the protocol simply transforms the random permutation into a
binary value.
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Protocol 3.9 The random bit protocol of [DFK+06]

1: JaK $← F
2: Ja2K← JaKJaK
3: a2 ← reveal(Ja2K)
4: if a2 = 0 then
5: abort with failure
6: else
7: b←

√
a2

8: JcK← b−1Ja2K
9: JdK← 2−1(JcK + 1)

10: return JdK

Protocol 3.10 Rearrange(JvK, (r, Jr̂K, JT K))
Input: • JvK, a list of N secret-shared values

• (r, Jr̂K, JT K), the representation of a random permutation
1: JfK← Interpolate(r, JvK)
2: Jv̂K← TreeEval(JfK, JT K)
3: return Jv̂K

3.5 The Rearrangement Protocol

Given a random secret-shared permutation, as produced by Protocol 3.8, the
rearrangement protocol transforms a list of secret-shared values into a shuffled
list of those same values without any party obtaining information about the
permutation or the values themselves. The rearrangement protocol is displayed
in Protocol 3.10.

Note that the interpolation in step 1 is a linear transformation of JvK,
and therefore Interpolate in this step does not refer to Protocol 3.6, but to a
polynomial interpolation algorithm which can be carried out locally.

It is also possible to apply the inverse permutation to a given list by re-
versing the roles of r and Jr̂K in the interpolation and multipoint polynomial
evaluation steps. For completeness, the inverse shuffle protocol is shown in Pro-
tocol 3.11. Note that here the interpolation step is the secure protocol and the
multipoint polynomial evaluation is reduced to a linear operation on secret-
shared values. Because the inverse rearrangement protocol depends on secure
interpolation, it requires somewhat more secure operations to complete. This is
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Protocol 3.11 InverseRearrange(JvK, (r, Jr̂K, JT K))
Input: • JvK, a list of N secret-shared values

• (r, Jr̂K, JT K), the representation of a random permutation
1: JfK← TreeInterp(JT K, JvK)
2: Jv̂K← MultiEval(JfK, r)
3: return Jv̂K

the reason why we have chosen the approach of Protocol 3.10 as the “forward”
rearrangement and the approach of Protocol 3.11 as the inverse.

Theorem 3.5 states that given a secret-shared permutation of size n repre-
sented as the result of Protocol 3.8 and its multiplication tree, Protocol 3.10
applies the permutation to a given secret-shared list and Protocol 3.11 applies
the inverse permutation to the given secret-shared list.

Theorem 3.5 (Correctness). Given a secret-shared input list JvK of length
N and a secret-shared permutation JπK of size N , represented as (r, Jr̂K, JT K),
Protocol 3.10 produces the permuted input list Jv̂K, such that v̂ = πv. On the
same input, Protocol 3.11 produces the secret-shared, inversely permuted input
list Jv′K, such that v′ = π−1v.

Proof. Let W and Ŵ be the n × n Vandermonde matrices of r and r̂ respec-
tively. Since r̂ = πr, it follows that Ŵ = πW . Multipoint evaluation of a
polynomial corresponds to multiplication (from the left) of the vector contain-
ing the coefficients of the polynomial by the Vandermonde matrix of the points
in which the polynomial is to be evaluated. Interpolation of a polynomial is the
inverse of multipoint evaluation and can be expressed as multiplication from
the left by the inverse Vandermonde matrix.

The coefficients of the interpolating polynomial computed in step 1 of Pro-
tocol 3.10 can be represented as W−1JvK. The evaluation thereof in the points
Jr̂K is represented by multiplication from the left by JŴ K. As such, the result
corresponds to JŴ KW−1JvK = JπW KW−1JvK = JπvK.

Similarly, because the roles of r and Jr′K are reversed, the result of Proto-
col 3.11 is W JŴ K−1JvK = W JW−1π−1KJvK = Jπ−1vK.

Rearranging Composite Objects

Protocol Rearrange can be used to rearrange a list of ordinary secret-shared
values according to the given permutation. We briefly consider the problem of
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securely rearranging secret-shared composite objects, i.e., collections of multi-
ple secret-shared values. We will consider secret-shared objects that are rep-
resented as vectors of secret-shared values. We require furthermore that all
vectors representing the list of objects to be rearranged have the same length.
Let L be the length of these vectors. This means a list of N secret-shared com-
posite objects can be represented as a secret-shared N × L matrix, of which
each row represents one object.

Since protocol Rearrange rearranges the input list of secret-shared values
deterministically according to the given permutation, a matrix representing a
list of secret-shared composite objects can be rearranged by rearranging each
column of the matrix according to the same permutation.

Each column can be rearranged independently of the other columns and
these rearrangements can be performed in parallel. Therefore the round com-
plexity of this approach is equal to the round complexity of rearranging a
list of N elementary secret-shared values. The multiplicative complexity is
O(LNM logM N); a factor L greater than that of the elementary case.

For L � N it may be beneficial to, instead of running protocol Rearrange
directly on the input matrix, compute the rearrangement of the identity ma-
trix. The rearranged identity matrix is the permutation matrix corresponding
to the given permutation. The input matrix can then be rearranged through
multiplication from the left with permutation matrix. Computation of the per-
mutation matrix requires O(N2M logM N) secure operations. Here we make
use of efficient dot products, so that the multiplicative complexity of the ma-
trix product is exactly NL. We disregard the complexity of local operations
for the matrix product.

Oblivious Arrays

In this section we will briefly extend Example 2.14 for oblivious array indexing
to show how random shuffles can be used to apply techniques similar to the
square root oblivious RAM construction of [GO96] to implement array data
structures in MPC where both index and data are secret-shared. For an array
of size N , oblivious read operations have complexity at most O(

√
N) and obliv-

ious write operations complexity at most O(N logN), which is amortized over
O(
√
N) write operations. We will assume that any secret index is guaranteed

to be within the array bounds.
The results of example 2.14 can be directly applied to show how the ele-

ment at index i in an array of size N can be extracted using O(
√
N) bilinear

operations on secret-shares if both the index and the values in the array are
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secret-shared. This is achieved by determining the polynomial interpolating the
secret-shared values in the array, which is a linear operation, and evaluating
this polynomial at i, which requires O(

√
N) bilinear operations. Note that even

though we disregard the complexity of interpolating the polynomial as this is
a linear operation, the interpolated polynomial can be cached and, as will be-
come clear in the following paragraphs, will only have to be recomputed after
every O(

√
N) write operations.

Writing to an oblivious array at a secret index can, depending on the model
of security, be shown to be impossible in a sublinear (in N) number of secure
operations, since this problem can be considered equivalent to the problem
of computing the ith unit vector which produces N − 1 linearly independent
secret-shared binary values. Because these values should be independent of each
other, each of these requires a separate secure operation. Therefore we apply
the commonly used approach of a small stash of size O(

√
N) for writing to a

secret index.
Concretely, the stash consist of an, initially empty, list of index-delta pairs.

Let L be the size of the stash. When a secure write operation of value v at index
i is performed on the oblivious array, first, for each index-delta pair (ij , vj) at
position 1 ≤ j ≤ L in the stash, the value of ij is obliviously compared to i
and, if these are equal, obliviously replaced by N + j. This ensures that every
index in the stash is unique and the value i does not occur. Furthermore, any
stashed index does not exceed the combined array and stash size. Then, the
interpolating polynomial p is obliviously evaluated at i, as if performing an
oblivious read operation on the array while ignoring the stash. Finally, the
index i and the difference δ = v − p(i) are appended to the index-delta pair
stash.

The complexity of the oblivious write operation is O(
√
N + L), where L is

the size of the stash, which increases by 1 for every write operation performed.
To ensure that the complexity does not grow without bounds, the stashed
values should be incorporated into the array at appropriate times so that L
can be reset to 0.

To incorporate the stash into the array, first a random permutation of size
N+L is sampled obliviously. Recall that the L indices in the stash are all unique
and within the bound ofN+L. Using a combination of polynomial interpolation
and evaluation, the permutation is applied to the stashed indices. Note that
this does not mean the list of stashed indices is permuted, rather that for each
index the corresponding index after permutation is computed. This can be
done using O(

√
N + L) secure operations per stashed index and each of these

can be evaluated in parallel. Then the permuted indices are revealed to all
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parties. Because of the uniqueness and the random permutation, the revealed
permuted indices are a uniformly random selection of L out of N + L and
therefore reveal no information about the secure write operations represented
by the stash. Finally, an array of size N + L is composed, consisting mostly
of zeroes, but containing the secret-shared deltas at positions indicated by the
permuted indices, to which then the inverse permutation is applied. The first
N elements of the permuted delta array are then added element-wise to the
oblivious array. The stash is then reinitialized to the empty stash.

The complexity of incorporating the stash into the array depends on both
N and L and is given by

O(L
√
N + L+ (N + L) log(N + L)). (3.7)

By bounding L ≤
√
N the complexity of a single oblivious write is O(

√
N) and

the complexity of incorporating the stash is O(N logN). The stash then has
to be incorporated after every

√
N write operations, leading to an amortized

Õ(
√
N) complexity for oblivious write-and-incorporate operations.

The oblivious read operation should also take into account any stashed
values. An oblivious read at index i can simply be carried out by performing
polynomial interpolation and evaluation on the main array and comparing each
stashed index to i to obliviously determine which, if any, delta should be added
to the result. Note that any oblivious equality tests mentioned above could be
more efficiently implemented than using a secure protocol for general equality,
since it can be assumed that the index values lie within the bounds of the
combined array and stash.

3.6 Operations on Permutations

Using the Rearrange protocol it is possible to carry out operations on secure
permutations themselves. We show how to securely compute the inverse of a
given permutation and how to securely compute the composition of two given
permutations.

First, to establish a secret-shared representation of the inverse of a secret-
shared permutation, we can use the InverseRearrange protocol. By applying
InverseRearrange to any vector, b of N pairwise distinct coefficients, and any
secret-shared representation of a permutation π we obtain a pair (b, Jb̂K) such

that b̂ = π−1b. By augmenting this pair with the polynomial product tree of
the vector (x− Jb̂iK)Ni=1, the resulting triple forms a valid representation of the
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Protocol 3.12 InversePermutation((a, JâK, JAK))

1: Jb̂K← InverseRearrange(a, (a, JâK, JAK))
2: JBK← PolTree((x− Jb̂iK)Ni=1)

3: return (a, Jb̂K, JBK)

Protocol 3.13 Compose((a, JâK, JAK), (b, Jb̂K, JBK))

1: JĉK← Rearrange(JâK, (b, Jb̂K, JBK))
2: JCK← PolTree((x− JĉiK)Ni=1)
3: return (a, JĉK, JCK)

permutation π−1. For completeness, the InversePermutation protocol is given in
Protocol 3.12.

In the same manner, it is also possible to compose secret-shared permu-
tations. Given two permutations πa and πb, the first of it is represented as
(a, JâK, A) we can derive the composition πc = πbπa using the Rearrange pro-
tocol. We rearrange â by πb to obtain ĉ = πbâ = πbπaa. The pair (a, JĉK),
augmented with the polynomial product tree of (x − ĉi)

N
i=1 forms a secret-

shared representation of the permutation πbπa. Protocol Compose is displayed
in Protocol 3.13.

3.7 Imposing a Cycle Structure

In this section we will study the issue of how to securely sample a uniformly
random permutation with a given cycle structure. The results of this section
are motivated by the problem of secret Santa. The secret Santa problem is the
problem of sampling a uniformly random permutation without any fixed points.
One generalization of this problem is that of sampling uniformly random per-
mutations that do not contain cycles shorter than some given length. A variant
is that of sampling uniformly random cycles of full length, or, more generally,
sampling uniformly random permutations with a given cycle structure.

For the original secret Santa problem, and its generalization avoiding short
cycles, we do not propose any solution, other than a rejection sampling ap-
proach, in which random permutations are sampled and those containing fixed
points rejected. Note that secure public fixed point detection is straightfor-
ward given secure public equality testing. Similarly, detection of short cycles
can be performed efficiently, but at cost linear in the cycle length to be de-
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Protocol 3.14 Conjugate((r, Jr̂K, JT K), σ)

1: Jb̂K← InverseRearrange(σJr̂K, (r, Jr̂K, JT K))
2: JBK← PolTree((x− Jb̂iK)Ni=1)

3: return (r, Jb̂K, JBK)

tected, by applying the permutation to itself and publicly testing whether the
intermediate and final results contain any fixed points.

Instead, we solve the problem of securely sampling a random permutation
with a given cycle structure. It is known from the theory of symmetric groups
that all permutations of a given cycle structure form a conjugacy class, i.e.,
permutations a and b, both of length N , have the same cycle structure if and
only if there exists a permutation t of length N , such that b = t−1at. The proto-
col for sampling a uniformly random permutation with a given cycle structure
consists of sampling a uniformly random permutation t and computing the
composition t−1at where a is any publicly known permutation with the given
cycle structure.

Protocol Conjugate, displayed in Protocol 3.14, securely computes a secret-
shared representation (b, Jb̂K, JBK) of the permutation π−1σπ, given a permu-
tation σ and secret-shared representation (r, Jr̂K, JT K) of permutation π. For

correctness, we want that b̂ = π−1σπb. By letting b = r, we have πb = r̂ and
since σ is publicly known, we can compute σπb = σr̂ without any interaction.
To compute b̂, we make use of protocol InverseRearrange.

We claim that protocol Conjugate yields a uniformly random permutation
of the given cycle structure, when called with a uniformly random permutation
as its first input. What remains to be proved is that π−1σπ gives a uniformly
random element from the conjugacy class of σ, when π is a uniformly random
permutation. This is implied by the following lemma.

Lemma 3.6. Let a and b be permutations from the same conjugacy class. Let
Ca→b be the set of all permutation such that b = π−1aπ for π ∈ Ca→b. Then
|Ca→b| = |Ca→a|.

Proof. Since a and b are of the same conjugacy class, Ca→b is not the empty
set. Let π ∈ Ca→b. Then for any ι ∈ Ca→a, we have b = π−1aπ = (ιπ)−1a(ιπ).
Due to the invertibility of permutations each of the ιπ is a distinct element of
Ca→b and we have |Ca→b| ≥ |Ca→a|. Conversely, for any φ ∈ Ca→b, we have that
a = φbφ−1 = (πφ−1)−1a(πφ−1). Here each πφ−1 is a distinct element of Ca→a,
which gives |Ca→b| ≤ |Ca→a|.
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The above result also shows that the number of elements in a conjugacy class
of permutations of size N divides the number of permutations, N !. Because for
all but trivial permutation sizes there exists more than one conjugacy class,
the number of elements in a conjugacy class strictly divides N ! for N > 1.
Our method of sampling a random element from a given conjugacy class uses
a random permutation of the same size and therefore ‘consumes’ more entropy
than strictly necessary. We leave as an open question whether an efficient secure
protocol with a simple and elegant description exists for randomly sampling an
element of a given conjugacy class using strictly less entropy than required for
a random permutation.

3.8 Partially Known Permutations

In this section we will consider an efficient variant of the RandomPermutation
protocol in which players learn part of the permutation in the sense that each
position of the random permutation is revealed to at least one player and it
is publicly known for each position to which player or players it is revealed.
This problem admits a more efficient solution than can be achieved through
Protocol 3.8.

Two obvious applications of such partially known permutations are secure
secret Santa, in which each player’s name is drawn and revealed to exactly
one player, and dealing cards for games such as bridge, in which each card is
dealt to exactly one player. More generally, partially known permutations can
be used as a building block in secure protocols for anonymous publishing, from
which in turn protocols for securely and randomly partitioning data amongst
players can be constructed. An example application would be to obliviously
partition the records of a joint database amongst all players such that each
record is randomly revealed to one player, who can then locally analyse their
partition of the database without revealing the origin of the records.

In the following we will restrict ourselves to partially known permutations
in which each position is revealed to exactly one player for simplicity. Further-
more, since partially known permutations are uniformly random, it does not
matter which positions are revealed to each player, only the number.

Secure partially known permutations can be obtained by sampling a random
permutation using Protocol 3.8 and then immediately revealing each of the
secret-shared roots to the appropriate player. If, instead of all players jointly
sampling each of the roots, each player would randomly sample their own roots
in Protocol 3.8, then each player could input their own product polynomial
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and the multiplicative complexity would be reduced to O(N log q), where q is
the number of players. Similarly, the round complexity would be reduced to
O(log q).

Letting the players sample their own roots in Protocol 3.8 improves both
the multiplicative and round complexities by a factor of logq N . However, for a
truly more efficient protocol, we must abandon our base of general multiparty
computation and turn to a scheme that is especially suitable for this scenario.

The secure protocol for obliviously sampling a partially known permutation
is displayed in Protocol 3.15. The main idea remains the same as in Protocol 3.8:
the players sample a number of random roots and obliviously compute the
corresponding polynomial. Instead of using Shamir secret sharing, however, in
this protocol secrets are shared such that the secret value is equal to the product
of the shares, i.e., the protocol uses additive secret sharing on the multiplicative
group of the field. This form of secret sharing allows any non-zero element to
be shared and requires all players to participate in reconstruction of the secret.
We shall call this the ‘multiplication secret sharing scheme’, since the term
multiplicative secret sharing already carries a different meaning and the term
additive secret sharing, although technically correct, can be confusing in this
context. Note that, due to the use of the multiplication secret sharing scheme,
we abandon our usual notation denoting a secret-shared value v as JvK and
specify the protocol explicitly for each player i.

In this protocol, ⊗ denotes element-wise product of vectors, i.e., if a, b, and
c are vectors of length N , and c = a ⊗ b, then ci = aibi for all 1 ≤ i ≤ N .
Similarly, by a−1 we denote the element-wise inverse of a, such that a⊗a−1 is
the all-ones vector of length N . To exchange a pair (a, b) with a player means
sending a to that player and receiving b from that same player, communicated
via a private channel.

The advantage of the multiplication secret sharing scheme is that multiplica-
tion of shares is a local operation. This completely eliminates the multiplicative
complexity of Protocol 3.8. The only communication required in Protocol 3.15
is for sharing secret values (step 6) and revealing shared secrets (step 9), which
gives linear communication complexity and constant round complexity. The
reason this protocol cannot be used for completely obliviously sampling a ran-
dom permutation is that the multiplication secret sharing scheme does not
permit linear operations on secret-shared values to be computed locally. For
partially known permutations the required linear operations are carried out by
the player who knows the plaintext of his random roots, but in general this is
not possible.

To efficiently multiply polynomials, the polynomials are evaluated at mul-
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Protocol 3.15 RandomPKPermutation(n, e) for each player i

Input: • L, where `j is the number of cards to be dealt to the player j
• e, a list of N =

∑
j `j different points

1: ri
$← (F∗ \ {e1, . . . , en})`i . pairwise distinct

2: fi(x)←
∏`i
j=1(x− rij)

3: vi ← fi(e)
4: for each other player j ∈ {1, . . . , q} \ {i} do

5: mij
$← (F∗)N

6: exchange (mij ,mji) with j

7: wi ← vi ⊗
⊗q

j=1
j 6=i

(mij ⊗m−1ji )

8: for each other player j ∈ {1, . . . , q} \ {i} do
9: exchange (wi,wj) with j

10: t←
⊗q

j=1 wj

11: f ← Interpolate(e, t)
12: find the (ordered) list of roots s of f
13: if sj = sk for any j 6= k then
14: abort with failure
15: else
16: return (s, ri)

tiple points and the evaluations are multiplied. Unlike Protocol 3.8, in the case
of Protocol 3.15 the players must agree on the set of points in which the poly-
nomials are to be evaluated. This is why the set of evaluation points, e, is
explicitly given as input to the protocol. Since the multiplication secret shar-
ing scheme does not allow zeroes to be shared, the protocol would fail if the
polynomials have a root at any of the evaluation points. Because the players
sample their random roots in plaintext, they can simply exclude the evaluation
points to avoid this possibility. Similarly, each player also ensures that there
are no duplicates within its own set of roots. Although the possibility of over-
lap between players’ roots is not eliminated, this reduces the probability of the
protocol failing.

To share a secret in the multiplication secret sharing scheme, a player sends
each other player a uniformly random value and sets up its own share as the
inverse of the product of all other shares, multiplied with the secret value. Be-
cause the information that is communicated with other players is independent
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of the secret value, it is possible to generate this information pseudorandomly,
thereby eliminating the need for any communication to share a secret. This
means that, apart from setting up the necessary keys for pseudorandom secret
sharing, the only communication required in Protocol 3.15 is revealing n shares
in step 9.

Unlike Protocol 3.8, which inherits its security from the underlying schemes,
Protocol 3.15 is not actively secure. The players can obviously exploit their
ability to select their own roots to manipulate their positions in the permu-
tation. This can be prevented by randomly permuting the recovered roots at
the end of the protocol. This permutation can be carried out in the clear,
but it is important that this permutation is unknown to the players at the
time they select their roots and that it is sampled uniformly randomly. This
can be achieved with straightforward commit-and-reveal techniques. Further
requirements against malicious players are that the players check that there
are exactly N roots and that these contain the roots they contributed to the
product polynomial.

3.9 Playing Card Games

Perhaps the most well-known example of a random permutation is a shuffled
deck of playing cards. Our random permutation protocol is suitable to shuffle
a virtual deck of cards for, e.g., online poker games, and, in fact, the general
permutation protocol was originally developed from more a restricted protocol
that was closer to the RandomPKPermutation protocol, specifically to satisfy the
requirements of virtual poker games. Compared to the RandomPKPermutation
protocol, these requirements can be summarized loosely as the ability to shuffle
a full deck of cards such that each card can be dealt separately and dynamically
as the game progresses.

In this section we will briefly and informally outline how the protocols
described in this chapter can be applied to implement secure card games. The
techniques described in this section may also find application in general secure
computation.

In physical card games, each card has a single, well-defined location, often
part of a pile of cards or a player’s hand. We will restrict our attention to games
in which each player is able to know the location of each card, disregarding
games involving sleight-of-hand. We can simulate such card games by keeping
track of the location of each card. Even if the location of each card is known to
all players, the face value may not be. This is simulated by secret sharing the
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face value of the card. The secret-shared face value of a card can be selectively
revealed to players when appropriate.

For simplicity, we will assume that, at least, the universe of cards is publicly
known, i.e., every player knows all cards that can occur during a game. For
example, for a game of bridge the players know all cards of the standard 52-
card deck and no cards from outside of this deck, such as, e.g., a joker, the
ace of coins from an Italian deck, or a custom card secretly mixed in by one
of the players, can occur. However, this is not a major restriction and, in fact,
games with custom cards can be implemented using, for example, a combination
of anonymous publishing, symmetric encryption and secret-shared encryption
keys as the face value of cards.

The location of each card, i.e., a player’s hand or a pile of cards, is known
to all players at all times. It is precisely when the face value of a card is
known to some player, but should not be, that we can apply our secure random
permutation and rearrangement protocols to all cards in the same location to
uniformly randomly redistribute the face values of all cards in the particular
location. Most actions that are part of playing a game of cards can then be
simulated as alterations to the location of cards, revealing the secret-shared
face values of cards, and securely shuffling cards in the same location.

Note that, under certain circumstances, the face values can be shuffled more
efficiently than using the full shuffle protocol. For example, if the list of face
values to be shuffled is publicly known, and all face values are (or can safely
considered to be) distinct, the list can be randomized using just a secure random
permutation and the secure rearrangement is superfluous. In that case a public
mapping from the random roots representing the secret-shared permutation to
the face values can be established without additional communication. Also in
the case of a single player shuffling their hand, more efficient solutions exists,
by letting the player choose the face values of the cards they are holding, or the
permutation to apply to their hand. Note that for these solutions the player
should prove that the modification of their hand is legal to obtain an actively
secure protocol.

There is one kind of manipulation of cards in games that the author can
think of that is not covered by the above and that is inserting a card in a
secret position in a pile and generalizations thereof. This is a slightly more
complicated operation, which can be implemented by virtually putting the
card on top of the pile and then letting the player secret share the permutation
matrix, S, representing the linear operation of taking the top card of the pile
and inserting it at a given position. The matrix S that represents the operation
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Protocol 3.16 ConfirmUnitVector(JuK)
Input: u, a vector of length n

1: r
$← (F∗)n

2: p(X)←
∏n
i=1(X − ri)

3: JzK← p(r · JuK)
4: z ← revealJzK
5: if z 6= 0 then
6: abort with failure

of moving the top card of a pile of n cards to position p is given by

si,j =


1 if i < p ∧ j = i+ 1;

1 if i = p ∧ j = 1;

1 if i > p ∧ j = i; and

0 otherwise.

(3.8)

This approach lets the players keep the position at which the card is inserted
secret, but this approach is obviously not secure against a malicious player, as
the player can secret share an arbitrary matrix, which may enable them to
manipulate the deck in an arbitrary manner. To make this approach actively
secure, first note that it is sufficient for the player to only secret share the first
column of this matrix, as the remaining columns are a linear function of the
first: for j > 1

si,j =


1−

∑n
`=i si,1 if j = i;

1−
∑i
`=1 si,1 if j = i+ 1; and

0 otherwise.

(3.9)

For an actively secure protocol, we then only need to ensure that the player
secret shares a unit vector rather than an arbitrary vector. There are two
obvious ways to achieve this. First, we could use an actively secure protocol to
sample a random unit vector, reveal it to the player and let the player publicly
announce a rotation that permutes the random unit vector into the desired
unit vector. Alternatively, the player can provide a proof that the vector it has
shared is a unit vector. There exists a very straightforward way to prove this
with MPC. Protocol ConfirmUnitVector (Protocol 3.16) allows the players to
prove that a given secret-shared vector is a unit vector.

If the given vector, u is a unit vector, the protocol terminates normally. If
u is the null vector, the protocol is guaranteed to abort. The probability of the
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protocol completing without abort, if u is neither a unit vector, nor the null
vector, is n/|F|. If necessary, the protocol can be repeated multiple times in
parallel.

One of the things that we have not shown to be possible using our shuffle
protocol is to produce imperfect shuffles for card games that require that the
deck not be randomized “too much” between games. However, since we have
no good description of the various classes of distributions of suitable permu-
tations for such games, we deem this issue mostly outside the scope of secure
computation.





Chapter 4

Secure Multi-Pivot Quicksort

4.1 Introduction

In this chapter we will describe a protocol for securely sorting lists of secret-
shared values. Hamada et al. [HKI+12] show that any comparison sort al-
gorithm is data-oblivious (meaning that the algorithm’s execution time and
branching behavior are independent of secret input data) if the input list is
first securely shuffled and all elements of the list are pairwise distinct. They
also show that if the input does not satisfy the distinctness assumption, that
an oblivious sort protocol can be obtained by obliviously associating a unique
label with each value and obliviously ordering two values by their respective
labels in case the values are identical.

Our secure sort protocol combines the oblivious sort technique of [HKI+12]
with our secure shuffle protocol of Chapter 3. Although the technique for se-
cure sorting presented in this chapter is not novel, we believe our treatment
of how to handle duplicate values is more comprehensive than [HKI+12]. The
main contribution of this chapter is, in fact, our variant of the quicksort al-
gorithm, which allows for a trade-off between the complexities in terms of the
number of secure comparisons operations and the number of secure comparison
rounds. In particular, our multi-pivot quicksort allows for choosing the number
of comparison rounds independently from the size of the input list.

Related Work

The prevalent method for oblivious sorting is through the use of sorting net-
works. Sorting networks are circuits composed of compare-and-exchange oper-
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ators, which are operators with two input wires and two output wires such that
the first output wire carries the minimum of the inputs and the second output
wire the maximum. Given a protocol for secure comparison, secure compare-
and-exchange operators can be efficiently instantiated. Since the structure of a
sorting network for a given input size, which we consider publicly known in this
chapter, is independent of the input data, and compare-and-exchange opera-
tors can be instantiated securely and efficiently, sorting networks are suitable
as a basis for secure sorting. The relevant properties of a sorting network de-
termining the complexity of the secure sorting protocol derived from it are the
number of compare-and-exchange operators, which directly translates to the
number of secure comparisons, and the depth of the network, since the round
complexity scales linearly with the depth of the sorting network.

Ajtaj, Komlós, and Szemerédi [AKS83] show that there exist sorting net-
works of depth O(logN), where N is the size of the input. Such networks there-
fore have O(N logN) compare-and-exchange operators. This result, which has
become known as the AKS sorting network, asymptotically matches the opti-
mum for comparison sort, however, their result is of theoretical interest only,
as the hidden constant in the big O is very large. Zig-zag sort, proposed by
Goodrich [Goo14], also features O(N logN) compare-and-exchange operators,
without the impractical hidden constant of the AKS sorting network. How-
ever, since the depth of zig-zag sort is also O(N logN), this network is also not
considered of practical interest. Instead, one of several sorting networks with
depth O(log2N) and O(N log2N) compare-and-exchange operators, such as
Batcher’s odd-even mergesort or bitonic sort [Bat68], are used in practice.

Leighton and Plaxton propose a relaxation of sorting networks that cor-
rectly sort the majority of the input sequences, but fail on some inputs [LP98].
Thus, with the appropriate randomization of the input, their construction
can be viewed as a Monte Carlo algorithm. The depth of their circuit is
about 7.44 log2N . Goodrich obtains similar results with randomized Shellsort,
in which not the input sequence, but the sorting network itself is random-
ized [Goo11]. The depth of randomized Shellsort is 6 log2N . Furthermore, the
algorithm admits a simple description. In both of these, each element is com-
pared to exactly one other element in each round, so both of these algorithms
clearly feature O(N logN) comparison complexity. Note that, in contrast to
the technique discussed in this chapter, these approaches would make use of
a publicly sampled random permutation and secure comparison with private
output. The concrete complexities of the approaches by Leighton and Plaxton,
and Goodrich are very low. Our approach still compares favorably, however,
and permits more flexibility in that the comparison depth can be chosen freely.



4.2. Multi-Pivot Quicksort 57

As an alternative to using sorting networks, the method of shuffling the
input and sorting based on secure comparison with public output, which we
employ in this chapter, was first described by Hamada et al. [HKI+12]. In this
work the sorting algorithm used is ordinary quicksort. Later works using the
same technique include [HICT14] and [BLT14], which explore the application
of secure radixsort. We improve on these results in two ways: our method
of shuffling the input list, described in Chapter 3, is more efficient, and we
generalize the quicksort algorithm to allow for a trade-off between the number
of comparison operations and the number of rounds of comparisons.

In this chapter we describe a novel multi-pivot quicksort algorithm and an-
alyze its complexity. Note that similar variants of quicksort with 2 or more piv-
ots have been studied in practical implementations, because these may alleviate
efficiency problems arising in concrete implementations of ordinary quicksort
due to cache misses and difficulties with branch prediction. For these reasons,
2-pivot quicksort was introduced into the Java standard library for sorting
primitives, for example. Our motivation for studying multi-pivot quicksort is
to take advantage of the (apparent) parallelism that is inherent in secure multi-
party computation and we therefore focus on a different notion of efficiency. For
this reason we do not include any existing results on variants of quicksort us-
ing multiple pivots in this section. Furthermore, the aforementioned results are
typically discussed on, e.g., implementers’ mailing lists, rather than reported
in academic literature.

4.2 Multi-Pivot Quicksort

In this section we will describe our multi-pivot quicksort algorithm. The algo-
rithm is a comparison sort algorithm, meaning that it determines the ordering
of the input list using only comparison operations between pairs of values. As
shown by Hamada et al. [HKI+12], if the input list is obliviously shuffled, then
any comparison sort algorithm with the comparison operators instantiated by
a secure comparison protocol with public output forms an oblivious sorting
protocol provided that all elements in the input list are pairwise distinct.

Because security only follows if the input list is randomly ordered and all
elements are unique, we design an algorithm that is efficient under these condi-
tions, i.e., our algorithm does not have to be efficient if either condition does not
hold and, in fact, in that case, our algorithm can exhibit quadratic complexity,
which is the worst-case behavior of quicksort.

We have chosen to base our algorithm on quicksort, because it both features
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expected O(N logN) comparison complexity and expected O(logN) depth
complexity for inputs of length N . The comparison complexity is simply the
number of comparisons that need to be carried out to determine the order of
the input list. The depth complexity is the number of rounds of comparisons
that need to be carried out, where comparisons that do not depend on the out-
come of each other are executed in parallel. Both the comparison complexity
and depth complexity have small and practical concrete constants. However,
the typical execution of quicksort starts with a few rounds in which many com-
parisons are performed, followed by a relatively large number of rounds with
only few comparisons.

As a quick recap, the basic quicksort algorithm sorts a list by picking the
first element of the list as pivot, then comparing each other element to this
pivot and separating those into two list of elements respectively smaller than
and greater than (or equal to) the pivot. Quicksort is then applied recursively
on the two lists as long as they are not empty, which returns a sorted list of
all elements smaller than the pivot and a sorted list of all elements greater
than or equal to the pivot. Finally, these two sorted lists are concatenated with
the pivot in between, resulting in the sorted list of the input. Although the
worst case running time of quicksort is quadratic in the input size, it achieves
O(N logN) in the average case and performs fewer comparisons in practice
than algorithms with worst case O(N logN) running time. If the input list is
randomly ordered and all its elements are unique, we can expect quicksort to
behave as in the average case. Otherwise it may exhibit worst case performance
with O(N2) comparison complexity and O(N) depth complexity.

Note that the all comparisons made against a single pivot can be carried
out in parallel, which enables us to use quicksort as a base for a protocol with
low round complexity. Although using quicksort without modifications would
already give us expected logarithmic round complexity the situation is not
ideal. In a typical run of quicksort at some point most of the list is sorted, but
some unsorted ‘pockets’ still exist. Sorting these requires only few comparisons,
but relatively many rounds. Furthermore, quicksort gives us an expected round
complexity, but no guarantees.

Our algorithm is a variant of quicksort in which the round complexity is
fixed in advance. To achieve this property, we have to perform a slightly higher
number of comparisons. As with the permutation and shuffling protocols, the
user is free to choose the round complexity, and from this the communication
and computation complexities follows. We fix the round complexity of quicksort
by compressing multiple rounds into one. Instead of taking a single pivot, we
take multiple pivots at the same time and make all comparisons necessary
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to determine these pivots’ position in the sorted list. The additional pivots
selected this way can be seen as those pivots that would have been selected by
ordinary quicksort in future rounds. Because we do not yet have information
about the relation between the additional pivots, we have to compare them to
all remaining elements, rather than first reducing the size of the list, giving rise
to a higher expected number of comparisons compared to ordinary quicksort.

An informal description of the multi-pivot quicksort algorithm is displayed
in Algorithm 4.1. In addition to the input list, the multi-pivot quicksort al-
gorithm takes a (maximum) comparison depth as input. The number of com-
parison rounds is guaranteed not to exceed the given maximum depth. If the
maximum comparison depth is equal to one, then the only possibility to sort
the input list with certainty is by comparing every single pair of elements in
parallel. Otherwise, the optimum number of pivots, p, i.e., the number of pivots
leading to the smallest expected number of comparisons is computed numeri-
cally. Then, the list is partitioned into two lists of p pivots and N−p non-pivots
and each pivot is compared to each non-pivot in parallel. Note that the pivot
and non-pivot partitions are symmetrical; the term pivot is only used in keep-
ing with the ordinary quicksort algorithm. The list is then reordered according
to the outcome of the comparisons. It is very unlikely that the list is completely
sorted at this point, so the list consists of bins of elements that, although the
bins are in the correct position in the list, the order of the elements within
each bin is completely unknown with respect to the other elements in the bin.
Therefore, as a final step, each bin is sorted recursively and in parallel by multi-
pivot quicksort, where the maximum comparison depth has been decreased by
one.

By similarity to ordinary quicksort, it should be clear that multi-pivot quick-
sort sorts the input list correctly. It is also clear that the multi-pivot quicksort
algorithm has depth complexity at most equal to the given maximum com-
parison depth. Since multi-pivot quicksort is a comparison sort algorithm, the
algorithm can be instantiated as a secure protocol if the input list is obliviously
shuffled and all elements are pairwise distinct.

The optimal number of pivots, computed on line 5, can be computed numer-
ically. Although the complexity of computing this number näıvely is asymp-
totically greater than the complexity of sorting itself, we will neither give a
procedure for computing the optimal number of pivots, nor consider the com-
putational cost of doing so in our analysis. Our reason for this is that the com-
putation of the optimal number of pivots is not a secure computation, and we
consider the arithmetic operations needed for this computation orders of mag-
nitudes faster than the secure comparisons needed for sorting. Furthermore,
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Algorithm 4.1 MPQSort(v, d)

Input: • v, a list of N values
• d, the maximum comparison depth

1: if d = 1 then
2: pairwise compare all elements in v
3: reorder all elements so that the list is ordered
4: else
5: determine the optimal number of pivots p
6: pairwise compare each of the first p elements of v to each of the last

N − p elements of v
7: reorder all elements in the list into bins in increasing order
8: for each bin v′ apply MPQSort(v′, d− 1) in parallel

the computation of the optimal number of pivots can make use of precom-
puted tables and well-known techniques for search problems, such as dynamic
programming and approximation, all of which are outside the scope of this
work.

Despite not explicitly describing a method for determining the optimal num-
ber of pivots in each round, we must determine the comparison complexity
of multi-pivot quicksort, which depends on the pivot selection strategy. We
bound the comparison complexity by describing a variant of the algorithm,
FixedMPQSort. Although the algorithm, displayed in Algorithm 4.2, is de-
scribed iteratively, rather than recursively, and it returns the permutation that
would sort the input list, rather than directly sorting the list, it essentially
performs the same as MPQSprt, apart from the pivot selection strategy. The
iterative presentation allows to more clearly analyse the complexity and for
a more direct translation to secure computation. Returning the permutation
that sorts the input list allows us to compactly describe how to securely sort
complex data structures by a sort key in Section 4.4

FixedMPQSort differs from MPQSort in its pivot selection strategy in two
ways. First, rather than determining the number of pivots selected in each
round dynamically based on the size of the remaining work, the number of
pivots selected in each round is fixed and given as input to the algorithm. This
means that the number of pivots to select in each bin cannot be determined
independent from the other bins. The second way in which the pivot selection
strategy of FixedMPQSort differs from MPQSort is that the elements of the
input list are not explicitly partitioned into bins depending on the outcome
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Algorithm 4.2 FixedMPQSort(v, π)

Input: • v, a list of N values
• π, a pivot selection sequence

1: p← 0N

2: for `← 1 to |π| do
3: d← 0N

4: C ← 0N×N

5: for i← π`−1 + 1 to π` do
6: for j ← i+ 1 to N do
7: if pi = pj then

8: cij ← vj
?
< vi

9: cji ← 1− cij
10: for i← π`−1 + 1 to π` do
11: di ←

∑
j cij

12: for j ← π` + 1 to N do
13: dj ← maxi((1− cij)di) + 1

14: p← p + d

15: return p

of previous comparisons. Instead, simply a predetermined number of elements
that have not been selected as pivots previously are selected from the global
list and compared to the other remaining elements in their respective bins,
regardless of the size of these bins.

Because the bins form non-overlapping sub-problems, the strategy of select-
ing pivots globally, rather than per bin, cannot be expected to perform more
efficiently than the strategy of MPQSort. Furthermore, any fixed sequence of
number of pivots to select in each round can at best be expected to lead to the
same comparison complexity as the optimal such sequence. We do not attempt
to find the optimal sequence, and instead show that simply using an exponential
sequence leads to expected O(N logN) comparison complexity and O(logN)
depth complexity.

Algorithm 4.2 is a far cry from the elegant description ordinary quick-
sort permits. Furthermore, the complexity of local operations, as described, is
strictly O(N2). However, this description clearly indicates which secure com-
parison are needed and when these are to be carried out. To instantiate this
algorithm as a secure protocol in the shuffle-and-sort setting, only the compar-
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ison on line 8 has to be instantiated with a secure comparison protocol. Since
the output of the secure comparison is public, none of the state of the algorithm
has to be kept secret, apart from the input list, which is given in secret-shared
form. Note that the apparent O(N2) complexity of local operations is only for
the sake of simplified presentation. In reality, these operations can be imple-
mented using more efficient data structures and the complexity of these local
operations scales linearly with the number of comparisons performed, which is
one of the complexity measures of interest.

In addition to the input list which is to be sorted, Algorithm 4.2 also takes
a pivot selection sequence, π as input, which determines the number of pivots
selected in each round. The pivot selection sequence is cumulative, in that the
ith term of this sequence describes how many pivots should have been selected
as pivot in total after the ith round. For convenience, we let π0 = 0. Because
all but one element has to be selected as pivot to ensure the list is completely
sorted, we require that πk = N −1, where k = |π| is the number of comparison
rounds.

Theorem 4.1. The expected number of comparisons made by Algorithm 4.2
when sorting a list of N pairwise distinct elements using pivot selection se-
quence π is

|π|∑
i=1

(πi − πi−1)
2N − πi − πi−1 − 1

πi−1 + 2
,

where the expected value is taken over all permutations of the input list.

Proof. Because we assume the elements in the input list are pairwise distinct,
each element has a well-defined position in the ordered list consisting of the
same elements. Consider the pair of elements in the unordered list which are at
positions a and b in the ordered list. Let d = |b−a|+1 be the distance between
these two elements in the ordered list, including the elements themselves. As
the protocol is executed, these elements will be compared to each other if and
only if either of them is selected as a pivot in a particular round and none of
the elements that are on positions between a and b, inclusive, in the ordered
list have been selected as a pivot in any previous round. We can express the
probability that two elements at distance d will be compared in the ith round
as (

d

0

)(
N − d
πi−1

)
(
N

πi−1

)
1−

(
2

0

)(
N − πi−1 − 2

πi − πi−1

)
(
N − πi−1
πi − πi−1

)
 . (4.1)
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Recall that (
n̂

k̂

)(
n− n̂
k − k̂

)
(
n

k

) (4.2)

is the probability of drawing k̂ elements from a subset of size n̂ when drawing k
elements from a population of size n. The left hand fraction in Equation (4.1)
then represents the probability of not having selected any pivot in the range
of distance d in any round preceding the ith, and the right hand fraction is
the probability of not selecting either end point as a pivot in this particular
round. Taking the complement of the latter and multiplying by the former
yields the probability of not having selected any pivot in the range of distance
d in previous rounds and selecting at least one of the end points in round i.
Note that this probability does not depend on the final position of the elements,
only on their distance in the sorted list.

To find the total expected number of comparisons made in the ith round,
we sum Equation (4.1) over all pairs of elements. As there are N − d+ 1 pairs
at distance d apart with d ranging from 2 to N , this can be expressed as

n∑
d=2

(N − d+ 1)

(
d

0

)(
N − d
πi−1

)
(
N

πi−1

)
1−

(
2

0

)(
N − πi−1 − 2

πi − πi−1

)
(
N − πi−1
πi − πi−1

)
 . (4.3)

We can simplify this expression by applying elementary manipulations and the
well-known fact that

∑n
i=0

(
i
k

)
=
(
n+1
k+1

)
. First, consider the following sum, as
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the right hand factor of Equation (4.3) is independent of d.

N∑
d=2

(N − d+ 1)

(
d

0

)(
N − d
πi−1

)
(
N

πi−1

) =
πi−1 + 1(

N

πi−1

) N∑
d=2

(
N − d+ 1

πi−1 + 1

)

=
πi−1 + 1(

N

πi−1

) ( N

πi−1 + 2

)

=
πi−1 + 1(

N

πi−1

) ( N

πi−1

)
(N − πi−1)(N − πi−1 − 1)

(πi−1 + 1)(πi−1 + 2)

=
(N − πi−1)(N − πi−1 − 1)

πi−1 + 2
.

Then, since(
N − πi−1 − 2

πi − πi−1

)
=

(N − πi)(N − πi − 1)

(N − πi−1)(N − πi−1 − 1)

(
N − πi−1
πi − πi−1

)
,

we can combine these two factors of Equation (4.3)

(N − πi−1)(N − πi−1 − 1)

πi−1 + 2

(
1− (N − πi)(N − πi − 1)

(N − πi−1)(N − πi−1 − 1)

)
=

(N − πi−1)(N − πi−1 − 1)− (N − πi)(N − πi − 1)

πi−1 + 2

= (πi − πi−1)
2N − πi − πi−1 − 1

πi−1 + 2
.

The total expected number of comparisons in all rounds is then simply the sum
of this number over all rounds, which proves the theorem.

Theorem 4.2. Algorithm 4.2 can be used to sort a list of n pairwise distinct
elements in O(logM N) rounds of comparisons using expected O(NM logM N)
comparison operations, where M can be chosen freely and the expected value is
taken over all permutations of the input list.

Proof. Let πi = M i for all i, but πk = N − 1, where k = dlogM Ne. Then π is
a valid pivot selection sequence of length k, i.e., it is non-negative, increasing,
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and the final term equals N − 1. Again, for convenience, we let π0 = 0. Then,
applying the result of Theorem 4.1 to this pivot selection sequence results in
an expected number of comparisons of

k∑
i=1

(πi − πi−1)
2N − πi − πi−1 − 1

πi−1 + 2
< NM +

k∑
i=2

2N
M i −M i−1

M i−1

= NM + 2(k − 1)N(M − 1)

< NM + 2(M − 1)N logM N.

As k = dlogM Ne is the number of rounds, this proves the theorem. Further-
more, this shows that the constants in the big O notation are small.

4.3 Dealing with Duplicates

So far we have assumed that the elements in the input list are distinct. In this
section we will consider the issues that arise if the input list holds duplicate
values. We will attempt to give a complete overview of the problems that
arise and how to resolve these efficiently. Note that this issue was already
identified and mitigated in the work by Hamada et. al. [HKI+12]. We include
this section for completeness and believe that our discussion of the issue is
more comprehensive. In this section we reference both the multi-pivot quicksort
algorithm and the secure protocol derived from it using the shuffle-and-sort
technique for which we will give an explicit description in Section 4.4.

The case in which there are duplicate values in the input list has negative
implications for both the comparison complexity of the multi-pivot quicksort
algorithm, and the security of the secure protocol derived from it using the
shuffle-and-sort technique. Because the shuffle-and-sort technique only permits
the use of inequality comparison (smaller than, etc.), but not equality, any
sorting algorithm is susceptible to the same problem. When sorting lists con-
taining duplicates, the (public) placement of the pivots each round will reveal
information about the number of duplicates, as well as about their value rel-
ative to the other elements. Because the comparison operation does not test
for equality, when a particular value occurs many times in the input list, that
particular value, selected as pivot, would be ordered below all other instances
of that value as non-pivots (or pivots at a higher position in the input list).
This means that all remaining such values are sorted into the same bin, which
would then recursively suffer the same problem. The number of comparisons
needed to sort the list would in this case therefore tend to the worst case of
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O(N2). The importance of this issue depends on the application and the bene-
fits of preventing this kind of leakage and loss of performance must be weighed
against the additional complexity of the protocol.

To show that duplicate values constitute a problem for any comparison sort
algorithm, consider an input list consisting only of pairwise distinct elements.
Then the sequence or trace of all comparison outcomes obtained when sorting
an input list uniquely determines the permutation of the input list and vice
versa (for any fixed sequence of random coins for randomized algorithms). In
contrast, if the input list consists of all identical elements, then the outcomes of
comparison operations will be independent of the permutation of the input list.
For lists of sufficient length, this would allow us to distinguish lists of identical
elements from lists of pairwise distinct elements.

The performance problem that repeated elements cause for quicksort and
variants thereof is known as the Dutch national flag problem. Although the
problem is well understood, we cannot make use of efficient solutions that rely
on comparison operations that distinguish equality, because publicly announc-
ing equality results from secure comparisons would directly reveal the number
and relative value of these duplicate elements. The performance problem can
be resolved using randomness by arranging the comparisons in such a way that
we can expect half of all elements equal to a pivot to be ordered below it and
half above. Simply arranging for half of the comparisons involving a particular
pivot to be “smaller than” and the other half “smaller than or equal” would
suffice, since the input list is randomly permuted.

This would not resolve the security problem, however, since in this case the
trace of the comparison outcomes is still independent of the permutation of
the input list. Even determining the type of comparison (smaller than versus
smaller than or equal) obliviously and independently randomly would not lead
to a secure solution as the position of pivots within the ordered list would follow
a binomial distribution, rather than the uniform distribution for input lists of
pairwise distinct elements. Furthermore, when comparing multiple values to
multiple pivots, all of which are identical, the results are likely to be inconsistent
and thereby reveal equality of these elements with certainty.

To resolve this issue securely, we must ensure that the public comparison
results place the pivots at uniformly random positions within the elements
of equal value. We must therefore break ties in a collective and consistent
manner. A straightforward solution is to attach a secret-shared tie breaker
label to each input element. Whenever two elements are compared, the labels
are also compared. The comparison of the two elements is made public, unless
they are equal, in which case the comparison result of the tie breaker values
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is obliviously selected instead. This solution will increase the number of secure
operations and rounds by at most a constant factor.

The most straightforward way to efficiently arrange these tie breaker labels
in an obviously consistent manner is to assign a secret-shared counter to each
element of the input list. The input list and counter list are then rearranged
using the same random permutation. Using counters ensures that no two ele-
ments of the labeled input list are equal, making the process of sorting any list
indistinguishable from sorting a list in which all values are unique. A possible
added advantage is that this protocol performs a stable sort, which can be rele-
vant when sorting composite objects by some key. If a stable sort is undesirable,
then the list of counters should be shuffled using a different random permuta-
tion than the input list. Alternatively, the labels can be chosen randomly, with
sufficient entropy. The advantage of this would be that the labels do not need
to be rearranged, however, this requires a greater range of values to ensure the
probability of duplicates occurring in the labels is sufficiently small, which in
turn may require a more complex secure comparison protocol. Note that using
counter labels does not increase the round complexity, as sampling the addi-
tional random permutation, if necessary, and the rearrangement operation can
be carried out in parallel to shuffling the input list.

It is important to note that any solution involving labels introduces a hid-
den dependency on the size of the input list, N , into the complexity of the
secure comparison protocol. Only under the assumption that N is within a
constant factor of the size of the allowed range for comparable values can we
argue that the overhead introduced by comparing labels is at most a constant
factor. Our claim that our protocol achieves an expected O(N logN) secure
comparisons remains valid, regardless. However, the complexity of the compar-
ison operations themselves carry a hidden dependency on N if the assumption
were not to hold. We consider it reasonable to assume that the number of dis-
tinct values that can be represented and compared is not much smaller than
the size of the input list for general comparison sort to be naturally applicable.
For the problems of sorting lists far longer than the allowed range of values,
specialized sorting protocols should be considered.

If the range of allowed values in the input list is smaller than the range
of values allowed by the comparison operation by a factor of at least N + 1,
we may eliminate the information leakage issue by combining the input values
and labels into a single secret-share. The advantage of this variant is that to
compare two labeled values, we only need to perform the ordinary comparison
protocol once, rather than performing a three-valued comparison protocol on
the input values in addition to a comparison on the label and the multiplications
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Protocol 4.3 SecureMPQSort(JvK, d,Precomp)

Input: • v, a list of N values
• d, the maximum comparison depth
• Precomp, a secure protocol preparing (value, label) pairs

1: (r, Jr̂K, JT K)← RandomPermutation(N)
2: Jv̂K← Rearrange(JvK, (r, Jr̂K, JT K))
3: Jˆ̀K← Rearrange((i)N−1i=0 , (r, Jr̂K, JT K))
4: for i← 1 to N do
5: JwiK← Precomp(v̂i, ˆ̀

i)

6: σ ← MPQSort′(JwK, d)
7: Jr′K← σJr̂K
8: JT ′K← PolTree((x− Jr′iK)Ni=1)
9: return (r, Jr′K, JT ′K)

needed to obliviously select the results. Especially in this case, the increase in
complexity of the comparison protocol should not be ignored.

4.4 The Secure Sorting Protocol

For completeness, we briefly describe the full secure protocol for sorting a
secret-shared list of values. We give a fairly general version of the protocol con-
taining several optional features, e.g., stability, that can be omitted or adapted
as desired. The secure protocol SecureMPQSort is displayed in Protocol 4.3.

Here MPQSort′ denotes the secure protocol obtained by instantiating the
comparison operator in the multi-pivot quicksort algorithm with a secure com-
parison protocol with public output. The MPQSort′ protocol is assumed to re-
turn the permutation which orders the input list, as we have also described for
the FixedMPQSort algorithm (Algorithm 4.2), but unlike the informal descrip-
tion of the MPQSort algorithm (Algorithm 4.1). This permutation is computed
publicly and composed with the secret permutation used to permute the input
list. The result is a secret permutation that orders the original, unshuffled in-
put list. For simply sorting an input list, this is unnecessary, but this allows to
obliviously sort compound data by some key, in which only the key is input to
SecureMPQSort, and the resulting secret permutation can be used to rearrange
the compound data using the Rearrange protocol.

The protocol starts by obliviously sampling a uniformly random permuta-
tion (line 1). This permutation is applied, in parallel, to the input list (line 2),
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as well as the list of counter labels (line 3). Using counter labels in this man-
ner will lead to a stable sort. For alternatives to using counter labels see Sec-
tion 4.3. Then, the values and labels that have been rearranged on lines 2 and 3
are paired and an (optional) secure precomputation protocol, Precomp, is run
on each pair in parallel (line 5). This precomputation served to convert the
(value, label) pairs into a representation which permits efficient comparison.
For example, the precomputation can be a decomposition into medium-sized
integers so that the comparison can be carried out very efficiently by com-
bining the medium-sized integer comparison protocol of [ABSdV19] with the
constant round bitwise less-than protocol of [DFK+06]. After the precomputa-
tion, the permutation which orders the shuffled input list is determined using
the multi-pivot quicksort protocol, in which the comparison operations have
been instantiated by a secure comparison protocol (line 6). Finally, the secret
permutation that orders the unshuffled input list is computed (lines 7 and 8)
and this permutation is returned. The secret permutation that sorts the in-
put list is computed in the same representation as the secret permutations
described in Chapter 3 and is therefore compatible for further computation
with the techniques described therein.





Chapter 5

Secure Moore–Penrose
Pseudoinverse

Note. This chapter is based on A Practical Approach to the Secure Computa-
tion of the Moore–Penrose Pseudoinverse over the Rationals [BdV20] with the
following major modifications.

• The need for the preconditioner of Section 5.4 to be invertible for it to
be removable has been relaxed. Although the improvement to the success
probability of the protocol is not significant, this relaxation of the require-
ment has been included as it allows for a slightly more elegant proof of
correctness of the protocol.

• The appendix of the full version of the paper [BdV19] containing the
complexity proof of the complete protocol has been incorporated into the
main text.

• An error in our complexity analysis has been corrected.

Solving linear systems of equations is a universal problem. In the context
of secure multiparty computation (MPC), a method to solve such systems,
especially for the case in which the rank of the system is unknown and should
remain private, is an important building block.

We devise an efficient and data-oblivious algorithm (meaning that the al-
gorithm’s execution time and branching behavior are independent of all se-
crets) for solving a bounded integral linear system of unknown rank over the

71
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rational numbers via the Moore–Penrose pseudoinverse, using finite-field arith-
metic. I.e., we compute the Moore–Penrose pseudoinverse over a finite field
of sufficiently large order, so that we can recover the rational solution from
the solution over the finite field. While we have designed the algorithm with
an MPC context in mind, it could be valuable also in other contexts where
data-obliviousness is required, like secure enclaves in CPUs.

Previous work by Cramer et al. [CKP07], proposes a constant-rounds pro-
tocol for computing the Moore–Penrose pseudoinverse over a finite field. The
asymptotic complexity (counted as the number of secure multiplications) of
their solution is O(m4 +n2m), where m and n are the dimensions of the linear
system, with m ≤ n. To reduce the number of secure multiplications, we sac-
rifice the constant-rounds property and propose a protocol for computing the
Moore–Penrose pseudoinverse over the rational numbers in a linear number of
rounds, requiring only O(m2n) secure multiplications.

To obtain the common denominator of the pseudoinverse, required for con-
structing an integer-representation of the pseudoinverse, we generalize a result
by Ben-Israel for computing the squared volume of a matrix. Also, we show
how to precondition a symmetric matrix to achieve generic rank profile while
preserving symmetry and being able to remove the preconditioner after it has
served its purpose. These results may be of independent interest.

5.1 Introduction

Motivated by the goal of performing elementary statistical tasks such as linear
regression securely, we revisit the topic of secure linear algebra. In this chapter,
“securely” refers to secure multiparty computation (MPC) [CDN15], however,
our results might be of use in other settings as well, for example, for mitigating
certain side-channel attacks in trusted execution environments in CPUs.

Secure linear algebra goes back to the work of Cramer and Damg̊ard [CD01],
who proposed constant-rounds MPC protocols for various basic tasks in linear
algebra. In that paper, as well as in later papers in the same line of work, like
[NW06, KMWF07, CKP07, MW08], the focus is on linear algebra over a finite
field.

Our goal is to obtain, in an “MPC-friendly” way, an (approximate) solu-
tion to a linear system over the real numbers. In this chapter we choose to
approximate real arithmetic by (exact) rational arithmetic, or, in fact, integer
arithmetic, using appropriate scaling. Our main reason behind this choice is the
close connection between the finite field Fp = Z/pZ (where p is prime) and inte-
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ger arithmetic, since we target MPC schemes that offer finite-field arithmetic.
Hence, the protocols that we propose in this chapter will employ finite-field
arithmetic as a tool, rather than as a goal. We note that there are various
papers targeting the same problem that explore other choices, such as secure
fixed-point arithmetic (see, e.g., [NWI+13, GSB+17]) or secure floating-point
arithmetic (e.g., [BKLS18]).

In an earlier joint work with Blom and Schoenmakers [BBSdV19], we fo-
cused on the case of solving full-rank systems. In this chapter, we focus on
the more general case of solving linear systems whose rank is unknown. Also,
we would like to obtain meaningful solutions in case the system is over- or
underdetermined. The Moore–Penrose pseudoinverse gives natural solutions in
both cases: in the overdetermined case, which is the relevant case for linear
regression, it yields the least-squares solution; in the underdetermined case it
gives the minimum-norm solution. Another application of the Moore–Penrose
pseudoinverse is to compute the condition number of a matrix that is not, or
not-necessarily, invertible.

Concretely, given a matrix A of unknown rank with integral elements, we
propose a protocol for computing the Moore–Penrose pseudoinverse over the
rational numbers in a linear number of rounds. The computational complexity,
counted as the number of secure multiplications, is O(m2n), where m and n
are the dimensions of the system and m ≤ n. In some multiplicative-linear-
secret-sharing-based MPC schemes, such as Shamir’s scheme, we may count a
secure dot product as a single secure multiplication; in that case the complexity
reduces to O(mn).

It should be rather easy to implement our protocol in any finite-field-based
arithmetic secret sharing MPC framework; beyond elementary finite-field arith-
metic our protocol merely requires secure subprotocols for sampling (public)
random elements, performing a zero test on a secret-shared field element, com-
puting the reciprocal of a secret-shared field element, and computing the de-
terminant of an invertible secret-shared matrix.

Circumventing Rational Reconstruction

It is well known that one can perform (bounded) rational arithmetic via arith-
metic in Fp, essentially as follows: (i) represent the rational inputs as finite-
field elements, i.e., an input of the form a/b, for integers a and b and such
that |a|, |b| ≤

√
p/2, is encoded as the element x = a · b−1 ∈ Fp, (ii) perform

the computation in integer arithmetic modulo p, (iii) reconstruct the numera-
tors and denominators of the results of the computation, elementwise, in the
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following manner. Let y ∈ Fp be an output of the computation, that corre-

sponds to the fraction c/d for integers c and d. Then, if |c|, |d| ≤
√
p/2, we can

uniquely reconstruct c and d from y by reducing the two-dimensional lattice
basis {(p, 0), (y, 1)} using the Lagrange–Gauss algorithm, in the sense that the
reduced basis will contain the vector (c, d). This reconstruction procedure is
known as rational reconstruction (see, e.g., [Wan81]).

An important drawback of the use of rational reconstruction in our scenario
is that we essentially would need to double the bit-length of the finite field
modulus p to guarantee unique reconstruction, compared to a route without
rational reconstruction (for more details, see Figure 5.1). Because arithmetic in
a larger finite field is computationally more expensive, we would like to avoid
the use of rational reconstruction.

In [BBSdV19], a key trick for obtaining the inverse of an invertible integer
matrix B over the rational numbers from the corresponding inverse over the
finite field Fp without requiring rational reconstruction, was to form the integer-
valued adjugate matrix by multiplying B−1 by detB. In a similar spirit, we
compute the pseudoinverse A† over the finite field Fp and identify the conditions
under which it corresponds to the pseudoinverse over the rational numbers.
Essentially, this comes down to choosing p sufficiently large; see Section 5.4. We
can then obtain an integer representation of the pseudoinverse by forming the
pair (dA†, d), where dA† is an integer matrix containing the numerators of the
pseudoinverse and d is the common denominator of the pseudoinverse, which
coincides with the squared volume of A [Ben92], which we write as (volA)2.
Figure 5.1 illustrates our approach and compares it to the alternative route of
rational reconstruction.

Although taking the square of the volume is rather excessive in certain
cases (for example, the magnitude of the common denominator of B−1, for any
invertible matrix B, equals |detB| = volB), it is essentially the price we have
to pay for not knowing whether we are dealing with such a special case.

Computing the Pseudoinverse and Its Common Denominator

To compute the Moore–Penrose pseudoinverse A† of A obliviously, we first
compute a reflexive generalized inverse of the symmetric product AATAAT

by means of block-recursive elimination. We then compute the Moore–Penrose
pseudoinverse from this generalized inverse.

Springer computes the common denominator (volA)2 of the coefficients
of A† via an integer-preserving rank decomposition [Spr83]. To circumvent the
need for constructing such a rank decomposition, we seek a simpler alternative.
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A ∈ Zm×n Ã ∈ Fm×np

A† ∈ Qn×m Ã† ∈ Fn×mp

dA† ∈ Zn×m dÃ† ∈ Fn×mp

mod p

π Pseudoinverse

d d

id

(a) Our approach. The map d represents
scalar multiplication by d = (volA)2 and
id represents the identity map. The so-
lutions dA† and dÃ† coincide, provided
that p is chosen large enough, i.e., ac-
cording to Lemma 5.10.

A ∈ Zm×n Ã ∈ Fm×nq

A† ∈ Qn×m Ã† ∈ Fn×mq

mod q

π Pseudoinverse

ν

(b) Approach using rational reconstruc-
tion. The map ν represents the element-
wise rational reconstruction procedure.
All reconstructed fractions will be in
lowest terms (numerator and denomi-
nator have no common nontrivial fac-
tors). There is, however, a price to be
paid, in that q ≥ 2p2. Also, the map ν
(the Lagrange–Gauss algorithm) is not
“MPC-friendly”.

Figure 5.1: Comparison between our approach and the approach via rational
reconstruction. In the diagrams, the map π : Qm×n → Qn×m, A 7→ A† applies
the Moore–Penrose pseudoinverse over the rationals.

Ben-Israel gives a method for computing (volA)2 that requires an orthonormal
basis for the left null space of A [Ben92]. Although an orthonormal basis might
not even exist over a finite field, we can easily construct a matrix K whose
columns span the left null space of A. We generalize Ben-Israel’s result so that
we can compute (volA)2 from A and K.

Preconditioning for Computing Pseudoinverses

As noted above, we will compute the Moore–Penrose Pseudoinverse via a gen-
eralized inverse that is obtained using block-recursive elimination.

Deterministic elimination algorithms typically employ pivoting to avoid
problems like division by zero. Pivoting involves searching for and applying
suitable row and/or column swaps prior to each elimination step. In secure
computation, however, we aim to avoid pivoting because searching for partic-
ular elements and applying data-dependent row and column swaps obliviously
is expensive (in a computational- and round-complexity sense).

An MPC-friendly alternative is to transform the matrix to be eliminated
into an equivalent matrix for which the elimination procedure will succeed
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without any pivoting ; this approach is called preconditioning. In case of Gaus-
sian elimination, for example, the condition of generic rank profile guarantees
that pivoting can be omitted. A matrix A of rank r has generic rank profile if
and only if all upper-left square submatrices of A up to dimension r × r are
invertible. We prove that generic rank profile is also a sufficient condition for
correctness of the particular block-recursive elimination algorithm that we use.

When dealing with a square, full rank matrix B over a finite field F with
large order, one way to achieve generic rank profile with high probability is by
pre-multiplying B by a preconditioner matrix R that is chosen uniformly at
random from the set of all invertible matrices having the same size as B. When
computing the inverse of RB, we can apply the rule (RB)−1 = B−1R−1, which
we will refer to as the reverse order law for matrix inversion, to show that the
inverse of the preconditioner can easily be removed by post-multiplying by R.
For a matrix A with arbitrary rank r, pre-multiplying by a randomly chosen
invertible matrix R (of appropriate size) is not sufficient for achieving generic
rank profile; we additionally need to mix A’s columns by multiplying A by a
preconditioner matrix from the right.

A major problem that arises when trying to remove a preconditioner when
computing the pseudoinverse, is that the reverse order law for pseudoinverses
does not hold in general [Gre66, Har86]. In particular, unfortunately, we have
that (LAR)† does not necessarily equal R†A†L† for invertible preconditioner
matrices L and R. Hence, we cannot simply extract A† from (LAR)† like we
could do above for B−1. We circumvent this problem by applying the precon-
ditioner only to AATAAT and removing the preconditioner immediately after
computing the reflexive generalized inverse, for which the reverse-order law
does hold.

An additional constraint in our setting where we apply preconditioning to
AATAAT, rather than to A directly, is that the preconditioner should preserve
symmetry, since the symmetry property enables significant computational sav-
ings during elimination. A preconditioner for this particular scenario seems to
be lacking in the literature. We resolve this by proving that the preconditioner
X 7→ UXUT for a uniformly random matrix U fulfills all our constraints.

Interestingly, and unlike Gaussian elimination, when working over the real
or complex numbers, the particular block-recursive algorithm that we use for
computing the reflexive generalized inverse does not even require its input
to have generic rank profile, hence no preconditioning is needed in this case.
Nonetheless, in fields with positive characteristic, the condition emerges from
the phenomenon of self-orthogonality.
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Related Work

Cramer et al. [CKP07] propose a constant-rounds protocol for securely com-
puting the Moore–Penrose pseudoinverse over a finite field. Their approach is
to first compute the characteristic polynomial of the Gram matrix ATA, from
which they then compute the rank of A (via a technique by Mulmuley [Mul87])
as well as the pseudoinverse of A (via the Cayley–Hamilton theorem).

An important theme in [CKP07] is to ensure that A (and AT) are suitable,
which guarantees, informally speaking, that certain subspaces that are orthog-
onal over a field orthogonal over fields with positive characteristic. In our work,
where we focus on the setting where the modulus (hence the field’s characteris-
tic) is chosen sufficiently large, existence of the pseudoinverse is guaranteed by
a result in [BRP90]. (We state this result in the next section.) Nonetheless, as
described in the previous section, we do take special precautions, namely, ap-
plying preconditioning, to avoid problems related to working over a field with
positive characteristic when computing a reflexive generalized inverse.

For an m × n matrix where m ≤ n, the complexity (number of secure
multiplications) of Cramer et al.’s solution is O(m4+n2m). Our solution, albeit
not constant-rounds, has complexity O(m2n), and even O(mn) when assuming
availability of a “cheap dot product”, where the hidden constants in the Big-Oh
of our solution are single-digit integers. By “cheap dot product”, we mean that
an dot product between two vectors of the same but arbitrary length has the
same communication and round complexity as a single secure multiplication.
It is possible to perform multiplication of an m× ` matrix by an `× n matrix
using no more than mn “cheap dot products”. Because the coefficients of the
result matrix may all be mutually independent, it is reasonable to take the
complexity of such a matrix product to be equal to mn.

We leave it to further research to compare the practical performance of
our method to that of [CKP07] in various application scenarios (i.e., various
matrix-dimension regimes, network latency, bounded computational resources
and storage space, etc.).

Relation to the LEU Decomposition

In an earlier work [BdV18], we propose to use Malaschonok’s LEU decomposi-
tion [Mal10] for solving linear systems of unknown rank in the context of secure
computation. (Note that [BdV18] does not deal with the problem of computing
the Moore–Penrose pseudoinverse.) Our new protocol Pseudoinverse is superior
to the LEU -decomposition-based protocol from [BdV18]; in terms of round
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complexity, O(m) versus O(m1.59), as well as in terms of the asymptotic com-
putational complexity, O(m2) versus O(m2 logm) secure dot products for a
square m×m matrix.

5.2 Preliminaries

Secret Sharing and Secure Computation

Let Fp = Z/pZ, where p is prime. We use F to denote an arbitrary field. We
assume the use of an MPC protocol based on arithmetic secret sharing over
Fp. Our protocols will inherit the security properties (passive vs. active) from
the underlying MPC protocol and of the subprotocols invoked by our protocol.
The notation JxK represents an element x ∈ Fp that is secret-shared among
the parties in the MPC protocol. Notation for secure arithmetic then follows
naturally, for example, JcK← JaK + JbK describes the addition of a and b where
the result is stored in a new secret-shared element c, and JdK← JaKJbK describes
an invocation of the multiplication protocol to securely compute the product
of a and b and store the result in d. For arbitrary integer matrices A and B,
the notation JAK expresses that all elements of A are secret-shared over Fp,
and JAK + JBK and JAKJBK represent secure matrix addition (which coincides
with elementwise addition) and secure matrix multiplication, respectively. Our
protocols assume the availability of subprotocols for securely sampling private

as well as public random field elements (e.g., [CDI05]), denoted as JaK $← Fp
and a

$← Fp respectively, for securely inverting a field element (see [BB89]),
and for performing a secure zero test [DFK+06, NO07]. The latter two are
denoted as protocols Reciprocal and IsZero, respectively. We require protocol
Reciprocal to be secure for all nonzero inputs (i.e., the protocol is allowed to
leak information when run on a secret-share of zero). Protocol IsZero returns
J1K if its argument equals zero and returns J0K otherwise.

Generalized Inverses

A generalized inverse of a matrix A is a matrix X associated to A that exists
for a class of matrices larger than the class of invertible matrices, shares some
properties with the ordinary inverse, and reduces to the ordinary inverse when
A is non-singular. In this chapter, we classify generalized inverses using the
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following four properties, also known as the Penrose equations:

AXA = A (5.1)

XAX = X (5.2)

(AX)T = AX (5.3)

(XA)T = XA. (5.4)

The matrix X that satisfies all four Penrose equations for a given matrix
A is called the Moore–Penrose pseudoinverse, or simply pseudoinverse of A,
which we denote as A†. The Moore–Penrose pseudoinverse of A over F exists
if and only if rank(AAT) = rank(ATA) = rankA [Pea68, Thm 1], and if it
exists it is unique. We will also focus on generalized inverses of A which only
satisfy equations (5.1) and (5.2); such generalized inverses are called reflexive
generalized inverses and we denote any reflexive generalized inverse of A by
A−. Note that reflexive generalized inverses are not necessarily unique. For an
extensive treatment of generalized inverses, the reader is referred to [BG03].

For a square matrix A partitioned as

A =

(
E F
G H

)
(5.5)

such that E is square, A/E denotes the generalized Schur complement

A/E = H −GE−F. (5.6)

Despite the fact that E− is not necessarily unique, the generalized Schur
complement is, although we shall not make use of this.

Submatrices, Their Determinants and Rank Properties

For any n ∈ N, we write [n] for the set {1, . . . , n}. For any m × n matrix
A and index sets I ⊂ [m] and J ⊂ [n], we denote the determinant of the
submatrix of A obtained by selecting all rows in I and all columns in J by
[A]I,J . Furthermore, A[k] denotes the leading principal submatrix of order k,
i.e., the matrix obtained by taking the first k rows and first k columns of A,
and we use [A]k as shorthand for [A][k],[k], i.e., the leading principal minor of
order k. Thus, it holds that detA[k] = [A]k.

Let A be a matrix of rank r. We say that a matrix A has generic rank profile
[KL96] if for all k ∈ [r], it holds that A’s leading principal minor of order k is
nonzero, i.e., if [A]k 6= 0 for all k ∈ [r].
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Let A be partitioned as in (5.5). If detE 6= 0, then Schur’s determinant
formula asserts that

detA = det(E) det(A/E) = det(E) det(H −GE−1F ). (5.7)

A direct consequence of [MS74a, Thm 19] is that

rankA ≥ rankE + rank(A/E). (5.8)

Hence, if A has generic rank profile and E has at least dimension r × r where
r = rankA, then A/E is the null matrix.

The Volume of a Matrix

For any matrix A with rank r and nonzero singular values σ1, . . . , σr, its volume
is defined as volA =

∏r
i=1 σi. Note that this definition implies that we define

the volume of the zero matrix to be one, which will be convenient for our
purpose but deviates from Ben-Israel’s definition of matrix volume for this
special case [Ben92]. A matrix over an integral domain has a pseudoinverse
if and only if its squared volume is a unit (i.e., an invertible element) of the
integral domain [BRP90]. The fact that, for any matrix A ∈ Rm×n, the singular
values of AAT are the squares of the singular values of A leads to the following
equation:

vol(AAT) = (volA)2, (5.9)

which holds over an arbitrary field. In case A is a square nonsingular matrix,
i.e., m = n and detA 6= 0, its volume coincides with the absolute value of its
determinant:

volA = |detA|. (5.10)

Combining the two preceding equations gives

(volA)2 = det(AAT), (5.11)

in the case that rankA = m.

5.3 Block-Recursive Elimination

In this section we present ObliviousRGInverse, our oblivious protocol for com-
puting a reflexive generalized inverse of any symmetric matrix over Fp that
has generic rank profile. Although we could easily devise a protocol that also
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Protocol 5.1 ScalarRGInverse(JaK)

Input: a ∈ Fp
1: JzK← IsZero(JaK)
2: return Reciprocal(Ja+ zK)− JzK

works for non-symmetric matrices, we deliberately restrict to symmetric ma-
trices, for the following two reasons: (i) by doing so, we achieve a significant
computational saving (essentially a factor of two); and (ii) for our application
we anyway only need to compute a reflexive generalized inverse of a symmetric
matrix.

First, we define the extended reciprocal of an element c ∈ F as zero if c = 0
and c−1, i.e., the (ordinary) reciprocal, otherwise. Note that the (unique) reflex-
ive generalized inverse of a 1× 1 matrix is equal to the 1× 1 matrix containing
the extended reciprocal of its only coefficient. ScalarRGInverse (Protocol 5.1) is
a secure protocol for computing the extended reciprocal.

ObliviousRGInverse is given as Protocol 5.2. On line 4, the partitioning is
done such that E and H are square and their dimensions differ by at most
one. The way the matrix is partitioned has no bearing on the correctness of the
protocol, but partitioning as evenly as possible results in the lowest complexity.
We remark that the side notes with label “symmetric” in ObliviousRGInverse
indicate that the resulting matrix is symmetric, which is to be exploited in an
implementation.

It is straightforward to see that protocol ObliviousRGInverse is oblivious: it
only branches on the dimensions of the matrix, which are considered public,
and otherwise only performs elementary arithmetic operations, and calls to
secure subprotocols (including recursive calls to itself).

Correctness Analysis

Rohde [Roh65] shows that a reflexive generalized inverse A− of a symmetric,
positive-semidefinite matrix over the real numbers1

A =

(
E F
FT H

)
(5.12)

1Rohde [Roh65] actually shows his result for complex matrices, but for our purposes it
is more convenient to state his result for real matrices.
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Protocol 5.2 ObliviousRGInverse(JAK)

Input: A ∈ Fm×mp , symmetric, with generic rank profile
1: if m = 1 then
2: return ScalarRGInverse(Ja1,1K)
3: else

4:

(
JEK JF K
JFTK JHK

)
← JAK . split as evenly as possible

5: JXK← ObliviousRGInverse(JEK)
6: JXF K← JXKJF K
7: JH − FTXF K← JHK− JFTKJXF K . symmetric
8: JY K← ObliviousRGInverse(JH − FTXF K)
9: JXFY K← JXF KJY K

10: JX +XFY FTXK← JXK + JXFY KJXF KT . symmetric

11: return

(
JX +XFY FTXK −JXFY K
−JXFY KT JY K

)

can be expressed in Banachiewicz–Schur form as

A− =

(
E− + E−FS−FTE− −E−FS−

−S−FTE− S−

)
, (5.13)

where E− is a reflexive generalized inverse of E and S− is a reflexive generalized
inverse of S = A/E = H − FTE−F . This form allows for a block-recursive
algorithm for computing the reflexive generalized inverse over the real numbers.
As proved by Marsaglia and Styan, the correctness of Rohde’s result over an
arbitrary field depends on the following additional condition.

Lemma 5.1 ([MS74b], statement tailored to our needs). Over an arbitrary
field, Equation (5.13) is a reflexive generalized inverse of A if and only if

rankA = rankE + rankS, (5.14)

or, equivalently, the following three conditions are satisfied simultaneously

(I − EE−)F (I − S−S) = 0 (5.15)

(I − SS−)FT(I − E−E) = 0 (5.16)

(I − EE−)FS−FT(I − E−E) = 0, (5.17)

where E− and S− are reflexive generalized inverses of E and S = A/E respec-
tively.
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Lemma 5.2. Over an arbitrary field, a sufficient condition for Equation (5.13)
to be a reflexive generalized inverse of a symmetric matrix A is that A has
generic rank profile.

Proof. We partition A as in Equation (5.12) arbitrarily but such that E is
square. Now we can make a case distinction on E. If E is invertible, then E−

coincides with the ordinary inverse and it immediately follows that (I−EE−) =
(I − E−E) = 0, thus satisfying (5.15)–(5.17) from Lemma 5.1. If E is not
invertible, then, since A has generic rank profile, it then immediately follows
that rankA = rankE and furthermore that rankS = 0, due to (5.8), thus
satisfying (5.14).

Lemma 5.3. For any m×n matrix A over an arbitrary field, any k such that
A[k] is invertible, and any i such that 0 ≤ i ≤ min(m,n)− k it holds that

A[k+i]/A[k] = (A/A[k])[i]. (5.18)

Proof. Let

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (5.19)

where A11 = A[k] is an invertible k×k matrix and A22 is an i× i matrix. Then

(A/A[k])[i] =

((
A22 A23

A32 A33

)
−
(
A21

A31

)
A−111

(
A12 A13

))
[i]

= A22 −A21A
−1
11 A12

= A[k+i]/A[k]. (5.20)

Corollary 5.4. Protocol ObliviousRGInverse, when run on a symmetric matrix
A over Fp having generic rank profile, correctly computes a reflexive generalized
inverse.

Proof. For the base case, we have already argued correctness of the extended
reciprocal near the beginning of Section 5.3. For the recursive step applied to
A, note that for an arbitrary partitioning but such that E is a k × k matrix
for some integer k, it is easy to see that E is symmetric and has generic rank
profile. Correctness then follows from Lemma 5.2.
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We prove that S is symmetric and has generic rank profile by distinguishing
two cases. If E is not invertible, then rankA = rankE and S is necessarily
the (square) null matrix, which is symmetric and has generic rank profile.
Otherwise, E is invertible and S = A/E = G − FTE−1F , which is clearly
symmetric. For generic rank profile, we can apply Schur’s determinant formula
to the leading principal minors of A: for any i such that 0 ≤ i ≤ rankA− k we
have 0 6= det(A[k+i]) = det(E) det(A[k+i]/E). Then, applying Lemma 5.3 gives
det(A[k+i]/E) = det((A/E)[i]) 6= 0, i.e., A/E has generic rank profile. In both
cases, correctness now follows from Lemma 5.2.

Remark. We have proved that generic rank profile is sufficient for correctness—
we did not prove that this condition is necessary. This leaves open the possibility
that a weaker condition on the input matrix (weaker than generic rank profile)
would suffice for correctness of ObliviousRGInverse. In the next section we will
compute (AATAAT)−, from which we construct A†. To ensure the correctness
of ObliviousRGInverse we will actually randomize its input, AATAAT, so that it
has generic rank profile with high probability and then undo the randomization
on the result. One might raise the question whether choosing the modulus p
large enough to guarantee the existence of A†, could immediately guarantee
correctness of ObliviousRGInverse on AATAAT, without requiring AATAAT to
have generic rank profile. We answer this question in the negative. As will be
shown in Section 5.4, the modulus p = 17 suffices to ensure that the Moore–
Penrose pseudoinverse exists over F17 and corresponds with A† over the rational
numbers for matrices A of rank 2 and Frobenius norm ‖A‖ ≤

√
2(p− 1) ≈

5.66. The matrix

(
1 1 1 1
1 0 0 0

)
satisfies these requirements, yet algorithm

ObliviousRGInverse would fail on input AATAAT ≡
(

0 5
5 2

)
(mod 17), because

rankA = 2, but the upper left corner has rankE = 0 and its Schur complement
rankA/E = 1, and therefore equation (5.14) is not satisfied.

Complexity Analysis

We first state the complexity (in terms of the number of secure operations)
of protocol ObliviousRGInverse when run on a square matrix whose dimensions
are a power of two.

Proposition 5.5. Protocol ObliviousRGInverse, when run on an m×m matrix
over Fp, where m = 2k for integer k, requires 3

2m(m − 1) + 1
2m log2m secure

dot products and m invocations of ScalarRGInverse.
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If the dimensions of the matrix, m, are not a power of two, it is not always
possible to divide the matrix evenly in step 4 of the protocol. In these cases
the number of secure dot products required is slightly greater than the num-
ber stated in Proposition 5.5. For general dimensions, we prove the following
proposition. We note that this bound is not tight.

Proposition 5.6. Protocol ObliviousRGInverse, when run on an m×m matrix
over Fp, requires fewer than 3

2m(m − 1) + m log2m secure dot products and
exactly m invocations of ScalarRGInverse.

We also express the complexity of protocol ObliviousRGInverse in terms of
elementary secure multiplications, rather than secure dot products, for MPC
schemes for which the “cheap dot product” is not available. Note that the bound
given here is exact if we assume the näıve algorithm for matrix multiplication.
A more advanced algorithm would result in sub-cubic, but still super-quadratic
complexity.

Proposition 5.7. Protocol ObliviousRGInverse, when run on an m×m matrix
over Fp, requires at most 1

2m
3 + 1

2m
2 −m secure multiplications and exactly

m invocations of ScalarRGInverse.

Proof of Propositions 5.5, 5.6 and 5.7. The proof is by complete induction. It
is clear that running ObliviousRGInverse on an m ×m matrix requires exactly
m invocations of ScalarRGInverse.

LetD(m) denote the number of secure dot products required to run protocol
ObliviousRGInverse on an m×m matrix. Similarly, let M(m) be the number of
secure multiplications required, in case a “cheap dot product” is not available.
Then, we have to show that

D(2k) =
3

2
2k(2k − 1) +

1

2
k2k (Proposition 5.5); (5.21)

D(m) <
3

2
m(m− 1) +m log2m (Proposition 5.6); and (5.22)

M(m) ≤ 1

2
m3 +

1

2
m2 −m (Proposition 5.7), (5.23)

where we take m = 2k for Proposition 5.5.
Inspection of the protocol shows that

D(1) = 0; (5.24)

D(2`) = 2D(`) + 3`2 + `; and (5.25)

D(2`+ 1) = D(`) +D(`+ 1) + 3`2 + 4`+ 1, (5.26)
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where we distinguish between even (m = 2`) and odd (m = 2`+1) dimensions.
Similarly, for M(m), we have

M(1) = 0; (5.27)

M(2`) ≤ 2M(`) + 3`3 + `2; and (5.28)

M(2`+ 1) ≤M(`) +M(`+ 1) + 3`3 +
11

2
`2 +

5

2
`. (5.29)

The inequalities in (5.28) and (5.29) can be replaced with equalities in case the
näıve algorithm for matrix multiplication is used.

In the base case m = 1, the propositions clearly hold. Assume the proposi-
tions hold for all m′ < m. Then for odd m = 2` + 1 substitution of (5.22) in
(5.26) yields

D(2`+ 1) <
3

2
m(m− 1) + `+ 1 + ` log2 `+ (`+ 1) log2(`+ 1)

=
3

2
m(m− 1) + log2

(
``(`+ 1)`+12`+1

)
<

3

2
m(m− 1) + (2`+ 1) log2(2`+ 1), (5.30)

where the last inequality follows from monotonicity of the logarithm and from
the following inequality:

2`+1``(`+ 1)`+1 = 21−`(2`+ 1− 1)`(2`+ 1 + 1)`(`+ 1)

= 21−`((2`+ 1)2 − 1)`(`+ 1)

< 21−`(2`+ 1)2`(`+ 1)

< (2`+ 1)2`+1. (5.31)

For the case of even m, Proposition 5.5 follows immediately by substituting
equation (5.21) in (5.25). Similarly, Proposition 5.6 follows from the substitu-
tion of (5.22) in (5.25) and Proposition 5.7 from the substitution of (5.23) in
(5.28) and (5.29).

5.4 Computing the Moore–Penrose Pseudoinverse

We will compute the Moore–Penrose pseudoinverse using a formula (see, e.g.,
[RM71, p. 207]) that computes A† in terms of a reflexive generalized inverse:

A† = AT(AATAAT)−AAT. (5.32)
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Before proposing our protocol Pseudoinverse, we deal with three remaining
questions, namely how to compute the common denominator, how to choose an
appropriate modulus, and how to reliably compute (AATAAT)−, as AATAAT

does not necessarily have generic rank profile, which is required by protocol
ObliviousRGInverse for correctness.

Computing the Common Denominator

Over the rational numbers, a common denominator d such that dA† is integer-
valued if A is integer-valued is d = (volA)2 [Spr83, Satz 10]. The squared
volume is minimal in the sense that there exist matrices for which it is the
smallest possible common denominator.

If we would have an orthonormal basis for the left or right null space of
A, then we could use [Ben92, Thm. (4.1)] to compute (volA)2 directly. An
orthonormal basis does not necessarily exist over an arbitrary field. Instead,
we generalize [Ben92, Thm. (4.1)] by relaxing the requirements on the null
space basis.

Lemma 5.8. Let A ∈ Fm×k be a matrix of rank r. Let B ∈ Fm×` be a matrix
of rank m − r such that its columns are orthogonal to the columns of A, i.e.,
BTA = 0. Then,

det(AAT +BBT) = (volA)2(volB)2. (5.33)

Proof. Note that AAT +BBT =
(
A B

) (
A B

)T
. Because the columns of A

are orthogonal to those of B, the matrix
(
A B

)
has rank r + (m − r) = m

and hence

det(
(
A B

) (
A B

)T
) = (vol

(
A B

)
)2 = (volA)2(volB)2, (5.34)

where the first equality holds by equation (5.11), and the second equality is
[Ben92, Example 5.1].

Theorem 5.9. Let A ∈ Fm×n be a matrix of rank r. Let K = I−AA† ∈ Fm×m.
Then,

(volA)2 = det(AAT +K). (5.35)

Proof. By property (5.3) of the pseudoinverse, we have that K = KT. This
fact, and property (5.1) of the pseudoinverse imply that KKT = KK = K and
KTA = 0, i.e., K is idempotent and its columns are orthogonal to the columns
of A.
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Combining equation (5.9) with the fact that K is idempotent and symmetric
gives us that volK = vol(KKT) = (volK)2. Since the volume of a matrix is
nonzero, we conclude that volK = 1.

Orthogonality of the columns of K and A implies that rankK ≤ m− r and

rankK = rank(I −AAT) ≥ rank I − rank(AAT) = m− r (5.36)

follows from subadditivity of matrix rank. Applying Lemma 5.8 gives us

det(AAT +K) = det(AAT +KKT) = (volA)2(volK)2 = (volA)2. (5.37)

Bound on the Modulus

Springer [Spr83] has proved the following upper bound on the magnitudes of
the numerators and the common denominator of the pseudoinverse. Choosing p
larger than twice this bound will guarantee that: (i) d = (volA)2 is an invertible
element in Fp, which is a necessary and sufficient condition for existence of
A† over Fp [BRP90] (see also Section 5.2), (ii) that the pair (dA†, d) over
Fp coincides with (dA†, d) over Z (see Lemma 5.10 below), and (iii) that the
product AATAAT occurring in Equation (5.32) has the same rank as A (which
we will need in Theorem 5.14, and note that (iii) is implied by applying (i) to
the upcoming Proposition 5.11).

Lemma 5.10 ([Spr83, Satz 12]). Let N0 = (volA)2 and Z0 = (zij) ∈ Zm×n be
an integer matrix of rank r such that A† = 1

N0
Z0. Let µ = min(m,n). Then,

max(|N0|,max
i,j
|zij |) ≤ max

(
‖A‖2rF
rr

,
‖A‖2r−1F√
rr(r − 1)r−1

)
, (5.38)

and

max(|N0|,max
i,j
|zij |) ≤ max

(
‖A‖2µF
µµ

,
‖A‖2µ−1F√
µµ(µ− 1)µ−1

)
, (5.39)

where ‖A‖F =
√∑

ij |aij |2 is the Frobenius norm of A.

Remark. In a setting in which the rank r is unknown, one would use (5.39).
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For our construction, we further require that

rank(AATAAT) = rankA. (5.40)

This requirement holds unconditionally over fields of characteristic zero, but
not necessarily over finite fields. Nonetheless, as we show below, it turns out
that existence of the Moore–Penrose pseudoinverse already implies (5.40).

Proposition 5.11. Let A be an arbitrary matrix over F. The Moore–Penrose
pseudoinverse of A exists if and only if

rank(AATAAT) = rankA. (5.41)

Proof. Recall from Section 5.2 that the Moore–Penrose pseudoinverse exists
over F if and only if rank(AAT) = rank(ATA) = rankA. Note that

rank(AATAAT) = rankA =⇒ rankA = rank(AAT) = rank(ATA), (5.42)

so we only have to prove the converse.
Let A = VW be a rank decomposition of A, i.e., V and W have full column-

rank and full row-rank, respectively. Over an arbitrary field, a rank decompo-
sition exists but is not necessarily unique; see, e.g., [Rao73]. Then,

rankA = rank(AAT) = rank(VWWTV T) =⇒ rank(WWT) ≥ rankA,
(5.43)

and similarly,

rankA = rank(ATA) = rank(WTV TVW ) =⇒ rank(V TV ) ≥ rankA. (5.44)

Also note that both WWT and V TV have dimension r × r with r = rankA,
therefore, they are invertible. We now write AATAAT in terms of V and W ,
and multiply by V T from the left and by V from the right, by which we obtain:

V TAATAATV = (V TV )(WWT)(V TV )(WWT)(V TV ), (5.45)

the rank of which bounds rank(AATAAT) from below.
Therefore, we can conclude that rank(AATAAT) = rankA, if and only if

rankA = rank(AAT) = rank(ATA).
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Symmetric Preconditioning

A preconditioner is a mapping A 7→ h(A) for matrices A from a given class,
where the goal is to achieve a certain property, either with certainty or with
high probability. This property is typically an input condition from some com-
putational technique. For a more elaborate and formal introduction into pre-
conditioning we refer to [CEK+02]. Here, we restrict to preconditioners for
achieving generic rank profile for symmetric matrices of the form A = BBT

over an arbitrary field of positive characteristic.
To ensure correctness of protocol ObliviousRGInverse, we need a precondi-

tioner that

(i) achieves generic rank profile with high probability;

(ii) preserves symmetry, i.e., h(A) is symmetric; and

(iii) is removable with high probability. Informally speaking, this means that
the preconditioner can be efficiently removed once “it has done its job”.
Formally, a preconditioner is removable with respect to computing a re-
flexive generalized inverse if there exists an efficiently computable map-
ping g such that g(h(A)−) is a reflexive generalized inverse of A.

Although several preconditioners for achieving generic rank profile have been
proposed in the literature, we are not aware of an existing result that cov-
ers all of the above properties simultaneously. For example, the Toeplitz pre-
conditioner by Kaltofen and Saunders [KS91] fails to satisfy (ii), and the di-
agonal preconditioner proposed in [EK97] (combined with a suitable linear-
independence preconditioner, see [CEK+02]) fails to satisfy (iii).

In this section we will show that for a symmetric matrix A, the precondi-
tioner h(A) = UAUT with U a uniformly random (invertible) matrix is suffi-
cient for satisfying (i)–(iii). It is easy to see that (ii) holds. We first prove the
necessary condition for removability in Lemma 5.13 and then prove properties
(i) and (iii) in Theorem 5.14.

Lemma 5.12 (Schwartz–Zippel). Let g ∈ F[x1, . . . , xn] be a nonzero polyno-
mial of total degree d ≥ 0 over a field F. Let S ⊆ F and let α1, . . . , αn be chosen
independently and uniformly at random from S. Then,

Pr[g(α1, . . . , αn) = 0] ≤ d

|S|
. (5.46)
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We will now show that the reverse order law holds for generalized reflexive
inverses under the condition that the product is rank-preserving.

Lemma 5.13. Let A ∈ Fm×` and B ∈ F`×n be arbitrary and let Z ∈ Fn×m be a
generalized reflexive inverse of AB. Then, BZ is a generalized reflexive inverse
of A if and only if rankA = rank(AB) and, similarly, ZA is a generalized
reflexive inverse of B if and only if rankB = rank(AB).

Proof. We will only show the first part; the second part follows immediately
by transposition. Let r = rankA. Let V ∈ Fm×r and W ∈ Fr×` be a rank
decomposition of A, i.e., A = VW . If rankA = rank(AB), then AB = VWB,
where rank(WB) = r andWB ∈ Fr×n, i.e., WB has full row rank and therefore
there exists a right inverse X ∈ Fn×r of WB, such that WBX = I ∈ Fr×r.
Then, that BZ is a generalized reflexive inverse of A follows from

A(BZ)A = VWBZVW

= (VWBZV )(WBX)W

= VWBXW

= VW

= A (5.47)

and

(BZ)A(BZ) = BZ. (5.48)

Conversely, if rankA 6= rank(AB), then

rank(BZ) ≤ rankZ

= rank(AB)

< rank(A), (5.49)

therefore BZ is not a generalized reflexive inverse of A.

Theorem 5.14. Let A ∈ Fm×n be an arbitrary matrix of rank r, such that
rank(AAT) = r. Let U ∈ Fm×m be chosen uniformly at random. Then, the
probability that U is removable and UAATUT has generic rank profile is

Pr
U

(
[UAATUT]k 6= 0 ∀k ∈ [r]

)
> 1− r(r + 1)

|F|
. (5.50)
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Proof. The probability in equation (5.50) expresses both that UAATUT has
generic rank profile, and that rank(AAT) = rank(UAATUT), i.e., that the
preconditioner is removable by applying Lemma 5.13 twice.

We view U = (ui,j) as a polynomial matrix with ui,j as indeterminates. For
every 1 ≤ k ≤ r, we apply the Cauchy–Binet formula to obtain an expression
for the leading principal minor of order k of the matrix UAATUT, which is a
polynomial in the variables ui,j , where we let K = [k],

fk(u1,1, . . . , ui,j , . . . , um,m) = [UAATUT]K,K (5.51)

=
∑
I⊂[m]
|I|=k

[UA]K,I [ATUT]I,K (5.52)

=
∑
I⊂[m]
|I|=k

(
[UA]K,I

)2
(5.53)

=
∑
I⊂[m]
|I|=k

( ∑
J⊂[m]
|J |=k

[U ]K,J [A]J ,I

)2
. (5.54)

It follows immediately from the structure of this formula that the total degree
of fk is 2k.

Let us now prove that none of the polynomials fk for all 1 ≤ k ≤ r is equal
to the zero polynomial. Because AAT is symmetric, there exists an invertible
matrix S = (si,j) such that SAATST = Λ where Λ = diag(λ1, . . . , λr, 0, . . . , 0)
with λi 6= 0 for all 1 ≤ i ≤ r [Alb38, Thm. 6]. Hence,

fk(s1,1, . . . , si,j , . . . , sm,m) =

k∏
i=1

λi 6= 0 ∀k ∈ [r]. (5.55)

The Schwartz–Zippel lemma asserts that Pr[fk(U1,1, . . . , Um,m) = 0] ≤ 2k
|F| ,

where the Ui,j represent the elements of U when viewed as (uniformly random
and independent) random variables. Hence, by applying the union bound over
k we obtain

Pr[f1(U) 6= 0 ∧ · · · ∧ fr(U) 6= 0] ≥ 1−
∑r
k=1 2k

|F|
= 1− r(r + 1)

|F|
. (5.56)
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Protocol 5.3 Pseudoinverse(JAK)

Input: A ∈ Fm×np

1: if m > n then
2: return Pseudoinverse(JAKT)T

3: JAATK← JAKJAKT . symmetric
4: JAATAATK← JAATKJAATK . symmetric

5: U
$← Fm×mp

6: JXK← UTObliviousRGInverse(UJAATAATKUT)U
7: JXAATK← JXKJAATK
8: JA†K← JATKJXAATK
9: JKK← I − JAATKJXAATK . symmetric; in parallel with JA†K

10: J(volA)2K← Determinant(JAATK + JKK)
11: return (JA†K, J(volA)2K)

Construction

Our protocol Pseudoinverse, on input of a secret-shared matrix JAK ∈ Fm×np ,

computes the pair (JA†K, J(volA)2K) and is given as Protocol 5.3.
We note that the rank of A is given by Tr(AA†) [BO71]. It can be computed

obliviously in Pseudoinverse as JrK = m− Tr(JKK).
Protocol Pseudoinverse makes use of a secure subprotocol Determinant for

computing the determinant of an invertible matrix in Fm×mp in secret-shared
form. A possible instantiation of Determinant can be found in [CD01], where it
is called protocol Π0. See also [BBSdV19], which slightly modifies this protocol
to reduce its randomness complexity.

Another possibility for computing the determinant of a matrix is given by
a small modification to the ObliviousRGInverse protocol, compute a reflexive
generalized inverse, but the determinant of its input as well. This modification
is shown in Protocol 5.4 as protocol OblviousRGInverse′ and requires m ad-
ditional multiplications, compared to ObliviousRGInverse. Correctness follows
from Schur’s determinant formula (equation (5.7)).

Corollary 5.15. Protocol Pseudoinverse, when run on an arbitrary m×n ma-
trix over Fp, correctly computes the Moore–Penrose pseudoinverse with proba-
bility at least

Pr(success) ≥
[
1− m(m+ 1) + 2

|F|

]
· PDeterminant, (5.57)
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Protocol 5.4 ObliviousRGInverse′(JAK)

Input: A ∈ Fm×mp with generic rank profile
1: if m = 1 then
2: return (ScalarRGInverse(Ja1,1K), Ja1,1K)
3: else

4:

(
JEK JF K
JFTK JHK

)
← JAK . split as evenly as possible

5: (JXK, Jd1K)← ObliviousRGInverse′(JEK)
6: JXF K← JXKJF K
7: JH − FTXF K← JHK− JFTKJXF K . symmetric
8: (JY K, Jd2K)← ObliviousRGInverse′(JH − FTXF K)
9: JXFY K← JXF KJY K

10: Jd1d2K← Jd1KJd2K . in parallel with JXFY K
11: JX +XFY FTXK← JXK + JXFY KJXF KT . symmetric

12: return

((
JX +XFY FTXK −JXFY K
−JXFY KT JY K

)
, Jd1d2K

)

where PDeterminant denotes the success probability of protocol Determinant.

Complexity Analysis

Proposition 5.16. Protocol Pseudoinverse, when run on an arbitrary m × n
matrix over Fp, requires mn+ 5

2m
2+ 3

2m secure dot products (or: 3
2m

2n+2m3+
1
2mn + m2 secure multiplications), one invocation of protocol Determinant on
a symmetric m × m matrix and one invocation of ObliviousRGInverse on a
symmetric m×m matrix.

Protocol Determinant, instantiated as in [BBSdV19], when invoked on a
m×m matrix, requires secure sampling of m2 random elements, and performing
2m2 + m − 1 secure dot products (or: 4

3m
3 + 2

3m − 1 secure multiplications)
and m2 open operations.

The field inversion technique from Bar-Ilan and Beaver [BB89] requires
secure sampling of one random element and one secure multiply-and-open op-
eration.

Subprotocol IsZero can be instantiated with the probabilistic secure zero
test from Nishide and Ohta [NO07]. This secure zero test is constant round
and requires 2κ secure multiplications, 4κ secure multiply-and-open operations
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and secure sampling of 5κ random elements, where κ is a security parameter
and the protocol may fail with probability 2−κ + 1/p.

Corollary 5.17. Protocol Pseudoinverse, when run on an arbitrary m×n ma-
trix over Fp, with protocol Determinant instantiated as in [BBSdV19], requires
in total nm+6m2+o(m2) secure dot products (or: 3

2nm
2+ 23

6 m
3+ 1

2nm+o(m3)
secure multiplications), m2 public random elements, m2 private random ele-
ments, m2 openings, m secure zero tests and m secure field inversions.

If protocols IsZero and Reciprocal are instantiated as the probabilistic zero
test from [NO07] and as in [BB89], respectively, the m secure zero tests and
field inversions require O(κm) secure multiplications, random elements and
openings.

Remark. It is straightforward to adapt Protocol 5.3 such that in line 8 it com-
putes the vector A†b instead of the matrix A†, i.e., directly solving the linear
system Ax = b for the vector x. By replacing line 8, in case m ≤ n, with the
two lines JXAATbK← JXAATKJbK and JA†bK← JATKJXAATbK, one can avoid
the matrix-matrix product that gives rise to the mn term. Namely, the com-
plexity (number of secure dot products) becomes O(n+m2). If m > n, then we
would transpose the system to be solved: xTAT = bT. In this case, line 8 would
be replaced by two secure products in which the matrix is multiplied from the
left by the vector and this would result in a complexity of O(n2) secure dot
products. Note, however, that this adaptation imposes an additional constraint
on the size of the modulus; the field should now be large enough to uniquely
represent the coefficients of the vector dA†b.





Chapter 6

Trinocchio

Note. This chapter is based on Trinocchio: Privacy-Preserving Outsourcing by
Distributed Verifiable Computation [SVdV16] with the following major modi-
fications.

• The case study demonstrating the performance of Trinocchio has been
removed, because this was not carried out with involvement of the author.

• The appendix on QAP based proofs and Pinocchio in particular has been
incorporated into the main text.

• The appendix of the full version of the paper [SVdV15] containing the
more detailed description and security proofs of the multi-client version
of the protocol has been incorporated into the main text.

• An issue with our application of the d-PKE assumption in the security
proof of the full protocol has been identified and remarked upon.

Verifiable computation allows a client to outsource computational tasks to
a worker with a cryptographic proof of correctness of the result that can be
verified faster than performing the computation. Recently, the Pinocchio sys-
tem achieved faster verification than computation in practice for the first time.
Unfortunately, Pinocchio and other efficient verifiable computation systems re-
quire the client to disclose the inputs to the worker, which is undesirable for
sensitive inputs. To solve this problem, we propose Trinocchio: a system that
distributes Pinocchio to three (or more) workers, that each individually do not
learn which inputs they are computing on. We fully exploit the almost linear
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structure of Pinocchio proofs, letting each worker essentially perform the work
for a single Pinocchio proof; verification by the client remains the same. More-
over, we extend Trinocchio to enable joint computation with multiple mutually
distrusting inputters and outputters and still very fast verification.

6.1 Introduction

Recent cryptographic advances are starting to make verifiable computation
more and more practical. The goal of verifiable computation is to allow a client
to outsource a computation to a worker and cryptographically verify the re-
sult with less effort than performing the computation itself. Based on recent
ground-breaking ideas [Gro10, GGPR13], Pinocchio [PHGR13] was the first
implemented system to achieve this for some realistic computations. Recent
works have improved the state-of-the-art in verifiable computation, e.g., by
considering better ways to specify computations [BCG+13], or adding access
control [AJCC15].

However, one feature not yet available in practical verifiable computation
is privacy, meaning that the worker should not learn the inputs that it is com-
puting on. This feature would enable a client to save time by outsourcing
computations, even if the inputs of those computations are so sensitive that
it does not want to disclose them to the worker. Also, it would allow verifi-
able computation to be used in settings where multiple clients do not trust the
worker or each other, but still want to perform a joint computation over their
respective inputs and be sure of the correctness of the result.

While privacy was already defined in the first paper to formalize verifiable
computation [GGP10], it has not been shown so far how it is efficiently achieved,
with existing constructions relying on inefficient cryptographic primitives. By
outsourcing a computation to multiple workers, it is possible to guarantee pri-
vacy (if not all workers are corrupted) and correctness, but existing construc-
tions from the multiparty literature lose the most appealing feature of verifiable
computation: namely, that computations can be verified very quickly, even in
time independent from the computation size. This leads to the central question
of this chapter: can we perform verifiable computation with the correctness and
performance guarantees of [PHGR13], but while also getting privacy against
corrupted workers?
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Our Contributions

In this chapter, we introduce Trinocchio to show that indeed, it is possible
to outsource a computation in a privacy-preserving way to multiple workers,
while retaining the fast verification offered by verifiable computation. Trinoc-
chio uses state-of-the-art [PHGR13]-style proofs, but distributes the compu-
tation of these proofs to, e.g., three workers such that no single worker learns
anything about the inputs. The client essentially gets a normal Pinocchio proof,
so we keep Pinocchio’s correctness guarantees and fast verification. The critical
observation is that the almost linear structure of Pinocchio proofs (supporting
verification based on bilinear maps) allows us to distribute the computation
of Pinocchio proofs such that individual workers perform essentially the same
work as a normal Pinocchio prover in the non-distributed setting. Specifically,
our contributions are:

• We show how production of Pinocchio proofs can be distributed to mul-
tiple workers in a privacy-preserving way, thereby achieving privacy-
preserving verifiable computation in the setting with one client

• We extend our system to settings with multiple distrusting input and
result parties

• We provide a precise security model capturing the security guarantees of
our protocols: privacy, correctness, but also input independence

While our Trinocchio protocol ensures correct function evaluation, it only
fully protects privacy against semi-honest workers. This is a realistic attacker
model; in particular, it means that side channel attacks on individual workers
are ineffective because each individual worker’s communication and computa-
tion are completely independent from the sensitive inputs. However, even if an
adversary should be able to obtain sensitive information, they are unable to
manipulate the result thanks to the use of verifiable computation. In this way,
our protocol hedges against the risk of more powerful adversaries.

Related Work

Privacy-preserving outsourcing to single workers has been considered in the lit-
erature, but constructions in this setting rely on inefficient cryptographic primi-
tives like fully homomorphic encryption [GGP10, CKKC13, FGP14], functional
encryption [GKP+13], and multi-input attribute-based encryption [GKL+15].
(This is not surprising: indeed, even without guaranteeing correctness, letting
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a single worker perform a computation on inputs it does not know would intu-
itively seem to require some form of fully homomorphic encryption.) Some of
these works also consider a multi-client setting [CKKC13, GKL+15].

A large body of works considers secure multiparty computation for privacy-
preserving outsourcing (see, e.g., [KMR12, PTK13, CLT14, JNO14]). These
works do not consider verifiability and achieve correctness at best in the case
that all-but-one workers are corrupt (due to inherent limitations of the underly-
ing protocols). We stress that this is rather unsatisfactory for the outsourcing
scenario, where one naturally wishes to cover the case that all workers are
corrupt—dispensing of the need to trust any particular worker.

Concerning outsourcing to multiple workers, [ACG+14] presents a verifiable
computation protocol combining privacy and correctness; but unfortunately,
they guarantee neither privacy nor correctness if all workers are corrupted
and may collude; and it places a much higher burden on the workers than,
e.g., [PHGR13]. Alternatively, recent works [BDO14, dHSV16, SV15], like us,
guarantee correctness independent of worker corruption, but privacy only under
some conditions. Our work offers a substantial performance improvement over
these works by fully exploiting a set-up that needs to be trusted both for
guaranteeing privacy and for guaranteeing correctness.

We should mention that the notion of verifiability exists in various forms
and the field has a richer background than presented here, however, we focus
entirely on the notion of verifiable computation first formalized by [GGP10],
because it is tailored to the outsourcing scenario.

Outline

We first briefly define the security model for privacy-preserving outsourced
computation in Section 6.2. We then provide a brief overview of the Pinocchio
protocol [PHGR13] for verifiable computation based on quadratic arithmetic
programs in Section 6.3. In Section 6.4, we show how Trinocchio distributes the
proof computation of Pinocchio in the single-client scenario, and prove security
of the construction. We generalise Trinocchio to the setting with multiple,
mutually distrusting inputters and outputters. We first give an outline of the
generalised protocol and security proof in Section 6.5 and discuss the protocol
and security proof in more detail in Sections 6.6 and 6.7, respectively. We finish
with a discussion and conclusions in Section 6.8.
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6.2 Security Model for Privacy-Preserving Outsourcing

In this section, we define security for privacy-preserving outsourcing. Because
we have interactive protocols between multiple parties (as opposed to a crypto-
graphic scheme, like verifiable computation above), we define security using the
ideal/real-paradigm [Can00]. In our setting, the parties are several result parties
that wish to obtain the result of a computation on inputs held by several input
parties, who are willing to enable the computation, but not to divulge their
private input values to anybody else. Therefore, they outsource the computa-
tion to several workers. (Input and result parties may overlap.) The simplest
case is the “single-client scenario” in which one party is the single input/result
party.

We consider protocols operating in three phases: an input phase involving
the input parties and workers; a computation phase involving only the workers;
and a result phase involving the workers and result parties. The work of the
input parties and output parties should depend only on the number of other
parties and the size of their own in/outputs.

To define security, we will re-use the existing definition framework for se-
cure function evaluation [Can00]. These definitions are not specific to the out-
sourcing setting, but the outsourcing setting will become apparent when we
claim that a protocol, e.g., implements secure function evaluation if at most X
workers are corrupted. Secure function evaluation is the problem to evaluate
(y1, . . . , ym) = f(x1, . . . , xm) with m parties such that the ith party inputs xi
and obtains yi, and no party learns anything else. (In outsourcing, result par-
ties have non-empty output, input parties have non-empty inputs, and workers
have empty in- and outputs.) A protocol π securely evaluates function f if the
outputs of the parties and adversary A in a real-world execution of the proto-
col can be emulated by the outputs of the parties and an adversary SA in an
idealised execution, where f is computed by a trusted party that acts as shown
in Figure 6.1. Security is guaranteed because the trusted party correctly com-
putes the function. Privacy is guaranteed because the adversary in the idealised
execution does not learn anything it should not. Secure evaluation also implies
input independence, meaning that an input party cannot let its input depend
on that of another, e.g., by copying the input of another party; this is guar-
anteed because the adversary needs to provide the inputs of corrupted parties
without seeing the honest inputs. Typically, protocols achieve secure function
evaluation for a given, restricted class of adversaries, e.g., adversaries that are
passive and only corrupt a certain number of workers. Protocols can require
set-up assumptions; these are captured by giving protocol participants access to
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Secure and correct function evaluation:

• Honest parties send inputs xi to trusted party

• Adversary sends inputs xi of corrupted parties to trusted party (active
adversary may modify them)

• Trusted party computes function (y1, . . . , ym) = f(x1, . . . , xm) (where
y1 = . . . = ⊥ if any xi = ⊥)

Secure function evaluation only:

• Trusted party provides outputs yi
for corrupted parties to adversary

• Trusted party provides outputs yi
to honest parties

Correct function evaluation only:

• Trusted party provides all inputs
xi to adversary

• Adversary gives subset of honest
parties to trusted party (passive
adversary gives all honest parties)

• Trusted party sends outputs yi to
given honest parties, ⊥ to others

• Honest parties output received value; corrupted parties output ⊥; adver-
sary chooses own output

Figure 6.1: Ideal-world executions of secure and correct function evaluation.
Where the two differ, secure function evaluation is indicated on the left and
correct function evaluation on the right
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a set of functions g1, . . . , gk that are always evaluated correctly. In this case, we
say that the protocol securely evaluates the function in the (g1, . . . , gk)-hybrid
model. For details, see [Can00].

We only achieve secure function evaluation if not too many workers are cor-
rupted; we still need to formalise that in all other cases, we still guarantee that
the function was evaluated correctly. This weaker security guarantee, which
we call correct function evaluation, captures security and input independence,
as above, but not privacy. It is formalised by modifying the ideal-world exe-
cution as shown in Figure 6.1. Namely, after evaluating f , the trusted party
provides all inputs to the adversary (modelling that the computation may leak
the inputs), who, based on these inputs, can decide which honest parties are
allowed to see their outputs. Hence, we guarantee that, if an honest party gets
a result, then it gets the correct result of the computation on independently
chosen inputs, but not that the inputs remain hidden, or that it gets a result
at all. Note that, in this definition, the adversary has complete control over
which result parties see an output and which ones do not.

6.3 Verifiable Computation from QAPs

In this section, we discuss the protocol for verifiable computation based on
quadratic arithmetic programs from [GGPR13, PHGR13].

Modelling Computations as Quadratic Arithmetic Programs

A quadratic arithmetic program, or QAP, is a way of encoding arithmetic
circuits, and some more general computations, over a field F of prime order q.
It is given by a collection of polynomials over F.

Definition 6.1 ([PHGR13]). A quadratic arithmetic program Q over a field F
is a tuple Q = ({vi}ki=0, {wi}ki=0, {yi}ki=0, t), with vi, wi, yi, t ∈ F[x] polynomials
of degree deg vi,degwi,deg yi < deg t = d. The polynomial t is called the target
polynomial. The size of the QAP is k; the degree is the degree d of t.

In the remainder, for ease of notation, we adopt the convention that x0 = 1.

Definition 6.2. Let Q = ({vi}, {wi}, {yi}, t) be a QAP. A tuple (x1, . . . , xk)

is a solution of Q if t divides (
∑k
i=0 xivi) · (

∑k
i=0 xiwi)− (

∑k
i=0 xiyi) ∈ F[x].

In case t splits, i.e., t = (x − α1) · . . . · (x − αn), a QAP can be seen as
a collection of rank-1 quadratic equations for (x1, . . . , xk); that is, equations
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v ·w−y with v, w, y ∈ F[x1, . . . , xk] of degree at most one. Namely, (x1, . . . , xk)
is a solution of Q if t divides (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), which means

exactly that, for every αj , (
∑
i xivi(αj)) · (

∑
i xiwi(αj)) − (

∑
i xiyi(αj)) = 0:

that is, each αj gives a rank-1 quadratic equation in variables (x1, . . . , xk).
Conversely, a collection of d such equations (recall x0 ≡ 1)

(vj0 · x0 + . . .+ vjk · xk) · (wj0 · x0 + . . .+ wjk · xk)− (yj0 · x0 + . . .+ yjk · xk)

can be turned into a QAP by selecting d distinct elements α1, . . . , αd in F,
setting target polynomial t = (x−α1) · . . . · (x−αd), and defining v0 to be the
unique polynomial of degree smaller than d for which v0(αj) = vj0, etcetera.

A QAP is said to compute a function (xl+1, . . . , xl+m) = f(x1, . . . , xl) if
the remaining xi give a solution exactly if the function is correctly evaluated.

Definition 6.3 ([PHGR13]). Let Q = ({vi}, {wi}, {yi}, t) be a QAP, and let
f : Fl → Fm be a function. We say that Q computes f if (xl+1, . . . , xl+m) =
f(x1, . . . , xl) ⇐⇒ ∃ (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q.

For any function f given by an arithmetic circuit, we can easily construct
a QAP that computes the function f . Indeed, we can describe an arithmetic
circuit as a series of rank-1 quadratic equations by letting each multiplication
gate become one equation. Apart from circuits containing just addition and
multiplication gates, we can also express circuits with some other kinds of
gates directly as QAPs. For instance, [PHGR13] defines a “split gate” that
converts a number a into its k-bit decomposition a1, . . . , ak with equations
a = a1 + 2 · a2 + . . .+ 2k−1 · ak, a1 · (1− a1) = 0, . . ., ak · (1− ak) = 0.

Proving Correctness of Computations

If QAP Q = ({vi}, {wi}, {yi}, t) computes a function f , then a prover can prove
that (xl+1, . . . , xl+m) = f(x1, . . . , xl) by proving knowledge of intermediate
wire values (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q, i.e.,
t divides (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi). [PHGR13] gives a construction of

a proof system which does exactly this. The proof system assumes discrete
logarithm groups G1,G2,G3 with a pairing e : G1 × G2 → G3 for which the
(4d+ 4)-PDH, d-PKE and (8d+ 8)-SDH assumptions [PHGR13] hold, with d
the degree of the QAP. Moreover, the proof is in the common reference string
(CRS) model: the CRS consists of an evaluation key used to produce the proof,
and a verification key used to verify it. Both are public, i.e., provers can know
the verification key and the verifiers can know the evaluation key.
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To prove that t divides p = (
∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), the prover

computes quotient polynomial h = p/t and basically provides evaluations “in
the exponent” of h, (

∑
i xivi), (

∑
i xiwi), and (

∑
i xiyi) in an unknown point

s that can be verified using the pairing. More precisely, given generators g1 of
G1 and g2 of G2 (written additively) and polynomial f ∈ F[x], let us write 〈f〉1
for g1 · f(s) and 〈f〉2 for g2 · f(s). The evaluation key in the CRS, generated
using random s, αv, αw, αy, β, rv, rw, ry = rv · rw ∈ F, is:

〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,
〈rvβvi + rwβwi + ryβyi〉1, 〈sj〉1.

where i ranges over l+m+1, l+m+2, . . . , k and j runs from 0 to d, the degree
of t. The proof contains the following elements:

〈Vmid〉1 =
∑
i〈rvvi〉1 · xi, 〈αvVmid〉1 =

∑
i〈rvαvvi〉1 · xi,

〈Wmid〉2 =
∑
i〈rwwi〉2 · xi, 〈αwWmid〉1 =

∑
i〈rwαwwi〉1 · xi,

〈Ymid〉1 =
∑
i〈ryyi〉1 · xi, 〈αyYmid〉1 =

∑
i〈ryαyyi〉1 · xi,

〈Z〉1 =
∑
i〈rvβvi + rwβwi + ryβyi〉1 · xi, 〈H〉1 =

∑
j〈sj〉1 · hj ,

(6.1)

where i ranges over l + m + 1, l + m + 2, . . . , k, and hj are the coefficients of
polynomial h = p/t.

To verify that t divides (
∑
i xivi)·(

∑
i xiwi)−(

∑
i xiyi) and hence (xl+1, . . . ,

xl+m) = f(x1, . . . , xl), a verifier uses the following verification key from the
CRS:

〈αv〉2, 〈αw〉1, 〈αy〉2, 〈β〉1, 〈β〉2, 〈rvvi〉1, 〈rwwi〉2, 〈ryyi〉1, 〈ryt〉2,

where i ranges over 0, 1, 2, . . . , l +m1. Given the verification key, a proof, and
values x1, . . . , xl+m, the verifier proceeds as follows. First, it checks that

e(〈Vmid〉1, 〈αv〉2) = e(〈αvVmid〉1, 〈1〉2);

e(〈αw〉1, 〈Wmid〉2) = e(〈αwWmid〉1, 〈1〉2);

e(〈Ymid〉1, 〈αy〉2) = e(〈αyYmid〉1, 〈1〉2) :

(6.2)

intuitively, under the d-PKE assumption, these checks guarantee that the
prover must have constructed 〈Vmid〉1, 〈Wmid〉2, and 〈Ymid〉1 using the elements

1In [PHGR13], several terms of the verification key includes a value γ; however, a careful
look at [PHGR13]’s proof reveals that γ is actually not needed. We remove it because it
simplifies notation, especially for our multi-client protocols.
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from the evaluation key. It then checks that

e(〈Vmid〉1 + 〈Ymid〉1, 〈β〉2) · e(〈β〉1, 〈Wmid〉2) = e(〈Z〉1, 〈1〉2) : (6.3)

under the PDH assumption, this guarantees that the same coefficients xi were
used in 〈Vmid〉1, 〈Wmid〉2, and 〈Ymid〉1. Finally, the verifier computes evaluations

〈V 〉1 of
∑k
i=0 xivi as 〈Vmid〉1+

∑l+m
i=0 〈rvvi〉1·xi; 〈W 〉2 of

∑k
i=0 xiwi as 〈Wmid〉2+∑l+m

i=0 〈rwwi〉2 · xi; and 〈Y 〉1 of
∑k
i=0 xiyi as 〈Ymid〉1 +

∑l+m
i=0 〈ryyi〉1 · xi, and

verifies that

e(〈V 〉1, 〈W 〉2) · e(〈Y 〉1, 〈1〉2)−1 = e(〈H〉1, 〈ryt〉2) : (6.4)

under the (8d + 8)-SDH assumption, this guarantees that, for the polynomial
h encoded by 〈H〉1, t · h = (

∑
i xivi) · (

∑
i xiwi)− (

∑
i xiyi) holds.2

Theorem 6.4 ([GGPR13], informal). Given QAP Q = ({vi}, {wi}, {yi}, t)
and values x1, . . . , xl+m, the above is a non-interactive argument of knowledge
of (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q.

Making the Proof Zero-Knowledge

The above proof can be turned into a zero-knowledge proof, that reveals noth-
ing about the values of (xl+m+1, . . . , xk) other than that t divides (

∑
i xivi) ·

(
∑
i xiwi) − (

∑
i xiyi) for some h, by performing randomisation. Namely, in-

stead of proving that t · h = (
∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), we prove that

t·h̃ = (
∑
i xivi+δv ·t)·(

∑
i xiwi+δw ·t)−(

∑
i xiyi+δy ·t) with δv, δw, δy random

from F. Precisely, the evaluation key needs to contain additional elements:

〈rvt〉1, 〈rvαvt〉1, 〈rwt〉2, 〈rwαwt〉1, 〈ryt〉1, 〈ryαyt〉1,
〈rvβt〉1, 〈rwβt〉1, 〈ryβt〉1, 〈t〉1.

2We remark that, as shown in [PHGR13], a verifier who has generated the evaluation
and verification keys, can use the randomness from the generation process to save several of
the above pairing checks. We do not consider this optimisation here.
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Compared to the original proof, we let

〈V ′mid〉1 = 〈Vmid〉1 + 〈rvt〉1 · δv,
〈αvV ′mid〉1 = 〈αvV ′mid〉1 + 〈rvαvt〉1 · δv,
〈W ′mid〉2 = 〈Wmid〉2 + 〈rwt〉2 · δw,

〈αwW ′mid〉1 = 〈αwWmid〉1 + 〈rwαwt〉1 · δw,
〈Y ′mid〉1 = 〈Ymid〉1 + 〈ryt〉1 · δy,

〈αyY ′mid〉1 = 〈αyYmid〉1 + 〈ryαyt〉1 · δy,
〈Z ′〉1 = 〈Z〉1 + 〈rvβt〉1 · δv + 〈rwβt〉1 · δw + 〈ryβt〉1 · δy,

〈H ′〉1 =
∑
j

〈sj〉1 · h̃j ,

with h̃j the coefficients of h+δvw0+
∑
i δvxi·wi+δwv0+

∑
i δwxi·vi+δvδw ·t−δy.

Verification remains exactly the same.

Theorem 6.5 ([GGPR13], informal). Given QAP Q = ({vi}, {wi}, {yi}, t) and
values x1, . . . , xl+m, the above is a non-interactive zero-knowledge argument of
knowledge of (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q.

From Arguments of Knowledge to Verifiable Computation

In [PHGR13], the above argument of knowledge is used to construct a public
verifiable computation scheme. In such a scheme, a client outsources the com-
putation of a function f to a worker, obtaining cryptographic guarantees that
the result it gets from the worker is correct. It is defined as follows:

Definition 6.6 ([PHGR13]). A public verifiable computation scheme VC con-
sists of three polynomial-time algorithms (KeyGen,Compute,Verify):

• (EKf ; VKf ) ← KeyGen(f, 1λ): a probabilistic key generation algorithm
that takes as argument a function f : Fl → Fm and a security parameter
λ, outputting a public evaluation key EKf and a public verification key
VKf

• (y;π) ← Compute(EKf ;x): a probabilistic worker algorithm that takes
input x ∈ Fl and outputs y = f(x) ∈ Fk and a proof π of its correctness

• {0, 1} ← Verify(VKf ;x;y;π): a deterministic verification algorithm that
outputs 1 if y = f(x), 0 otherwise.
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To outsource the computation of f , a client runs KeyGen and provides EKf

to the worker. When it needs f(x), it provides x to the worker, who runs
Compute and provides the result y = f(x) and proof π to the client. The client
accepts y if Verify succeeds. We require that worker cannot provide incorrect
proofs even if it knows VKf , which makes this verifiable computation scheme
“public”. In fact, a trusted party could perform KeyGen once and for all and
publish (EKf ,VKf ); any client who trusts this party can then use the published
VKf to verify computations. (Trusting this party is needed: the random values
used in KeyGen are a trapdoor with which the generator of the keys can produce
false proofs.) A public verifiable computation scheme should satisfy correctness
and security. Correctness means that honest workers produce accepting proofs:

Definition 6.7 ([PHGR13]). A public verifiable computation scheme VC is
called correct if, for all f : Fl → Fm and x ∈ F:

if (EKf ; VKf )← KeyGen(f, 1λ); (y;π)← Compute(EKf ;x),

then Verify(VKf ;x;y;π) = 1.

Security means that corrupt workers cannot convince clients of wrong re-
sults:

Definition 6.8 ([PHGR13]). A public verifiable computation scheme VC is
called secure if, for any f : Fl → Fm and probabilistic polynomial time adver-
sary A:

Pr[ (EKf ,VKf )← KeyGen(f, 1λ); (x;y;π)← A(EKf ; VKf ) :

y 6= f(x) ∧ Verify(VKf ;x;y;π) = 1 ] = negl(λ).

Given a QAP Q that computes a function f , the argument of knowledge
from Section 6.3 directly gives a public verifiable computation scheme known
as Pinocchio [PHGR13]: KeyGen is the computation of the evaluation and
verification keys for Q; Compute computes (xl+1, . . . , xl+m) = f(x1, . . . , xl),
(xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q, and proof (6.1); and
Verify are the checks (6.2–6.4) for this proof.

Theorem 6.9 (Pinocchio [PHGR13], informal). Let QAP Q be of degree d.
Then the above construction is a secure and correct public verifiable computa-
tion scheme under the d-PKE, (4d+ 4)-PDH, and (8d+ 8)-SDH assumptions.
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6.4 Distributing the Prover Computation

In this section, we present the single-client version of our Trinocchio protocol
for privacy-preserving outsourcing. In Trinocchio, a client distributes compu-
tation of a function x2 = f(x1) to n workers (we consider here single-valued
input and output, but the generalisation is straightforward). Trinocchio guaran-
tees correct function evaluation (regardless of corruptions) and secure function
evaluation (if at most θ workers are passively corrupted, where n = 2θ + 1).
Trinocchio in effect distributes the proof computation of Pinocchio; the number
of workers to obtain privacy against one semi-honest worker is three, hence its
name.

Multiparty Computation using Shamir Secret Sharing

To distribute the Pinocchio computation, Trinocchio employs multiparty com-
putation techniques based on Shamir secret sharing [BGW88]. Recall that in
(θ, n) Shamir secret sharing, a party shares a secret s among n parties so that
θ + 1 parties are needed to reconstruct s. It does this by taking a random
degree-≤ θ polynomial p(x) = αθx

θ + . . . + αx + s with s as constant term
and giving p(i) to party i. Since p(x) is of degree at most θ, p(0) is com-
pletely independent from any θ shares but can be easily computed from any
θ+ 1 shares by Lagrange interpolation. We denote such a sharing as JsK. Note
that Shamir-sharing can also be done “in the exponent”, e.g., J〈a〉1K denotes a
Shamir sharing of 〈a〉1 ∈ G1 from which 〈a〉1 can be computed using Lagrange
interpolation in G1.

Shamir secret sharing is linear, i.e., Ja+ bK = JaK+ JbK and JαaK = αJaK can
be computed locally. When computing the product of JaK and JbK, each party
i can locally multiply its points pa(i) and pb(i) on the random polynomials pa
and pb. Because the product polynomial has degree at most 2θ, this is a (2θ, n)
sharing, which we write as [a · b] (note that reconstructing the secret requires
n = 2θ + 1 parties). Moreover, the distribution of the shares of [a · b] is not
independent from the values of a and b, so when revealed, these shares reveal
information about a and b. Hence, in multiparty computation, [a ·b] is typically
converted back into a random (θ, n) sharing Ja ·bK using an interactive protocol
due to [GRR98]. Interactive protocols for many other tasks such as comparing
two shared value also exist (see, e.g., [dH12]).
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The Trinocchio protocol

We now present the Trinocchio protocol. Trinocchio assumes that Pinocchio’s
KeyGen has been correctly performed, i.e., formally, Trinocchio works in the
KeyGen-hybrid model. Furthermore, Trinocchio assumes pairwise private, syn-
chronous communication channels. To obtain x2 = f(x1), a client proceeds in
four steps:

• The client obtains the verification key, and the workers obtain the eval-
uation key, using hybrid calls to KeyGen.

• The client secret shares Jx1K of its input to the workers.

• The workers use multiparty computation to compute secret-shares of the
output, Jx2K, and of the Pinocchio proof elements, J〈Vmid〉1K, J〈αvVmid〉1K,
J〈Wmid〉2K, J〈αwWmid〉1K, J〈Ymid〉1K, J〈αyYmid〉1K, J〈Z〉1K, and [〈H〉1], as
we explain next; and sends these shares to the client.

• The client recombines the shares of the Pinocchio proof elements into
〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2, 〈αwWmid〉1, 〈Ymid〉1, 〈αyYmid〉1, 〈Z〉1, 〈H〉1
by Lagrange interpolation, and accepts x2 as computation result if Pinoc-
chio’s Verify returns success.

Algorithm 6.1 shows in detail how the secret-shares of the function output
and Pinocchio proof are computed. The first step is to compute function output
x2 = f(x1) and values (x3, . . . , xk) such that (x1, . . . , xk) is a solution of the
QAP (line 4). This is done using normal multiparty computation protocols
based on secret sharing. If function f is represented by an arithmetic circuit,
then it is evaluated using local addition and scalar multiplication, and the
multiplication protocol from [GRR98]. If f is represented by a circuit using
more complicated gates, then specific protocols may be used: e.g., the split gate
discussed in Section 6.3 can be evaluated using multiparty bit decomposition
protocols [DFK+06, ST06]. Any protocol can be used as long as it guarantees
privacy, i.e., the view of any θ workers is statistically independent from the
values represented by the shares.

The next task is to compute, in secret-shared form, the coefficients of the
polynomial h = ((

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi))/t ∈ F[x] that we need for

proof element 〈H〉1. In theory, this computation could be performed by first
computing shares of the coefficients of (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), and

then dividing by t, which can be done locally using traditional polynomial long
division. However, this scales quadratically in the degree of the QAP and hence
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Algorithm 6.1 Trinocchio’s Compute protocol

1: . S = {α1, . . . , αd} denotes the roots of the target polynomial of the QAP
2: . T = {β1, . . . , βd} denotes a list of distinct points different from S
3: function Compute(EKf = {〈rvvi〉1}i, . . . , {〈sj〉1}j ; Jx1K)
4: (Jx2K, . . . , JxkK)← f(Jx1K)
5: JvK← {

∑
i vi(αj) · JxiK}j

6: JwK← {
∑
i wi(αj) · JxiK}j

7: JyK← {
∑
i yi(αj) · JxiK}j

8: JV K← FFT−1S (JvK)
9: JW K← FFT−1S (JwK)

10: JY K← FFT−1S (JyK)
11: Jv′K← FFTT (JV K)
12: Jw′K← FFTT (JW K)
13: Jy′K← FFTT (JY K)
14: [h′]← {(Jv′jK · Jw′jK− Jy′jK)/t(βj)}j
15: [H]← FFT−1T ([h′])
16: J〈Vmid〉1K←

∑
i〈rvvi〉1 · JxiK

17: J〈αvVmid〉1K←
∑
i〈rvαvvi〉1 · JxiK

18: J〈Wmid〉2K←
∑
i〈rwwi〉2 · JxiK

19: J〈αwWmid〉1K
∑
i〈rwαwwi〉1 · JxiK

20: J〈Ymid〉1K←
∑
i〈ryyi〉1 · JxiK

21: J〈αyYmid〉1K←
∑
i〈ryαyyi〉1 · JxiK

22: J〈Z〉1K←
∑
i〈rvβvi + rwβwi + ryβyi〉1 · JxiK

23: [〈H〉1] =
∑
j〈sj〉1 · [Hj ]

24: return (Jx2K; J〈Vmid〉1K, J〈αvVmid〉1K, J〈Wmid〉2K, J〈αwWmid〉1K,
J〈Ymid〉1K, J〈αyYmid〉1K, J〈Z〉1K, [〈H〉1])

leads to unacceptable performance. Hence, we take the approach based on fast
Fourier transforms (FFTs) from [BCG+13], and adapt it to the distributed
setting. Given a list S = {ω1, . . . , ωd} of distinct points in F, we denote by
P = FFTS(p) the transformation from coefficients p of a polynomial p of
degree at most d − 1 to evaluations p(ω1), . . . , p(ωd) in the points in S. We
denote by p = FFT−1S (P ) the inverse transformation, i.e., from evaluations to
coefficients. Deferring specifics to later, we mention now that the FFT is a linear
transformation that, for some S, can be performed locally on secret-shares in
O(d log d).

With FFTs available, we can compute the coefficients of h by evaluating h
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in d distinct points and applying FFT−1. Note that we can efficiently compute
evaluations v of v = (

∑
i xivi), w of w = (

∑
i xiwi), and y of y = (

∑
i xiyi) in

the zeros {ω1, . . . , ωd} of the target polynomial (lines 5–7). Namely, the values
vi(ωj), wi(ωj), yi(ωj) are simply the coefficients of the quadratic equations
represented by the QAP, most of which are zero, so these sums have much
fewer than k elements (if this were not the case, then evaluating v, w, and
y would take an unacceptable O(d · k)). Unfortunately, we cannot use these
evaluations directly to obtain evaluations of h, because this requires division
by the target polynomial, which is zero in exactly these points ωi. Hence,
after determining v, w, and y, we first use the inverse FFT to determine the
coefficients V , W , and Y of v, w, and y (lines 8–10), and then again the FFT
to compute the evaluations v′, w′, and y′ of v, w, and y in another set of points
T = {Ω1, . . . ,Ωk} (lines 11–13). Now, we can compute evaluations h′ of h in
T using h(Ωi) = (v(Ωi) · w(Ωi) − y(Ωi))/t(Ωi). This requires a multiplication
of (θ, n)-secret-shares of v(Ωi) and w(Ωi), hence the result is a (2θ, n)-sharing.
Finally, the inverse FFT gives us a (2θ, n)-sharing of the coefficients H of h
(lines 14 and 15).

Given secret-shares of the values of xi and coefficients of h, it is straightfor-
ward to compute secret-shares of the Pinocchio proof. Indeed, 〈Vmid〉1, . . . , 〈H〉1
are all computed as linear combinations of elements in the evaluation key, so
shares of these proof elements can be computed locally (lines 16–23), and finally
returned by the respective workers (lines 24–24).

Note that, compared to Pinocchio, our client needs to carry out slightly
more work. Namely, our client needs to produce secret-shares of the inputs and
recombine secret-shares of the outputs; and it needs to recombine the Pinoc-
chio proof. However, according to the micro-benchmarks from [PHGR13], this
overhead is small. For each input and output, Verify includes three exponenti-
ations, whereas Combine involves four additions and two multiplications; when
using [PHGR13]’s techniques, this adds at most a 3% overhead. Recombining
the Pinocchio proof involves 15 exponentiations at around half the cost of a
single pairing. Alternatively, it is possible to let one of the workers perform
the Pinocchio recombining step by using the distributed zero-knowledge vari-
ant of Pinocchio (Section 6.3) and the techniques from Section 6.5. In this
case, the only overhead for the client is the secret-sharing of the inputs and
zero-knowledge randomness, and recombining the outputs.

Parameters for Efficient FFTs To obtain efficient FFTs, we use the ap-
proach of [BCG+13]. There, it is noted that the operation P = FFTS(p) and its
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inverse can be efficiently implemented if S = {ω, ω2, . . . , ωd = 1} is a set of pow-
ers of a primitive dth root of unity, where d is a power of two. (We can always de-
mand that QAPs have degree d = 2k for some k by adding dummy equations.)
Moreover, [BCG+13] presents a pair of groups G1,G2 of order q such that Fq
has a primitive 230th root of unity (and hence also primitive 2kth roots of unity
for any k < 30) as well as an efficiently computable pairing e : G1 ×G2 → G3.
Finally, [BCG+13] remarks that for T = {ηω, ηω2, . . . , ηωd = η}, operations
FFT−1T and FFT−1T can easily be reduced to FFTS and FFT−1S , respectively. In
our implementation, we use exactly these suggested parameters.

Security of Trinocchio

Theorem 6.10. Let f be a function. Let n = 2θ + 1 be the number of work-
ers used. Let d be the degree of the QAP computing f used in the Trinocchio
protocol. Assuming the d-PKE, (4d+ 4)-PDH, and (8d+ 8)-SDH assumptions:

• Trinocchio correctly evaluates f in the KeyGen-hybrid model.

• Whenever at most θ workers are passively corrupted, Trinocchio securely
evaluates f in the KeyGen-hybrid model.

The proof of this theorem is easily derived as a special case of the proof for
the multi-client Trinocchio protocol later. Here, we present a short sketch.

Sketch. To prove correct function evaluation, we need to show that for ev-
ery real-world adversary A interacting with Trinocchio, there is an ideal-world
simulator SA that interacts with the trusted party for correct function eval-
uation such that the two executions give indistinguishable results. The only
interesting case is when the client is honest and some of the workers are not.
In this case, the simulator receives the input of the honest party, and needs
to choose whether to provide the output. To this end, the simulator simply
simulates a run of the actual protocol with A, until it has finally obtained
function output x2 and the accompanying Trinocchio proof. If the proof ver-
ifies, it tells the trusted party to provide the output to the client; otherwise,
it tells the trusted party not to. Finally, the simulator outputs whatever A
outputs. Because Pinocchio is secure, except with negligible probability a ver-
ifying proof implies that the real-world output of the client (as given by the
adversary) matches the ideal-world output of the client (as computed by the
trusted party); and by construction, the outputs of A and SA are distributed
identically. This proves correct function evaluation.
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For secure function evaluation, again the only interesting case is if the client
is honest and some of the workers are passively corrupted. In this case, because
corruption is only passive, correctness of the multiparty protocol used to com-
pute f and correctness of the Pinocchio proof system used to compute the proof
together imply that real-world executions (like ideal-world executions) result in
the correct function result and a verifying proof. Hence, we only need to worry
about how SA can simulate the view of A on the Trinocchio protocol without
knowing the client’s input. However, note that the workers only use a multi-
party computation to compute f (which we assume can be simulated without
knowing the inputs), after which they no longer receive any messages. Hence
simulating the multiparty computation for f and receiving any messages that
A sends is sufficient to simulate A. This proves secure function evaluation.

Privacy against Active Attacks We remark that actually, Trinocchio in
some cases provides privacy against actively corrupted workers as well. Namely,
suppose that the protocol used to compute f does not leak any information
to corrupted workers in the event of an active attack (even though in this
case it may not guarantee correctness). For instance, this is the case for the
protocol from [GRR98]: the attacker can manipulate the shares that it sends,
which makes the computation return incorrect results; but since the attacker
always learns only θ many shares of any value, it does not learn any infor-
mation. Because the attacker learns no additional information from producing
the Pinocchio proof, the overall protocol still leaks no information to the ad-
versary. (And security of Pinocchio ensures the client notices the attacker’s
manipulation.)

This crucially relies on the workers not learning whether the client accepts
the proof: if the workers would learn whether the client obtained a validating
proof, then, by manipulating proof construction, they could learn whether a
modified version of the tuple (x1, . . . , xk) is a solution of the QAP used, so
corrupted workers could learn one chosen bit of information about the inputs
(cf. [MF06a]).

6.5 Handling Mutually Distrusting In- and Outputters

We now consider the scenario where there are multiple (possibly overlapping)
input and result parties. There are some significant changes between this sce-
nario and the single-client scenario. In particular, we need to extend Pinocchio
to allow verification not based on the actual input/output values (indeed, no
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Algorithm 6.2 ProofBlock

1: function ProofBlock(BK;x; δv, δw, δy)
2: 〈V 〉1 ← 〈rvt〉1δv +

∑
i〈rvvi〉1xi

3: 〈V ′〉1 ← 〈rvαvt〉1δv +
∑
i〈rvαvvi〉1xi

4: 〈W 〉2 ← 〈rwt〉2δw +
∑
i〈rwwi〉2xi

5: 〈W ′〉1 ← 〈rwαwt〉1δw +
∑
i〈rwαwwi〉1xi

6: 〈Y 〉1 ← 〈ryt〉1δy +
∑
i〈ryyi〉1xi

7: 〈Y ′〉1 ← 〈ryαyt〉1δy +
∑
i〈ryαyyi〉1xi

8: 〈Z〉1 ← 〈rvβt〉1δv + 〈rwβt〉1δw + 〈ryβt〉1δy +
∑
i〈rvβvi + rwβwi +

ryβyi〉1xj
9: return (〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1)

party sees all of them) but on some kind of representation that does not re-
veal them. Moreover, we need to use the zero-knowledge variant of Pinocchio
(Section 6.3), and we need to make sure that input parties choose their inputs
independently from each other.

Multi-Client Proofs and Keys

Our multi-client Trinocchio proofs are a generalisation of the zero-knowledge
variant of Pinocchio (Section 6.3) with modified evaluation and verification
keys. Recall that in Pinocchio, the proof terms 〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2,
〈αwWmid〉1, 〈Ymid〉1, 〈αyYmid〉1, and 〈Z〉1 encode circuit values xl+m+1, . . . , xk;
in the zero-knowledge variant, these terms are randomised so that they do not
reveal any information about xl+m+1, . . . , xk. In the multi-client case, addition-
ally, the inputs of all input parties and the outputs of all result parties need
to be encoded such that no other party learns any information about them.
Therefore, we extend the proof with blocks of the above seven terms for each
input and result party, which are constructed in the same way as the seven
proof terms above. Although some result parties could share a block of output
values, for simplicity we assign each result party its own block in the protocol.

To produce a block containing values x, a party first samples three random
field values δv, δw, and δy and then executes ProofBlock, cf. Algorithm 6.2. The
BK argument to this algorithm is the block key ; the subset of the evaluation
key terms specific to a single proof block. Because each input party should
only provide its own input values and should not affect the values contributed
by other parties, each proof block must be restricted to a subset of the wires.
This is achieved by modifying Pinocchio’s key generation such that, instead of
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Algorithm 6.3 CheckBlock

1: function CheckBlock(BV ; 〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1)
2: if e(〈V 〉1, 〈αv〉2) = e(〈V ′〉1, 〈1〉2) ∧
3: e(〈αw〉1, 〈W 〉2) = e(〈W ′〉1, 〈1〉2) ∧
4: e(〈Y 〉1, 〈αy〉2) = e(〈Y ′〉1, 〈1〉2) ∧
5: e(〈Z〉1, 〈1〉2) = e(〈V 〉1 + 〈Y 〉1, 〈β〉2)e(〈β〉1, 〈W 〉2)
6: then
7: return >
8: else
9: return ⊥

a sampling a single value β, one such value, βj , is sampled for each proof block
j and the terms 〈rvβjvi+ rwβjwi+ ryβjyi〉1 are only included for wires indices
i belonging to block j. That is, the jth block key is

BKj = {〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,
〈rvβjvi + rwβjwi + ryβjyi〉1, 〈rvβjt〉1, 〈rwβjt〉1, 〈ryβjt〉1},

with i ranging over the indices of wires in the block. Note that ProofBlock
only performs linear operations on its x, δv, δw and δy inputs. Therefore this
algorithm does not have to be modified to compute on secret-shares.

A Trinocchio proof in the multi-client setting now consists of one proof
block Qi = (〈Vi〉1, . . . , 〈Zi〉1) for each input and result party, one proof block
Qmid = (〈Vmid〉1, . . . , 〈Zmid〉1) of internal wire values, and Pinocchio’s 〈H〉1
element. Verification of such a proof consists of checking correctness of each
block, and checking correctness of 〈H〉1. The validity of a proof block can be
verified using CheckBlock, cf. Algorithm 6.3.

Compared to the Pinocchio verification key, our verification key contains
“block verification keys” BVi (i.e., elements 〈βj〉1 and 〈βj〉2) for each block
instead of just 〈β〉1 and 〈β〉2. Apart from the relations inspected by CheckBlock,
one other relation is needed to verify a Pinocchio proof: the divisibility check of
Equation (6.4). In the protocol, the algorithm that verifies this relation will be
called CheckDiv (displayed in Algorithm 6.4 for completeness). We denote the
modified setup of the evaluation and verification keys by hybrid call MKeyGen.

Protocol Overview

We will proceed with a protocol overview. Pseudocode and a more detailed
description of the protocol are given in Sections 6.6 and 6.7. The multi-client
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Algorithm 6.4 CheckDiv

1: function CheckDiv(V K; 〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1; 〈H〉1)
2: if e(〈V 〉1, 〈W 〉2) · e(〈Y 〉1, 〈1〉2)−1 = e(〈H〉1, 〈ryt〉2) then
3: return >
4: else
5: return ⊥

variant of our Trinocchio protocol makes use of private channels, just as the
single-client variant, to privately communicate in- and output values, and to
let the workers carry out the computation. We need some additional communi-
cation to ensure input independence and fix the input parties’ values. For this
we use a bulletin board. To achieve input independence, we first have the input
parties commit to a representation of their input and then reveal these, which
requires the use of a commitment scheme.

Apart from key set-up there are three phases to the multi-client Trinocchio
protocol.

• In the input phase, the input parties provide representations of their input
on the bulletin board. These representations are later used as part of the
proof to verify the computation results. They also serve to ensure that
each input party provides its value independent of the other input values.
The input parties then secret share their input values to the workers. The
workers verify that the secret-shared input values are consistent with their
representations on the bulletin board, to prevent malicious input parties
from providing a different value.

• The computation phase is very similar to the single-client variant of
Trinocchio. In this phase the workers perform multi-party computation
to carry out the actual computation and obtain secret-shares of inter-
mediate and result wire values. They then use these secret-shared wire
values to construct shares of the proof elements. These are then posted
on the bulletin board, instead of being communicated directly to the re-
sult parties to ensure that all result parties receive a consistent result.
In order to prevent these proof elements from revealing any information
about the wire values, the zero-knowledge variant of the proof is used
(Section 6.3).

• In the result phase the workers privately send the shares of the result
values to the result parties. The result parties recombine the proof shares
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from the bulletin board and check whether the proof verifies. The result
parties further check whether the recombined shares of the result are con-
sistent with the information on the bulletin board. The result parties only
accept the result received from the workers if both checks are satisfied.

Security of the Trinocchio Protocol

Analogously to the single-client case, we obtain the following result:

Theorem 6.11. Let f be a function. Let n = 2θ+ 1 be the number of workers
used. Let d be the degree of the QAP computing f used in the multi-client
Trinocchio protocol. Assuming the d-PKE, (4d + 4)-PDH, and (8d + 8)-SDH
assumptions:

• Trinocchio correctly evaluates f in the (ComGen,MKeyGen)-hybrid model.

• Whenever at most θ workers are passively corrupted, Trinocchio securely
evaluates f in the (ComGen,MKeyGen)-hybrid model.

We stress that “at most θ workers are passively corrupted” includes both the
case when the adversary is passively corrupted, and corrupts at most θ workers
(as well as arbitrarily many input and result parties); and the case when the
adversary is actively corrupted, and corrupts no workers (but arbitrarily many
input and result parties)

We give a proof of this theorem in Section 6.7. To prove secure function
evaluation, we obtain privacy by simulating the multiparty computation of the
proof with respect to the adversary without using honest inputs. To prove
correct function evaluation, we run the protocol together with the adversary:
if this gives a fake Pinocchio proof, then one of the underlying problems can
be broken.

In the single-client case, we remarked that Trinocchio actually provides se-
curity against up to θ actively corrupted workers. Namely, although θ actively
corrupted workers may manipulate the computation of the function and proof,
they do not learn any information from this because they do not see the re-
sulting proof that the client gets. In our multi-client protocol, it is less natural
to assume that the workers cannot see the resulting proof; and in fact, in our
protocol, corrupted workers do see the full proof as it is posted on the bulletin
board. It should be possible to obtain some privacy guarantees against actively
malicious workers (who do not collude with any result parties) by letting the
result parties provide proof contributions directly to the result parties instead
of posting them on the bulletin board. We leave an analysis for future work.
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6.6 Multi-client Protocol

We now present our multi-client Trinocchio protocol of Section 6.5 in more
detail. As before, we assume that each input party provides only a single input
and each result party receives only a single output; that is, each block from
Section 6.5 consists of only one wire. It should be clear from Section 6.5 how
this can be generalised.

Communication Model and Notation

We assume synchronous communication; pairwise secure channels between the
input parties and workers; between the workers themselves; and between the
workers and result parties. To ensure agreement between the parties about the
inputs for the computation, we additionally assume a bulletin board. Through
this bulletin board, parties can publish messages which can then be retrieved
by any other party. Messages on the bulletin board are authenticated. In our
protocol, we denote a party posting a message m as Post(m). For convenience,
we don’t explicitly denote a party retrieving information from the bulletin
board; instead, we take Post(m) to mean that any party can now use the value
for m.

Mixed Commitment Scheme

We use a commitment scheme, which allows a party to commit to a certain
value, without revealing that value to other parties, but, when at a later time
this value is revealed, the other parties can be certain that the revealed value
is equal to the original committed to value. Each party has its own public
commitment key k and a commitment to a value v using randomness r is
denoted Commitk(v; r). Because, given explicit randomness, the commitment
algorithm is deterministic, the commitment can be opened by simply revealing
(v, r). Then any party can verify the commitment by simply recomputing it.
To ensure input independence, the commitment scheme must be non-malleable.
Each input party will produce one commitment, so each commitment key is
used only once.

In particular, we use a so-called “mixed commitment scheme” [DN02]. In
such a scheme, commitment keys can be generated in two ways. First, they
can be generated such that the scheme is perfectly binding and computation-
ally hiding, and a trapdoor exists with which the committed value can be
extracted. Second, they can be generated such that the scheme is perfectly
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Algorithm 6.5 Trinocchio: key set-up

1: parties i ∈ I do
2: (k1, . . . , kn)← ComGen()

3: parties i ∈ I ∪ C ∪ R do
4: (EK = ({BKi}i, . . .), V K = ({BVi}i, . . .))← MKeyGen()

hiding and computationally binding, and a trapdoor exists with which com-
mitments can be opened to any value. Moreover, the keys generated in the two
ways should be computationally indistinguishable. In our protocol, commit-
ment keys of the first, i.e., perfectly binding, kind are generated for all input
parties by a trusted party (and the trapdoor thrown away), which we model
by a hybrid call k1, . . . , kl ← ComGen. (In the simulator used for the security
proof, commitment keys of the first kind are generated for corrupted input
parties and commitment keys of the second kind are generated for honest in-
put parties, with the trapdoors used when simulating the adversary.) Mixed
commitments can be instantiated efficiently, e.g., using a cryptographic hash
function in the random oracle model; or using Paillier encryption [DN02]: in this
latter case, perfectly binding commitment keys are k = (1 + N)usN mod N2,
perfectly hiding commitment keys are k = sN mod N2, and commitments are
kvrN mod N2.

The Protocol

As discussed in the protocol overview (Section 6.5), the protocol starts with
hybrid calls to obtain the trusted commitment keys and Trinocchio evaluation
and verification keys (given in Algorithm 6.5 for completeness). The remainder
of the protocol consists of the input phase, in which the input parties provide
their inputs to the workers; the computation phase, in which the workers com-
pute the function and Pinocchio proof; and the result phase, in which the result
parties obtain the output from the workers and verify its correctness. In the
following, we will describe each of these three phases separately.

Input Phase

The input phase of Trinocchio is displayed in Algorithm 6.6. In the input phase,
each input party provides its input to the workers. Compared to the single-client
case, in which the input party simply provided secret-shares of its inputs, we
need to take several additional steps. Namely, we need each input party to



6.6. Multi-client Protocol 121

provide a block for its inputs that other parties can use to verify the proof; and
we need to guarantee input independence, namely, that input parties cannot
choose their inputs depending on those of others.

To achieve these goals, we proceed as follows. First, each input party com-
putes a block for its input (lines 7 and 8). Having each input party post its
block on the bulletin board would break input independence (in effect, it binds
the input parties who provide the blocks first). We circumvent this by letting
each input party post a commitment to its block first (lines 9–11). After all
commitments have been posted, the input parties post the openings to the
commitments, i.e., the blocks and commitment randomness (lines 12 and 13).
(This guarantees input independence because in the security proof, the inputs
of the honest parties can still be changed after the corrupted parties provide
their inputs.) After this, the validity of the commitments (line 16) and blocks
(line 18) are checked; if any input party provided incorrect information, the
computation is aborted. Note that ProofBlock used by the input parties could
already be considered a commitment scheme [CFH+15], however, because of
the way the CRS is constructed and used in the security proof for the protocol,
we cannot make use of the trapdoor that would make it equivocable.

After the input blocks have been posted and checked, the inputs are pro-
vided to the workers in the form of (2θ, n) shares (lines 19 and 20). The shared
information is both input [xi] and block randomness [δv,i], [δw,i], [δy,i]: the work-
ers need this latter information to compute the proof’s 〈H〉1 element. Note that
we use (2θ, n) shares: because n = 2θ + 1, the shares of all workers recombine
to a unique value and we do not need to worry about input parties handing
out inconsistent shares. The workers check that the shares correspond to the
broadcast block by computing additive shares of the block, posting them, and
checking if their Shamir recombination (denoted by Combine) matches the value
on the bulletin board (lines 22–25). Finally, the (2θ, n)-shares are converted into
(θ, n)-shares (each worker (θ, n)-shares its share and applies recombination à
la [GRR98]) used for the remainder of the computation (line 26).

Computation Phase

The computation phase of Trinocchio is displayed in Algorithm 6.7. In the com-
putation phase, the workers compute function f , and produce a Pinocchio proof
that this computation was performed correctly. The computation of f (line 29)
and coefficients H ′ of the polynomial h = (v·w−y)/t (lines 30–40) are the same
as in the single-client case. To generate the proof block for the internal wires, the
workers first generate shared random values Jδv,midK, Jδw,midK, Jδy,midK (line 41):
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Algorithm 6.6 Trinocchio: input phase

5: . Continued from Algorithm 6.5
6: parties i ∈ I do

7: (δv,i, δw,i, δy,i)
$← F3

8: Qi ← ProofBlock(BKi;xi; δv,i, δw,i, δy,i)
9: sample commitment randomness ρi

10: ci ← Commitki(Qi; ρi)
11: Post(ci)
12: wait until all other input parties have posted commitments
13: Post(Qi, ρi)
14: for all j ∈ I \ {i} do
15: if cj 6= Commitkj (Qj ; ρj) then
16: abort the protocol

17: if CheckBlock(BVj ;Qj) = ⊥ then
18: abort the protocol

19: create (2θ, n)-shares ([xi], [δv,i], [δw,i], [δy,i])
20: distribute shares ([xi], [δv,i], [δw,i], [δy,i]) to the workers

21: parties C do
22: for all i ∈ I do
23: [Qi]← ProofBlock(BKi; [xi]; [δv,i], [δw,i], [δy,i])
24: Post([Qi])
25: if Combine([Qi]) 6= Qi then abort the protocol

26: convert (2θ, n) shares ([xi], [δv,i], [δw,i], [δy,i]) to
(θ, n) shares (JxiK, Jδv,iK, Jδw,iK, Jδy,iK)

for instance, by letting each party share a random value and taking the sum,
or using pseudo-random secret sharing. They then call ProofBlock to produce
the block using the shared wires and randomness (line 42). The blocks for the
result parties are generated in the same way (lines 43–45). The coefficients of
the randomised quotient polynomial H are computed from H ′ analogously to
the zero-knowledge variant of Pinocchio (Section 6.3); note that this requires
computing overall randomness δv, δw, δy that is the sum of the randomness
from all blocks in the proof (lines 46–48). This gives (2θ, n) shares [〈H〉1] of
proof element 〈H〉1 (lines 49–50)

Having computed shares of all proof elements, the workers now post these
shares on the bulletin board so that everybody can combine them to obtain
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Algorithm 6.7 Trinocchio: computation phase

27: . Continued from Algorithm 6.6
28: parties C do
29: compute (Jxl+1K, . . . , JxkK) using MPC
30: JvK← {(

∑
i vi(ωj) · JxiK}j

31: JwK← {(
∑
i wi(ωj) · JxiK}j

32: JyK← {(
∑
i yi(ωj) · JxiK}j

33: JV K← FFT−1S (JvK)
34: JW K← FFT−1S (JwK)
35: JY K← FFT−1S (JyK)
36: Jv′K← FFTT (JV K)
37: Jw′K← FFTT (JW K)
38: Jy′K← FFTT (JY K)
39: [h′]← {(Jv′jK · Jw′jK− Jy′jK)/t(Ωj)}j
40: [H ′]← FFT−1T ([h′])

41: (Jδv,midK, Jδw,midK, Jδy,midK)
$← F3

42: JQmidK← ProofBlock(BKmid; Jxl+m+1K, . . . , JxkK;
Jδv,midK, Jδw,midK, Jδy,midK)

43: for all i ∈ R do

44: (Jδv,iK, Jδw,iK, Jδy,iK)
$← F3

45: JQiK← ProofBlock(BKi; JxiK; Jδv,iK, Jδw,iK, Jδy,iK)
46: [δv]← [δv,mid] +

∑
i∈I∪R[δv,i]

47: [δw]← [δw,mid] +
∑
i∈I∪R[δw,i]

48: [δy]← [δy,mid] +
∑
i∈I∪R[δy,i]

49: [H]← [H ′] + JδvKJW K + JδwKJV K + JδvKJδwKT − JδyK
50: [〈H〉1]←

∑d
j=0〈sj〉1[Hj ]

51: Post(JQmidK + J0K)
52: Post([〈H〉1] + [0])
53: for all i ∈ R do Post(JQiK + J0K)

the full proof. Note that the shares of individual workers might statistically
depend on information that we do not want to reveal, such as internal circuit
wires. To avoid any problems because of this, the workers first re-randomise
their proof elements by adding a new random sharing of zero; for instance,
obtained by letting each worker share zero or using pseudo-random zero sharing
(lines 51–53).
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Algorithm 6.8 Trinocchio: result phase

54: . Continued from Algorithm 6.7
55: parties C do
56: for all i ∈ R do
57: send (JxiK, Jδv,iK, Jδw,iK, Jδy,iK) to result party i

58: parties i ∈ R do
59: for all j ∈ R do
60: Qj ← Combine([Qj ])

61: Q← Combine(JQmidK) +
∑
j∈I∪RQj

62: 〈H〉1 ← Combine([〈H〉1])
63: if CheckBlock(BVmid;Qmid) = ⊥ ∨
64: ∃j : CheckBlock(BVj ;Qj) = ⊥ ∨
65: CheckDiv(V K;Q; 〈H〉1) = ⊥
66: then
67: output ⊥ and abort the protocol

68: (xi, δv,i, δw,i, δy,i)← Combine(JxiK, Jδv,iK, Jδw,iK, Jδy,iK)
69: if Qi 6= ProofBlock(BKi;xi; δv,i, δw,i, δy,i) then
70: output ⊥ and abort the protocol

71: output xi

Result Phase

The result phase of Trinocchio is displayed in Algorithm 6.8. In the result phase,
the result parties obtain their computation results, and verify them with respect
to the information on the bulletin board. First, the result parties obtain secret
shares of their output values, and the randomness used in their proof blocks
(line 57). Then, they combine the values from the bulletin board into a full
multi-client Pinocchio proof (lines 60–62), and verify this proof (lines 63–67).
Finally, they recombine their output values (line 68), check if the secret shares
of their output values correspond to the posted proof block (lines 69 and 70),
and output the computation result (line 71).

6.7 Security Proof

In this section we prove Theorem 6.11, i.e., we show that our multi-client
Trinocchio protocol (Algorithms 6.5 through 6.8) correctly (always) and se-
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curely (if at most θ workers are passively corrupted) evaluates function f .
Theorem 6.11 directly follows from Lemmas 6.12 and 6.13 below.

Trinocchio Correctly Evaluates f

To prove that Trinocchio correctly evaluates f , we construct a simulator that
interacts with the trusted party for correct function evaluation shown in Fig-
ure 6.1. The simulator Scorrect is given in Algorithms 6.9 through 6.11. The
division of the simulator into several algorithms corresponds to the division
of the Trinocchio protocol into Algorithms 6.5 through 6.8 for the key set-up,
and input, computation and result phases. We do not explicitly specify the
simulator for the computation phase, because this phase only involves secure
multi-party computation and posting secret shares of the result on the bulletin
board, for which it is known that this can be simulated.

Lemma 6.12. For every probabilistic polynomial-time adversary A, simu-
lator Scorrect is probabilistic polynomial time and the distribution ensembles

Exec
(ComGen,MKeyGen)
Trinocchio,A and CIdealf,Scorrect are computationally indistinguish-

able.

Proof. To prove this lemma, we will start from the Exec distribution ensemble
and introduce increasingly modified distribution ensembles YADi, each indistin-
guishable from the next, to finally show that ExecTrinocchio,A is computationally
indistinguishable from Idealf,Scorrect . The simulator operates by simulating the
protocol with respect to the given adversary A, and finally returning whatever
value the simulated adversary A returned. The lines in the simulator are la-
belled to explain which parts of the simulator mimic the real protocol, which
are needed to interact with the ideal functionality, and which modifications are
introduced and explained by the various YAD distributions.

The real protocol is aborted at several places if certain conditions are met.
Note that this is always in response to checks on information on the bulletin
board that anybody can perform, hence all protocol parties agree on whether
the protocol is aborted. If the simulator follows the protocol and the protocol
is aborted, the simulator sends ⊥ to the ideal functionality on behalf of any
corrupt input party whose input had not been sent yet, and proceeds to send ∅
as set of result parties to get the result, disregarding any messages it receives
from the ideal functionality. It also completes the simulation of A to obtain
its output. This ensures that the distribution Ideal is well-defined for aborted
protocols.
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Algorithm 6.9 Simulator Scorrect(C, {xi}i∈C , z, λ) for correct function evalu-
ation: key set-up

1: for all i ∈ I do
2: if i ∈ C then
3: generate perfectly binding commitment key ki,

keep the trapdoor . YAD1

4: else
5: generate perfectly hiding commitment key ki,

keep the trapdoor . YAD1

6: generate modified (EK = {{BKi}i, . . .}, V K = {{BVi}i, . . .}) . YAD3

7: whenever the adversary queries ComGen, return (k1, . . . , kl)
8: whenever the adversary queries MKeyGen, return (EK,V K)

At various points, the simulator is instructed to terminate the simulation.
This is not the same as aborting the simulated protocol. The simulation will be
terminated whenever the simulator fails at some computation which is not part
of the real protocol, but which is needed to achieve some security property, such
as mimicking the real protocol. To terminate the simulation will mean that the
output of the adversary in the ideal case will not be consistent with the output
in the real case, i.e., it will signal an adversary that it is in fact operating in
the ideal case. To show that the termination of the simulation does not enable
the distinction between Exec and Ideal, we will show below that each of the
conditions which lead to termination of the simulated protocol can only occur
with negligible probability.

We will now describe the purpose of each of the increasingly modified distri-
butions YADi and show indistinguishability between consecutive distributions.

YAD1

The distribution ensemble YAD1 is the Exec distribution ensemble, where
the set-up of the protocol is modified such that the commitment keys for the
corrupt input parties are generated to be perfectly binding instead of perfectly
hiding, and the simulator keeps the trapdoors. This distribution ensemble is
computationally indistinguishable from ExecTrinocchio,A based on the property
of the mixed commitment scheme that the two kinds of commitment keys are
indistinguishable.



6.7. Security Proof 127

Algorithm 6.10 Simulator Scorrect(C, {xi}i∈C , z, λ) for correct function eval-
uation: input phase

9: . Continued from Algorithm 6.9
10: on behalf of honest parties i ∈ I do
11: sample commitment randomness ρ′i . YAD2

12: ci ← Commitki(0; ρ′i) . YAD2

13: Post(ci) . Exec

14: for all i ∈ I ∩ C do
15: extract Q̂i from ci using trapdoor . YAD2

16: if CheckBlock(BVi; Q̂i) = ⊥ then
17: xi ← ⊥ . YAD2

18: else
19: use the d-PKE extractor on Q̂i to obtain field elements

δv,i, δw,i and δy,i and polynomials Vi(x), Wi(x) and
Yi(x) of degree at most d− 1; if this fails, terminate
the simulation . YAD4

20: set xi such that Vi(x) = xivi(x), Wi(x) = xiwi(x) and
Yi(x) = xiyi(x); if this is not possible, terminate the
simulation . YAD5

21: send xi to the ideal functionality on behalf of corrupt
input party i . Ideal

22: receive x from the ideal functionality . Ideal
23: on behalf of honest parties i ∈ I do

24: (δv,i, δw,i, δy,i)
$← F3 . Exec

25: Qi ← ProofBlock(BKi;xi; δv,i, δw,i, δy,i) . Exec
26: create ρi such that ci = Commitki(Qi; ρi) using trapdoor . YAD2

27: simulate lines 13 through 26 of the real protocol on behalf of
honest parties . Exec

YAD2

For the distribution ensemble YAD2, the protocol is further modified by pro-
ducing commitments to 0 instead of the input proof blocks on behalf of the
honest input parties. When the commitments are opened later in the protocol,
the openings to correct proof blocks are created using the trapdoor information.
Additionally, the proof blocks produced by corrupt input parties are extracted
from their commitments, although the extracted blocks are not used any fur-
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Algorithm 6.11 Simulator Scorrect(C, {xi}i∈C , z, λ) for correct function eval-
uation: result phase

28: . Continued from Algorithm 6.10
29: simulate lines 56 through 68 of the real protocol on behalf of

honest parties . Exec
30: F ← ∅ . Ideal
31: for all i ∈ R \ C do
32: if Qi 6= ProofBlock(BKi;xi; δv,i, δw,i, δy,i) then
33: F ← F ∪ {i} . Ideal

34: for all Q′ ∈ {Qmid} ∪ {Qi}i∈R∩C ∪ {Qi}i∈F do
35: use the d-PKE extractor on Q′ to obtain field elements δ′v, δ

′
w

and δ′y and polynomials V ′(x), W ′(x) and Y ′(x) of degree
at most d− 1; if this fails, terminate the simulation . YAD4

36: set the corresponding entries in x such that V ′(x) =
∑
i xivi(x),

W ′(x) =
∑
i xiwi(x) and Y ′(x) =

∑
i xiyi(x), where i ranges

over the indices corresponding to the block Q′ belongs to; if
this is not possible, terminate the simulation . YAD5

37: if t(x) - (
∑
i xivi(x))(

∑
i xiwi(x))−

∑
i xiyi(x) then

38: terminate the simulation . YAD6

39: Send R \ F to the ideal functionality . Ideal
40: Return the output of the simulated adversary

ther at this stage.
Indistinguishability between YAD2 and YAD1 follows directly from the indis-

tinguishability property of the commitment scheme. The commitment scheme
also guarantees that commitments produced by the adversary can only be
opened to the extracted proof block, i.e., that Q̂i = Qi for corrupt input
parties i.

YAD3

For distribution ensemble YAD3, we will again modify the set-up of the protocol,
but this time of the evaluation and verification keys. This happens analogously
to [PHGR13]’s security proof. Instead of sampling s, αv, αw, αy, rv, rw, βmid

and the βi for 1 ≤ i ≤ l+m uniformly at random and generating the keys from
these values, the set-up proceeds as follows.
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For a given QAP of degree d, set q ← 4d+ 4, then sample s
$← F. Next, set

chal← {〈1〉1, 〈s〉1, 〈s2〉1, . . . , 〈sq〉1, 〈sq+2〉1, . . . , 〈s2q〉1
〈1〉2, 〈s〉2, 〈s2〉2, . . . , 〈sq〉2, 〈sq+2〉2, . . . , 〈s2q〉2}.

From this point onwards, the value s will not be used directly to compute the
keys. Instead, any key element derived from s will be generated from chal. This
restriction will be necessary to complete the security proof later.

Randomly draw αv, αw, αy, r′v and r′w. Also draw a random polynomial
χmid of degree at most 3d + 3 such that χmid(x) · (r′vvi(x) + r′wx

d+1wi(x) +
r′vr
′
wx

2d+2yi(x)) has a zero coefficient in front of x3d+3 for all internal wire in-
dices i, and χmid(x)t(x), χmid(x)xd+1t(x) and χmid(x)x2d+2t(x) have a zero
coefficient in front of x3d+3 as well. Such polynomials exist by Lemma 10
of [GGPR13]. Similarly, for each input and output wire 1 ≤ i ≤ l + m, draw
random polynomial χi(x) such that χi(x) is of degree at most 3d + 3 and
χi(x) · (r′vvk(x) + r′wx

d+1wk(x) + r′vr
′
wx

2d+2yk(x)), χi(x)t(x), χi(x)xd+1t(x)
and χi(x)x2d+2t(x) have a zero coefficient in front of x3d+3

Now, we will generate the evaluation and verification keys as if we had used
the following

rv = r′vs
d+1

rw = r′ws
2d+2

ry = r′ys
3d+3

βmid = sχmid(s)

βi = sχi(s),

where i ranges from 1 to l + m. Because we are not allowed to inspect the
value of s directly, we cannot compute these values explicitly. However, we can
compute the evaluation and verification key elements from chal. Because rv, rw
and various β’s are still distributed uniformly, and ry = rv · rw still holds, the
distribution of the keys is statistically indistinguishable from keys generated
using the real key generation algorithm.

YAD4

Distribution ensemble YAD4 is produced in the same manner as YAD3, except
that the d-PKE extractor is run on the adversarially generated proof blocks
that satisfy the CheckBlock predicate. If the extractor fails then the simulation
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is terminated. Because the d-PKE assumption states that the probability of
failure is negligible, YAD4 will be statistically indistinguishable from YAD3.
Therefore an adversary cannot cause the simulation to fail with better than
negligible probability in an attempt to distinguish Exec from Ideal and the
use of the d-PKE extractor on lines 19 and 35 is justified.

Remark. The use of knowledge of exponent assumptions is subject to many
subtleties, as was identified by Yao and Zhao [YZ10]. After publication of the
work presented in this chapter, we have discovered that our multiple use of the
extractor may not be completely justified under the d-PKE assumption. One
of the problems that arises with knowledge of exponent assumptions that an
adversary may be able to obtain pairs of group elements that satisfy the rela-
tion verified by the pairing check from other, unrelated protocol instances or
other parts of the same protocol instance. Such an adversary would be able to
compute proof terms that satisfy some of the pairing relations without neces-
sarily knowing the exponents, thereby violating the extractability assumption.
The d-PKE assumption is stated in a stand-alone fashion and avoids this prob-
lem. We use the extractor multiple times however, which is in violation of the
definition of the d-PKE assumption. This is not to say that this constitutes an
effective attack on our Trinocchio protocol. However, the security proof is in-
complete in this regards and would have to be carefully reworked at this point
to claim security under the stated assumptions. For the purpose of this thesis,
we leave this as an open issue.

YAD5

In addition to extracting the contents of all proof blocks, to produce distri-
bution ensemble YAD5 we will also attempt to retrieve the x values that con-
stitute the extracted V (x), W (x) and Y (x) polynomials. If no x exists such
that V (x) =

∑
i xivi(x), W (x) =

∑
i xiwi(x) and Y (x) =

∑
i xiyi(x), then

the simulation is terminated. We will show that an adversary that successfully
causes this failure, i.e., with higher than negligible probability, can break the
q-PDH assumption, as in the security proof of [PHGR13].

Suppose an adversary manages to produce a proof block Q, corresponding
to block verification key BK for which CheckBlock(V K;Q) holds and V (x),
W (x) and Y (x), as well as δv, δw and δy are successfully extracted, but no x ex-
ists satisfying V (x) =

∑
i xivi(x), W (x) =

∑
i xiwi(x) and Y (x) =

∑
i xiyi(x).

Let 〈Z〉1 be the final element of Q. Then we can write 〈Z〉1 as a polynomial
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∑
i ξix

i evaluated at s “in the exponent”:

〈Z〉1−〈rvβt〉1δv + 〈rwβt〉1δw + 〈ryβt〉1δy
=
∑
j

〈rvβvj + rwβwj + ryβyj〉1xj

= 〈sχ(s) · (r′vsd+1V (s) + r′ws
2d+2W (s) + r′vr

′
ws

3d+3Y (s))〉1
= 〈
∑
i

ξis
i〉1.

By Lemma 10 of [GGPR13], the coefficient ξq+1 for xq+1 is non-zero with high
probability. We can then compute

〈sq+1〉1 = ξ−1q+1 · (〈Z〉1 − 〈rvβt〉1δv + 〈rwβt〉1δw + 〈ryβt〉1δy −
∑
i 6=q+1

ξi〈si〉1)

using only information in the evaluation key.
Recall from YAD3 that the very first step in generating this distribution

ensemble is to create a q-PDH challenge for some secret value s and in the
rest of the process any information derived from s is computed based on this
challenge. If instead of generating the challenge ourselves, we consider it a
given, then the algorithm for generating YAD5 together with an adversary that
successfully causes failure can as a whole be viewed as an algorithm that breaks
the q-PDH assumption.

This justifies the extraction of all wire values from proof blocks on lines 20
and 36 of Scorrect.

YAD6

Distribution ensemble YAD6 is generated as YAD5, except that if the divisibility
check CheckDiv succeeds, we use the wire values obtained in the normal course
of the protocol together with the wire values extracted in YAD5 to test whether
t(x) truly divides p(x) = (

∑k
i=0 xivi(x))(

∑k
i=0 xiwi(x))−

∑k
i=0 xiyi(x). If this

is not the case then the simulation is terminated. We will show that the prob-
ability of an adversary forcing this failure is negligible, as an algorithm that
successfully manages to cause such a failure can be used to break the 2q-SDH
assumption, closely following the security proof of [PHGR13].

Let V (x) =
∑k
i=0 xivi(x), and, analogously, W (x) =

∑k
i=0 xiwi(x), and

Y (x) =
∑k
i=0 xiyi(x). Suppose that t(x) does not divide p(x) = V (x)W (x) −

Y (x). Let r be a root of t(x) but not of p(x) and let T (x) = t(x)/(x − r).
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Let d(x) = gcd(t(x), p(x)) and a(x) and b(x) be polynomials of degree at
most 2d − 1 and d − 1 respectively such that a(x)t(x) + b(x)p(x) = d(x). Set
A(x) = a(x)T (x)/d(x) and B(x) = b(x)T (x)/d(x). These polynomials have
no denominator since d(x) divides T (x). Then A(x)t(x) + B(x)p(x) = T (x).
Dividing by t(x), we have A(x)+B(x)p(x)/t(x) = 1/(x−r). Note that 〈H〉1 =
〈p/t〉1. We can now evaluate 〈A〉1 and 〈B〉2 using terms in the evaluation key.
From these we can solve e(〈A〉1, 〈1〉2)e(〈H〉1, 〈B〉2) = e(〈1〉1, 〈1〉2)1/(s−r).

Note that the q-PDH challenge can be considered an incomplete 2q-SDH
challenge. If, as with YAD5, we again do not generate the challenge ourselves,
but consider it a given, the algorithm for generating YAD6, along with an
adversary that successfully causes failure can be viewed as an algorithm which
break the 2q-SDH assumption.

Ideal

The distribution ensembles YAD1 through YAD6 are indistinguishable from
each other and from Exec. Through the distribution ensembles YAD1 to YAD6,
we have argued that the distribution of the adversary’s interactions with real
protocol parties are indistinguishable from its simulation by YADi. At the same
time, the outputs of the honest result parties in each YADi are still according
to the protocol. Comparing YAD6 to Idealf,Scorrect , we see that the adversary’s
output is unchanged, but now honest result parties get the value computed by
the trusted party instead of the value from the simulated protocol. However,
note that if the simulation in YAD6 is not terminated, then the vector x is in fact
a solution to the QAP corresponding to inputs supplied to the trusted party.
Hence, because the QAP computes f , the values from x that are output as
computation results in YAD6 are in fact the output of f on the inputs supplied
to the trusted party. Therefore, the outputs of the honest result parties in YAD6

and Ideal are the same.

From Exec to Ideal

Overall, the sequence of distribution ensembles shows that the real- and ideal-
world executions of the protocol are computationally indistinguishable, hence
the lemma follows.
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Algorithm 6.12 Simulator Scorrect(C, {xi}i∈C , z, λ) for secure function evalu-
ation

1: Generate real commitment keys k1, . . . , kn as in the protocol; whenAmakes
a hybrid call to ComGen, return k1, . . . , kn

2: Generate evaluation key EK and verification key V K, keep trapdoor s;
when A makes a hybrid call to MKeyGen, return (EK,V K)

3: for all i ∈ I \ C do
4: xi ← 0

5: Simulate lines 7 to 57 of the real protocol on behalf of honest input parties
and workers. If the protocol aborts, send ⊥ to the ideal functionality

on
behalf of corrupt input parties and abort the simulated protocol

6: for all i ∈ I ∩ C do
7: xi ← Combine(JxiK)
8: Send xi to the ideal functionality on behalf of corrupt input party i

9: for all i ∈ R ∩ C do
10: Receive result x̂i from the ideal functionality
11: δv,i ← Combine(Jδv,iK)
12: δw,i ← Combine(Jδw,iK)
13: δy,i ← Combine(Jδy,iK)
14: δ̂v,i ← δv,i + (xi − x̂i) vi(s)t(s)

15: δ̂w,i ← δw,i + (xi − x̂i)wi(s)t(s)

16: δ̂y,i ← δy,i + (xi − x̂i)yi(s)t(s)

17: Create shares (Jx̂iK, Jδ̂v,iK, Jδ̂w,iK, Jδ̂y,iK) such that they are consistent
with the shares of (JxiK, Jδv,iK, Jδw,iK, Jδy,iK) held by corrupt
computation parties

18: Send (Jx̂iK, Jδ̂v,iK, Jδ̂w,iK, Jδ̂y,iK) to result party i

19: Return the output of the simulated adversary

Private Case

The simulator Sprivate for private function evaluation is given in Algorithm 6.12.
We show that it works in situations when privacy is guaranteed:

Lemma 6.13. For every probabilistic polynomial-time adversary A such that
at most θ workers are passively corrupted, Scorrect is probabilistic polynomial

time and the distribution ensembles Exec
(ComGen,MKeyGen)
Trinocchio,A and Idealf,Sprivate
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are computationally indistinguishable.

Proof. The simulator mostly runs the actual protocol, using zero inputs on be-
half of honest parties. However, it needs to provide the inputs of the corrupted
input parties to the trusted party, and make sure that corrupted result parties
obtain the result from the trusted party. For the corrupted inputs, note that
the simulator simulates at least θ + 1 honest workers, hence it knows enough
shares of the inputs of corrupted input parties to determine them and send
them to the trusted party (lines 6–8). In order to manipulate the corrupted
results, the simulator simulates normal Trinocchio key generation with respect
to the adversary, but keeps trapdoor s (line 2). It can then use s to make sure
that the proof block that was generated for the adversary during the protocol
run indeed opens to the output value for the result party that the simulator
gets from the trusted party (lines 11–18).

To see that the Exec and Ideal distributions are the same, first note that
because the workers are all semi-honest, the outputs of the result parties in
Exec are always correct, and hence the same as in Ideal. Hence, we only
have to worry about the observations made by the adversary.

Now, note that the simulator at no point uses, or even has access to, the
honest input parties’ private values. Since the simulator follows the real pro-
tocol specification up to line 57, the adversary cannot detect any deviations
from the real protocol, other than might be caused by the fact that the in-
put values for the honest parties do not match the distribution of real input
values. However, the privacy properties of the underlying secure multiparty
computation protocol imply that no data exchanged during the computation
protocol reveals any information about the input or intermediate wire values.
Moreover, the commitment scheme is used as in the protocol, so does not give
the adversary any chance of distinguishing the real and ideal world.

The only other information that the adversary learns is what is opened
during the multiparty computation protocol, i.e., the shares of the proof blocks
(Q) and divisibility check term (〈H〉1). First, note that these shares reveal
nothing more than the proof blocks and divisibility check term themselves,
as these shares are freshly randomised using a zero sharing before they are
revealed.

Now consider what the adversary learns from the proof blocks and divisi-
bility check term. As observed in [GGPR13], the first, third and fifth elements
of a proof block, 〈V 〉1, 〈W 〉2, and 〈Y 〉1, are uniformly distributed if the δv,
δw and δy used to compute those are uniformly distributed as well. This holds
regardless of which value x is used. Furthermore, once these three elements are
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known, the remaining four elements are fixed due to the verification relations.
Because all of the proof blocks generated in the protocol are produced using
randomly chosen values for δv, δw and δy, it holds that all proof blocks in the
protocol are distributed uniformly randomly and do not reveal any information
about the values they are composed from.

We conclude that the adversary sees no information that allows it to dis-
tinguish the real and ideal worlds, hence the lemma follows.

6.8 Discussion and Conclusion

In this chapter, we have presented Trinocchio, a system that adds privacy to the
Pinocchio verifiable computation scheme essentially at the cost of replicating
the Pinocchio proof production algorithm at three (or more) servers. Trinocchio
has the same correctness and security guarantees as Pinocchio; distributing the
computation between 2θ + 1 workers gives privacy if at most θ of them are
corrupted. We have shown in a case study that the overhead is indeed small.

As far as we are aware, our work is the first to deliver efficient verifiable
computation (i.e., with cryptographic guarantees of correctness and practical
verification times independent of the computation size) with privacy guaran-
tees. Although privacy is only guaranteed if not too many of the workers are
corrupt, the use of verifiable computation ensures that the outcome of the pro-
tocol cannot be manipulated by the workers. This allows us to hedge against
an adversary being more powerful than anticipated in a real world scenario.

As discussed, existing verifiable computation constructions in the single-
worker setting [GGP10, GKP+13, FGP14] use very expensive cryptography,
while multiple-worker efforts to provide privacy [ACG+14] do not guarantee
correctness if all workers are corrupted. In contrast, existing works from the
area of multiparty computation [BDO14, SV15, dHSV16] deliver privacy and
correctness guarantees, but have much less efficient verification.

A major limitation of Pinocchio-based approaches is that they assume
trusted set-up of the (function-dependent) evaluation and verification keys.
In the single-client setting, the client could perform this set-up itself, but in
the multiple-client setting, it is less clear who should do this. In particular,
whoever has generated the evaluation and verification keys can use the values
used during key generation as a trapdoor to generate proofs of false statements.
Even though key generation can likely be distributed using the same techniques
we use to distribute proof production, it remains the case that all generating
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parties together know this trapdoor. Unfortunately, this seems inherent to the
Pinocchio approach.

Our work is a first step towards privacy-preserving verifiable computation,
and we see many promising directions for future work. Recent work in veri-
fiable computation has extended the Pinocchio approach by making it easier
to specify computations [BCG+13], and by adding access control functional-
ity [AJCC15]. In future work, it would be interesting to see how these kind
of techniques can be used in the Trinocchio setting. Also, recent work has fo-
cused on applying verifiable computation on large amounts of data held by the
server (and possibly signed by a third party) [CTV15]; assessing the impact
of distributing the computation (in particular when aggregating information
from databases from several parties) in this scenario is also an important fu-
ture direction. It would also be interesting to base Trinocchio on the (much
faster) Pinocchio codebase [PHGR13] and more efficient multiparty compu-
tation implementations, and see what kind of performance improvements can
be achieved. Another interesting direction is to investigate the possibility of
practical universally composable [Can01, CCL15] distributed verifiable com-
putation; or to use the universal composability framework to obtain a more
generic framework for combining multiparty computation with verifiable com-
putation (even with only standalone guarantees).



Chapter 7

Asymptotically Optimal Hash
Chain Reversal

7.1 Introduction

One-way hash chains were introduced by Lamport to construct an authentica-
tion scheme resistant to eavesdropping attacks [Lam81]. The idea of Lamport’s
scheme is elegant in its simplicity. The prover generates a hash chain by it-
erating the evaluation of a hash function on a random seed value. The last
value of the chain is registered with the verifier. Any time the prover wishes
to authenticate itself, it computes the preimage of the value registered with
the verifier, which is possible for the prover as only it knows the seed value
and deemed impossible for any other party due to the one-wayness of the hash
function. The verifier then verifies that the given preimage indeed hashes to the
registered value and updates the registered value to its preimage. In this way,
the prover can authenticate itself to the verifier as many times as the length of
the original hash chain. In effect, the prover computes the hash chain in reverse
order.

The efficiency of Lamport’s authentication scheme is determined by the
budget, which is the number of hash function evaluations required between
successive outputs. For long chains, it is not considered practical to compute
every element of the reversed chain starting from the seed value as the budget
would be equal to the length of the chain. Storing all elements when the chain
is initially computed in the forward direction is not considered practical either
for long chains, as the required storage would be equal to the size of the chain.

137
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An intermediate solution in which some, but not all positions are stored and
the missing positions are recomputed would allow for a trade-off between the
budget and storage complexities, but the product of these two would still grow
at the same impractical rate.

For the optimal evaluation strategy in both storage and computation com-
plexity, some positions must be initially stored from which the missing positions
can be recomputed. However, when one of these stored positions is output, its
memory should be reused to compute and store another intermediate position
on the chain which, once computed, can be used as the basis for computing
many more outputs or even further intermediate positions. Such algorithms,
which store some elements on the chain and update these as the evaluation
proceeds are known as pebbling algorithms. Jakobsson first presented pebbling
algorithms for hash chain reversal with both budget and storage complexity
logarithmic in the length of the chain [Jak02].

The problem of reverse automatic differentiation can be seen as a relaxation
of hash chain reversal, because it takes the total time, rather than the budget
as the time complexity measure. As such the results of Griewank [Gri92] and
Grimm et al. [GPRS96] can be considered a natural lower bound on the com-
plexity of hash chain reversal. A consequence of their results is that the space-
time complexity of hash chain reversal is bounded from below by 1/4(log2 n)2

for chains of length n. This fact was also independently discovered in the con-
text of hash chain reversal by Coppersmith and Jakobsson [CJ02].

The space-time complexity of binary partitioning strategies to hash chain
reversal, such as those of [Jak02, CJ02, YSEL09, Sch16] is at least 1/2(log2 n)2.
The best of these approaches are therefore within a factor 2 from the optimum.
In this chapter we investigate the question whether there exist pebbling algo-
rithms which achieve this lower bound. Using our novel framework, we give
a construction that asymptotically approaches the known optimal space-time
complexity of 1/4(log2 n)2 for hash chain reversal, thus answering the question,
at least asymptotically, in the affirmative.

In addition to our asymptotic results, we will also show two particularly
simple strategies that achieve complexity lower than 1/2(log2 n)2 of binary
partitioning strategies at chain lengths reasonable for real applications. The
first is a strategy that uses a partitioning based on Fibonacci numbers, first
mentioned by Schoenmakers in [Sch16] as a potentially viable strategy. Using
our framework we confirm that, for sufficiently long chains, this strategy in-
deed features lower space-time complexity than a binary partitioning strategy.
Concretely, the space-time complexity converges to about 0.46(log2 n)2 as the
length of the chain increases. We determine numerically that for the 42nd Fi-
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bonacci number, at chain length of about 228, the space-time complexity is
lower than that of the binary partitioning strategy at about 0.48(log2 n)2.

Our second concretely more efficient strategy is a generalization of the bi-
nary partitioning strategy which uses b-ary partitioning for any arbitrary in-
teger b ≥ 2. The space-time complexity converges to about 0.40(log2 n)2 for
b = 3 and is already lower than that of binary partitioning at chains of length
about 219. The optimal b-ary partitioning is found at b = 5, for which the
space-time complexity converges to about 0.37(log2 n)2, however it is not until
chain lengths of about 248 that this strategy outperforms binary partitioning.
Of note is also the case of b = 4, which uses half as much storage as a binary
partitioning strategy, but achieves the same space-time complexity at chain
length 228, which improves for longer chains, converging to 0.375(log2 n)2.

Related Work

As mentioned above, the problem optimizing only the total amount of compu-
tation was solved by Griewank [Gri92] and Grimm et al. [GPRS96], albeit not
for hash chain reversal, but for the purpose of reverse automatic differentiation.

Inspired by techniques from Itkis and Reyzin [IR01] for efficient key updates
in a forward-secure digital signature scheme, Jakobsson [Jak02] first introduced
an efficient pebbling algorithm featuring both dlog2 ne storage and computation
complexity for the reversal of hash chains of length n, i.e., this algorithm has
space-time complexity (log2 n)2 = k2 for hash chains of length n = 2k, with k
integer. This algorithm favored simplicity over efficiency.

The work by Jakobsson was followed by Coppersmith and Jakobsson [CJ02],
giving an algorithm which sacrifices simplicity, but reduces the computation
complexity by a factor of 2, while only adding storage overhead of dlog2(log2 n+
1)e compared to [Jak02]. The space-time complexity of this algorithm is 1/2k2+
O(k log k). Furthermore, the authors independently give a lower bound on the
complexities, coinciding with the results of [Gri92, GPRS96], and show that
their algorithm is nearly within a factor 2 from the optimum of 1/4k2.

The results of Coppersmith and Jakobsson [CJ02] were refined by Yum
et al. [YSEL09], demonstrating that the overhead in storage complexity of
Coppersmith and Jakobsson’s algorithm can be eliminated by using a simple
greedy algorithm, giving an algorithm that has space-time complexity of exactly
1/2k2.

All pebbling algorithms described so far are so-called binary pebbling al-
gorithms which place the intermediate positions on the chain at powers of
2. Schoenmakers [Sch16, Sch17] gives a framework for describing the above-
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mentioned binary pebbling algorithms explicitly, allowing for exact analysis and
for the algorithms to be specified using minimal storage overhead, consisting of
the hash values stored and a single counter. Furthermore, the explicit descrip-
tion of the minimal binary pebbling algorithm is the first in-place algorithm of
its kind. Schoenmakers also is the first to mention that using Fibonacci num-
bers to determine the placement of intermediate positions, rather than powers
of 2, would lead to the lower space-time complexity of 0.46(log2 n)2.

Sella [Sel03] departs from a binary partitioning scheme for the placement of
intermediate positions. Instead of focusing on the space-time complexity, Sella
describes an algorithm for any given bound on the budget. The storage com-
plexity of this algorithm is (m+1)b, where m is the given bound on the budget

and b = n
1

m+1 , for chains of length n. By fixing b and solving for m this results
in a b-ary partitioning scheme, though different from our preferred manner of
b-ary partitioning. Sella bounds the space-time complexity of this strategy from
above by b(logb n)2 = b(log2 n)2/(log2 b)

2. For the optimal choice of b = 7 this
is about 0.89(log2 n)2. This work was later improved by Kim [Kim03], who
shows that the storage complexity can be reduced to (m + 1)(b − 1), which,
for optimal b = 5 gives a space-time complexity of about 0.74(log2 n)2. Using
our framework, we show that the space-time complexity actually converges to
(b− 1)2(log2 n)2/(b(log2 b)

2), which is minimal for b = 2, i.e., the binary parti-
tioning scheme, but allows for a trade-off between space and time complexity.
Furthermore, Sella describes a specific algorithm for the case that only a single
hash function is permitted each round, i.e., m = 1 and proves it optimal for
that case. Despite the simplicity and optimality of this solution, it is not suit-
able for longer chains as the storage complexity grows with the square root of
the chain length.

Unlike the above-mentioned works we do not concretely specify an oper-
ational algorithm for the evaluation of the hash chain and specify our stor-
age complexity purely in terms of the number of hash values that need to be
stored, ignoring any additional state. Therefore, our results cannot directly
be compared to practical implementations. We do, however, show how our
framework can be used to easily analyze the complexity of existing solutions
in Section 7.11.

Roadmap

We will give a brief roadmap of how the various sections of this chapter relate
to each other and to the main result.



7.1. Introduction 141

Our main result regards the space-time complexity. We formally define our
notion of space-time complexity in Section 7.5 based on the budget and stor-
age complexities as explained above. Alongside, we will also define the averaged
space-time complexity notion, which is based on the total amount of compu-
tation, rather than the budget and can be seen as a lower bound on the true
space-time complexity. We present our main result at the end of Section 7.10,
stating that we can compose new pebbling algorithms for hash chains of in-
creasing length out of a given base pebbling algorithm, such that the space-time
complexity of the composite algorithms converges (with increasing length of the
hash chain) to the averaged space-time complexity of the base algorithm. As
the optimum strategy for the averaged space-time complexity is known, this
resolves the question of optimal hash chain reversal in the asymptotic sense.

To arrive at our main result, we first give a completely general introduction
of how two pebbling algorithms can be composed into a single pebbling algo-
rithm for reversing a chain of longer length by essentially concatenating the two
algorithms in Section 7.3. In Section 7.4 we formally define a restriction of this
general composition idea that forms the foundation of our framework. We then
formally define our complexity measures in Section 7.5. As our composition of
pebbling algorithms essentially concatenates two algorithms, the length of the
composite hash chain is the sum of the lengths of the component chains. In
Section 7.9 we define a higher order composition, in which the length of the
composite chain is equal to the product of the lengths of the component chains.
We show that it is beneficial to apply this higher order composition repeatedly
to the same pebbling algorithm, obtaining the analogue of exponentiation in
Section 7.10.

On the way to the main result we have skipped three sections. After for-
mally stating the foundation of our framework and the complexity measure,
we state several useful facts in Section 7.6. These useful facts may also serve as
examples of how our framework can be applied. In Sections 7.7 and 7.8 we also
describe two particular pebbling strategies in terms of our framework, where
the partitioning is based on binomial coefficients and Fibonacci numbers, re-
spectively. Both of these serve as more elaborate examples of the application of
our framework. These two sections have additional merit. The approach based
on binomial coefficient is known to have the minimal averaged space time com-
plexity [Gri92, GPRS96]. When we apply our main result to such pebblers we
therefore obtain asymptotically optimal pebbling algorithms for hash chain re-
versal. The approach based on Fibonacci numbers is of historical interest, as
it was a first known construction to achieve space-time complexity better than
binary partitioning schemes.
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7.2 Preliminaries

Informally, we define a pebbler as a process that evaluates a hash chain in
reverse order. The evaluation of a pebbler proceeds in rounds. A round consists
of the pebbler being activated in a certain persistent state and the pebbler
performing some hash function evaluations modifying the persistent state. At
some point during the round the pebbler must output the next element of the
reversed hash chain. Pebblers also makes use of some ephemeral state during
a round, which is lost at the end of every round.

The persistent state of a pebbler consists of a number of hash values, or
storage units, and some auxiliary information such as the round counter. For
technical reasons we consider the initial state of a pebbler as the persistent
state stored after the first output is generated. In the following, when we refer
to the state of a pebbler, we mean the persistent state.

The number of storage units in use by a pebbler varies per round. We
call the maximum number of storage units in use by a pebbler, taken over all
rounds, the storage size of the pebbler. We refer to the length of the hash chain
evaluated by the pebbler as the length of the pebbler. We consider the seed
value of the hash chain as input to the pebbler.

The number of hash function evaluations required to compute the next
output and state of a pebbler also varies per round. We call the maximum
number of hash function evaluations required in a single round the budget
and the total number of hash function evaluations to completely initialize and
evaluate a pebbler its work size. We are interested in finding pebblers that have
low storage size and low budget, which we also call the resource utilization;
finding pebblers that have low work size is a secondary interest.

We will only consider pebblers that are deterministic and independent of the
hash function used. Furthermore, we impose the constraint that no hash image
will be computed that is already stored. Therefore, a pebbler can be represented
as a sequence of sets of natural numbers that indicate which iterated images
of the input under the hash function are stored. We call these numbers the
positions on the hash chain. Here we assume that no preimage of the input is
known, i.e., that we do not store any position below zero. We will further restrict
ourselves to pebblers that only store positions below the output position. Of
course, to completely reverse a hash chain, the zero position has to be stored
at all times until it is output as the very last step of the process. Finally, the
output position must be computed in every round, but we do not consider this
position stored at the end of that round.

A graphical representation of a pebbler is displayed in Figure 7.1.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7.1: Example of a pebbler of length 16, storage size 4 and budget 2.
Each row represents one evaluation round. Evaluation proceeds from top to
bottom, with the open circle indicating the output position of that round. The
solid dots represent the positions stored at the end of the round and the lines
connecting them are the hash function evaluations that compute new positions.
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Notation

In this chapter we will make extensive use of sequences. We will denote literal
sequences using curly braces, where the elements are to be read from left to
right, i.e., the sequence {1, 2, 3} consists of three elements, the first of which
is 1, followed by 2 and finally 3. As our notation overlaps with set notation,
we denote the empty sequence by the symbol ∅. Occasionally we will use su-
perscripts to denote constant sequences of a given length: {1}n denotes the
all-ones sequence of length n.

As a convention for clarity, we will use capitals to refer to pebblers and
sequences and lower case letters for all other symbols.

We define the arithmetic operations on scalars and sequences as follows. Let
a be a scalar and R = {r1, r2, . . . , rm} and S = {s1, s2, . . . , rn} be sequences of
length m and n, respectively. Then

a+R = {a+ r1, a+ r2, . . . , a+ rm}

and
R+ S = {r1 + s1, r2 + s2, . . . , rmin(m,n) + smin(m,n)},

i.e., addition of a sequence and a scalar adds the scalar to each element of the
sequence and addition of two sequences is pairwise addition of the elements of
the sequences up to the length of the shorter of the two sequences. The other
arithmetic operations of subtraction, multiplication and division are defined
analogously.

Finally, we define two operations on sequences only. Concatenation,

R‖S = {r1, r2, . . . , rm, s1, s2, . . . , sn},

extends the left-hand sequence by the right-hand one. The second operation,
which we name ‘prefer’ and denote with the symbol $ maps two sequences to
a sequence of the same length as the longest of its operands. In each position
of the resultant sequence the elements are taken from the left-hand operand at
the same position, unless the left-hand operand is too short, in which case the
values are taken from the right-hand operand at that position. More formally,
let V and W be (possibly empty) sequences such that S = V ‖W and the length
of V is equal to min(m,n), then we define

R $ S = R‖W.
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7.3 Sequential Composition

A very powerful notion for describing pebblers is sequential composition. We
will only define the general notion informally and will define a restriction of
the sequential composition of pebblers, called patient pebblers, formally in the
next section. We will first define the elementary pebbler.

Definition 7.1. We define the elementary pebbler, denoted E, as the pebbler
that evaluates the hash chain of length one in reverse by simply outputting its
input when evaluated. The elementary pebbler does not store any positions on
the hash chain and does not perform any hash evaluations, i.e., both its storage
size and its budget are zero.

Let X and Y be pebblers of length nX and nY , respectively. We can con-
struct a pebbler Z, informally denoted X ⊕ Y , of length nZ = nX + nY by
composingX and Y as follows. Let x be the input of Z. We compute y = fnX (x)
and compute the initial state of Y on input y. We store x together with the ini-
tial state of Y on input y as the initial state of Z on input x. Then, to evaluate
Z, we first perform the evaluation of Y , initialized on input y. In parallel to the
evaluation of Y , we compute the initial state of X on input x. The initialization
of X is not performed all at once, but is divided in the same number of rounds
as the evaluation of Y . After Y has been evaluated, we perform the evaluation
of X, which is now fully initialized on input x. We call this composition of two
pebblers sequential composition.

Note that sequential composition is not symmetric in its components. In
the sequential composition X and Y as described in the preceding paragraph
we call Y , the pebbler that is evaluated first, the right sub-pebbler and X the
left sub-pebbler. This corresponds both with the notation X ⊕ Y and with the
graphical representation of pebblers, in which the left sub-pebbler is displayed
to the left of the right sub-pebbler. Note also that we start the evaluation of the
composite pebbler in a state in which its right sub-pebbler is fully initialized
and we consider only the initialization of the left sub-pebbler as part of the
evaluation. Of course, for the composite pebbler Z⊕W = (X⊕Y )⊕W , where
W is any pebbler, the complete initialization of Z, i.e., the initialization of X
and Y , must be performed in parallel with the evaluation of W .

We recursively define composite pebblers as either the elementary pebbler,
or the sequential composition of two composite pebblers. Not every pebbler is
a composite pebbler. However, the notion of composite pebblers is general in
the sense that for every pebbler, there exists a composite pebbler with storage
size and budget not greater than the original pebbler.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7.2: Example of a pebbler that is not a composite pebbler. Removing the
positions in the area marked with the solid border and storing position 8 from
the initial round until it is output, in the area marked with the dashed border,
would transform this pebbler into a composite pebbler. Note that there are two
kinds of redundancy that make this pebbler not a composite pebbler: position
8 computed twice, whereas once would suffice, and position 5 is eventually
discarded without being used for output or further computation.

We illustrate this by example. Consider the pebbler displayed in Figure 7.2.
We see that output positions 0 through 7 are derived from position 0 in the
initial state and only output positions from 8 onwards are derived from other
positions in the initial state. Output position 8 is derived from position 5 in the
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initial state and by simply removing all stored positions smaller than 8 that
are derived from initial position 5, marked in the figure with a solid border,
and replacing these by simply storing position 8 from the initial state onwards
until it is output, as marked with the dashed border, would transform this
pebbler into a composite pebbler. Doing so would eliminate the hash function
evaluations required to compute position 8 and not introduce any new ones.
Furthermore, in any round before position 8 is output and in which position 8
is not stored in the original pebbler there is at least one stored position strictly
between 0 and 8 that would be eliminated. Eliminating these would free up at
least one storage unit, while storing position 8 in these rounds would require
exactly one storage unit. Therefore both the storage size and the budget are
no greater in the modified pebbler than they are in the original pebbler.

It is clear that the modified pebbler can be decomposed into two sub-
pebblers. The right sub-pebbler consists of the first 8 rounds restricted to
positions from 8 onwards. The left sub-pebbler consists of the last 8 rounds.
We should apply the above procedure recursively to the sub-pebblers as well
to obtain a composite pebbler. In the example, the sub-pebblers are already
composite. Note that the inefficient computation of position 4 from position 3
twice does not invalidate the fact that the left sub-pebbler is composite, since
this is part of the initialization of the left sub-pebbler and our definition of
composite pebblers does not consider initialization.

7.4 Patient Pebblers

For composite pebblers, we can conclude that every hash function evaluation
performed during the evaluation of the pebbler is actually part of the initial-
ization of a sub-pebbler. To fully describe such a composite pebbler, then, is
to fully describe its sub-pebblers and to provide a schedule for the initializa-
tion of its left sub-pebbler. Interestingly, we can derive bounds on the resource
utilization of a pebbler in terms of only its sub-pebbler structure.

The sub-pebbler structure of a composite pebbler imposes a lower bound
on the storage size. We will argue the existence of a schedule which achieves
this lower bound exactly and give an upper bound on the budget. In the fol-
lowing we will therefore not explicitly specify any initialization schedule and,
consequently, not specify any hash function evaluations explicitly.

In this section we will give formal definitions for a restriction of the sequen-
tial composition of pebblers, which we call patient pebblers. We recursively
define patient pebblers as either the elementary pebbler, or pebblers obtained
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through patient composition of patient pebblers of smaller length.
Unlike sequential composition in general, not all pebblers can be reduced

to patient pebblers. The advantage of patient pebblers is that we can derive
the resource utilization of a pebbler in a straightforward manner from the sub-
pebbler structure, without needing to specify concrete initialization schedules.
Furthermore, our final result, showing the existence of pebblers which asymp-
totically approach the lower bound on resource utilization, is obtained using
patient pebblers.

As the evaluation of the right sub-pebbler of a composite pebbler progresses,
it gradually releases storage units, i.e., it will require fewer and fewer storage
units until, when the evaluation of the sub-pebbler is complete, it does not
require any storage at all anymore. The main idea of patient pebblers is that
for the initialization of left sub-pebblers, the hash chain is evaluated in the
forward direction exactly once and those positions that are part of the initial
state of the left sub-pebbler are stored by reusing storage units released by the
right sub-pebbler as much as possible, only using previously unallocated storage
units in case the left sub-pebbler’s storage requirements exceed the right sub-
pebbler’s. In patient composition we make the reuse of storage units explicit
by not permitting the initialization of the left sub-pebbler to progress until the
necessary storage units become available. Furthermore, if the evaluation of the
right sub-pebbler releases more storage units than required for the initialization
of the left sub-pebbler, the excess number of storage units released first by the
sub-pebbler are not reused and are released by the composite pebbler as well,
i.e., the initialization of the left sub-pebbler waits patiently until the storage
units it must use become available.

The initialization of the left sub-pebbler of a patient pebbler may start later
than would be optimal for an arbitrary pebbler of the same size, but, if the
patient pebbler is itself used as the right sub-pebbler in another composition,
the properties of patient pebblers ensure that the initialization of the pebbler
it is composed with, which typically has greater length and resource utilization
than its own left sub-pebbler, can start as early as possible while keeping the
storage requirements to a minimum.

We are now ready to formally define patient pebblers and patient com-
position. We define patient pebblers in terms of the properties necessary for
performing composition and analyzing resource utilization. As noted before,
we completely omit the specification of a schedule for patient pebblers.

Definition 7.2. We define a patient pebbler as either the elementary pebbler
or a pebbler obtained by the patient composition of two patient pebblers of
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smaller length. A patient pebbler X is defined in terms of the following defining
properties:

• sX , the storage size

• NX , the allocation schedule

• wX , the work size

• RX , the release schedule

• DX , the remaining evaluation schedule

• bX , the budget bound.

NX , RX and DX are sequences.

Definition 7.3. For any patient pebbler X 6= E, we define nX , rX , and dX
as the last elements of NX , RX , and DX , respectively.

Definition 7.4. For the elementary pebbler, we define the sequence properties
NE , RE and DE as the empty sequence. We define the remaining properties
as nE = 1 and sE = wE = bE = rE = dE = 0. Note that nE , rE , and dE are
defined, despite their corresponding sequences being empty and that nE = 1.

Definition 7.5. For any patient pebblers X and Y , we define the patient
composition, denoted X + Y in terms of the properties of pebblers:

sX+Y = max(sX , sY + 1)

NX+Y = NY ‖{nY + nX}
wX+Y = wX + wY + nX

RX+Y = RX $ (({0}‖RY ) + nX)

DX+Y = DX $ (({0}‖DY ) + wX)

bX+Y = max

(
{bX , bY }

∥∥∥∥(NX − 1 + ({0}‖DY )

1 + ({0}‖RY )
$
NX + wY − nY

nY

))



150 Chapter 7. Asymptotically Optimal Hash Chain Reversal

Corollary 7.6. For any patient pebblers X and Y

nX+Y = nX + nY

rX+Y =

{
rX if sX > sY

rY + nX otherwise

dX+Y =

{
dX if sX > sY

dY + wX otherwise.

For the remainder of this chapter, we will only consider patient pebblers
and will use the terms pebbler and patient pebbler interchangeably.

We will now explain the meaning of the properties of patient pebblers and
the corresponding patient composition rule one by one.

Storage Size

The storage size sX of a pebbler X denotes the number of storage units required
to evaluate the pebbler. Because the evaluation of patient pebbler X+Y entails
the evaluation of both Y and X, and during the evaluation of Y , the seed of
X needs to be stored, the storage size sX+Y must at least be max(sX , sY + 1).
A defining characteristic of patient composition is that the initialization of the
left sub-pebbler within the evaluation of a patient pebbler reuses the storage
units released during the evaluation of right sub-pebbler as much as possible.
Therefore, we actually define

sX+Y = max(sX , sY + 1).

Allocation Schedule

The allocation schedule NX of a pebbler X specifies which positions on the
hash chain are stored in the initial state of X. The positions are counted from
the end of the chain, so each element of NX can be viewed as the length of a
sub-pebbler. The sequence is ordered from small to large, i.e., the positions are
ordered from right to left, and the last element of the sequence, nX , denotes
the length of the pebbler itself.

The allocation schedule composition rule,

NX+Y = NY ‖{nX + nY },

simply consists of the allocation schedule of the right sub-pebbler extended by
the length of the composite pebbler, which indicates that the initial state of the



7.4. Patient Pebblers 151

composite pebbler consists of the initial state of its right sub-pebbler, together
with the seed for the left sub-pebbler. The initial state of the right sub-pebbler
Y can be easily represented as NY in NX+Y , since the positions are counted
from the end of the chain. The seed of X, which lies at distance nX from the
end of the chain in X, is translated by nY , to reflect that it lies at distance
nX + nY from the end of the chain in X + Y .

Note that the length of the allocation schedule of a patient pebbler X + Y ,
i.e., the size of the initial state of X +Y , is equal to sY + 1, rather than sX+Y ,
as might be expected. This reflects the fact that the initial state of X + Y
consists of the initial state of Y and apart from storing the seed, X remains
completely uninitialized. Although it may seem suboptimal not to include a
(partial) initialization of X, in case sX > sY +1, omitting such an optimization
simplifies our definitions and results. For the main results of this chapter, we
will only consider patient pebblers X+Y that obey the regularity requirement
that sX ≤ sY + 1, unless explicitly noted otherwise.

Work Size

The work size wX of a pebbler X denotes the total number of hash function
evaluations required to evaluate the hash chain in reverse, including the com-
putation of the initial state of the pebbler.

The number of hash function evaluations required to evaluate the patient
composition of two pebblers is equal to the length of the left sub-pebbler,
which is the number of evaluations required to compute the seed of the right
sub-pebbler from the seed of the left sub-pebbler, in addition to the sum of
the number of hash function evaluations required to evaluate each of the sub-
pebblers. This gives us

wX+Y = wX + wY + nX .

Release Schedule

The release scheduleRX indicates in which rounds of the evaluation of a pebbler
X a storage unit is released, which is necessary to determine in which rounds
the initialization of another pebbler that pebbler X may be composed with
from the left can progress. Concretely, RX is an increasing sequence of length
sX . If the kth element of RX is equal to `, that means that the last ` rounds
of the evaluation of X require fewer than k storage units. In a sense, ` is the
length of the remainder of the hash chain in the first round in which fewer than
k storage units are required.
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We will now explain the composition rule for the release schedule,

RX+Y = RX $ (({0}‖RY ) + nX).

During the rounds in which the left sub-pebbler of a composite pebbler is
being evaluated, the evaluation of the composite pebbler proceeds identically
to the evaluation of the left sub-pebbler. Therefore the release schedule of the
composite pebbler, RX+Y contains the complete release schedule of the left
sub-pebbler, RX .

If storage units released during the evaluation of the right sub-pebbler would
not be reused for the evaluation of the left sub-pebbler, then also RY + nX
would have to be included in RX+Y . Here, the nX term accounts for the fact
that the position of the right sub-pebbler is translated by the length of the left
sub-pebbler in the composite pebbler.

However, storage units released during the evaluation of the right sub-
pebbler are reused for the evaluation of the left sub-pebbler. Only the storage
units allocated to Y in excess of sX − 1, where the −1 is due to the fact that
the storage unit used to store the seed of X is not reused, are released by the
composite pebbler. Patient composition dictates that the excess storage units
released during the evaluation of Y are the first storage units released during
the evaluation of Y and that only the storage units released later are reused for
the evaluation of X. We can represent this in the composition rule, using the $
operation to combine sequences, because the release schedule is essentially in
reverse order, i.e., storage units released last occur first in the release schedule.
The last element of the sequence, rX , therefore indicates the round in which
the first storage unit released by the pebbler.

To account for the fact that the seed of X is not stored in a reused storage
unit, the release schedule of Y is padded on the left with a single element. If
X 6= E, the value of this padding does not matter, because of the use of the $
operation. However, if X = E, we need that the first element of RX+Y is equal
to 1. Therefore, we pad the sequence RY from the left with a single 0, before
translating by nX , which is equal to 1 in case X = E. This fully explains the
composition rule for the release schedule.

It is trivial to show by induction that, if it exists, the first element of the
release schedule is equal to 1, which corresponds to the fact that the seed of
the pebbler is stored until the very last round.
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Remaining Evaluation Schedule

The remaining evaluation schedule DX of a pebbler X describes the number of
hash evaluations that are still required to complete the evaluation of a pebbler
at the point when a storage unit is released, as indicated by the release schedule
RX . This information is necessary to determine the budget bound bX . The
composition rule for the remaining evaluation schedule is very similar to the
composition rule for the release schedule and the derivation is identical, except
of the fact that the remaining evaluation schedule of the right sub-pebbler
should be translated by the work size, rather than the length, of the left sub-
pebbler, because whenever a pebbler releases a storage unit from its right sub-
pebbler, the left sub-pebbler remains completely uninitialized. This gives the
following composition rule for the remaining evaluation schedule,

DX+Y = DX $ (({0}‖DY ) + wX).

The length of the remaining evaluation schedule is equal to the storage size,
just as the length of the release schedule. The first element of the remaining
evaluation schedule, if it exists, must be equal to 0, since this corresponds to
the number of hash evaluations still required in the last round. Since the value
of the padding of DY from the left in the composition rule is only relevant in
case X = E and, in this case wX = 0 and the first element of DX+Y should be
0, we pad DY from the left with 0.

The last element of the remaining evaluation schedule, dX , denotes the
number of hash evaluations required to complete the evaluation of X at the
point when its first storage unit is released.

Budget Bound

The budget bound is the number of hash evaluations per round required to
evaluate the pebbler. Note that the number of hash evaluations performed in a
round may actually be smaller than the budget bound, but in patient pebblers
there must be at least one round in which the number of hash evaluations is
equal to the budget bound. The budget bound is computed as a fraction and
to obtain the actual budget, the budget bound should be rounded upwards.
The composition rule for the budget bound,

bX+Y = max

(
{bX , bY }

∥∥∥∥(NX − 1 + ({0}‖DY )

1 + ({0}‖RY )
$
NX + wY − nY

nY

))
is easily the most complex of the composition rules. It consists of various parts
that we will each address separately.
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Just as the evaluation of a composite pebbler consists of three parts, to wit,
the evaluation of its left sub-pebbler, the evaluation of its right sub-pebbler, and
the initialization of its left sub-pebbler (the latter two of which are performed
simultaneously), so does the composition rule for the budget bound consist of
three parts. The maximum of these three contributions to the budget bound
determines the final budget bound.

First of all, the budget bound of a composite pebbler can not be smaller
than the budget bounds of its sub-pebblers. Therefore the maximum of bX and
bY , corresponding to the budget bounds of the evaluation of the left and right
sub-pebblers, respectively, is included in composition rule. The remainder of
the composition rule

NX − 1 + ({0}‖DY )

1 + ({0}‖RY )
$
NX + wY − nY

nY
(7.1)

represents the contribution to the budget bound due to the initialization of the
left sub-pebbler X, while the right sub-pebbler Y is being evaluated simultane-
ously. (7.1) describes a sequence of length sX . Each element of this sequence
describes the number of hash evaluations required to initialize the part of X
of length given by the corresponding element of NX .

The sequence in (7.1) is described with the $ operation. In case sX ≤ sY +1,
this can be simplified to its left-hand operand,

NX − 1 + ({0}‖DY )

1 + ({0}‖RY )
, (7.2)

which describes the contribution to the budget bound due to the initialization
of X which is carried out by reusing storage units released during the evaluation
of Y .

Each element of (7.2) is given by the number of hash evaluations required to
initialize sections of X, described by NX − 1, while simultaneously evaluating
part of Y , which is derived from DY as described below. This total number of
hash evaluation is divided by the number of rounds in which the initialization
needs to be completed to obtain the average number of hash function evalua-
tions required per round. As the initialization of a section of X can only begin
when the corresponding storage unit is released during the evaluation of Y ,
this number of rounds is derived from RY .

For each section of X, the number of rounds available to perform the initial-
ization of a section is given by 1+({0}‖RY ). The +1 term stems from the fact
that we allow the initialization to be completed in the first evaluation round of
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X. The sequence RY is padded from the left with a single 0, because the first
storage unit to be reused is actually used to compute the second position of the
initial state of X. The last section of X to be initialized, the length of which is
described by the first element of NX is actually computed without storing any
state, since the computed position is immediately output, and therefore this
has to be computed in a single round, which explains the padding with zero.

Finally, the {0}‖DY term is due to the fact that while initialization of X is
being performed, the evaluation of Y must simultaneously be completed. DY

describes the number of hash evaluations required to complete the evaluation
of Y in the rounds that a storage unit it released. This sequence is also padded
with zero from the left, aligning it with 1+{0}‖RY in the denominator, because
no more hash evaluations are required to complete the evaluation of Y in the
first round of evaluation of X.

Note that (7.2) considers initialization of the entire section of X to the
endpoint, not just from one stored position to the next. The budget requirement
for one such section given by (7.2) may not actually suffice to initialize the
entire section, as there exist pebblers for which the initialization of the left sub-
pebbler reaches a stored position and can not continue until another storage
unit is released by the evaluation of the right sub-pebbler. However, if this is
the case, then another element of (7.2) for the shorter, remaining section will
actually give a higher budget requirement. The budget bound of Definition 7.5
suffices, because it includes the maximum taken over the entire sequence.

The right-hand operand of (7.1),

NX + wY − nY
nY

, (7.3)

simply describes the contribution to the budget bound due to the initializa-
tion of X if the storage units used for the initialization of X would not be
reused from the evaluation of Y and, instead, the initialization of X starts in
the same round as the evaluation of Y . The fraction describes the number of
hash evaluations required to initialize (sections of) X, given by NX − 1, while
simultaneously evaluating the entirety of Y , given by wY −(nY −1), divided by
the number of rounds in which the initialization needs to be completed, given
by nY .

In contract to (7.2), we do not include a + 1 term in the denominator of
(7.3). The reason for this is a rather technical detail, which we nonetheless
consistently apply to all our results. As described in the explanation of (7.2),
we actually consider the first round of evaluation of a pebbler as part of its
initialization and, in fact, consider the initial state of a pebbler equal to the
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stored state of the pebbler at the end of its first output round. Two (minor)
consequences of this are that we do not allow any initialization of a sub-pebbler
to be performed during the first round of evaluation (initialization of parallel
pebblers is permitted, of course) and we in fact disregard the number of hash
evaluations performed in the first output round for the purpose of determining
the budget of a pebbler (this is most evident for trivial pebblers, Definition 7.23,
where the budget is one less than one might expect).

Example

An example of the ‘skeleton’ of a patient pebbler is shown in Figure 7.3. The
pebbler has the same sub-pebbler structure as the (composite equivalent of)
the pebbler in Figure 7.2. As explained above, to analyze patient pebblers we
do not need to specify the evaluation schedule, i.e., which hash function evalua-
tions are performed in which rounds, as only the sub-pebbler structure suffices.
Therefore, there is no composition rule for the schedule and consequently no
schedule is given in Figure 7.3. Instead, only the confines within which the
initialization of a sub-pebbler must be completed are given, indicated with
dashed lines. The zigzag lines within these confines represent the unspecified
hash function evaluations.

Let

P = E + E

Q = P + P

W = P + (P +Q)

Y = Q+Q

Z = W + Y.

Pebbler Z is the pebbler shown in Figure 7.3. The properties Z and its sub-
pebblers are given in Table 7.1.

Some of the properties of Z can also be immediately recognized in the figure.
The fact that sZ = 4 can be seen from the fact that the maximum number of
dots occurring on any single line is 4 and NZ = {2, 4, 8, 16} can be found by
observing the positions of the dots on the top line, counting backwards from
position 16, the length of the pebbler. The release schedule RZ = {1, 3, 5, 7} can
be found by determining the lowest line on which the corresponding number of
dots occur.

The work size wZ and consequently the remaining evaluation schedule DZ

cannot be immediately found in the graphical representation of Z. The budget
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P P = E + E
Q Q = P + P

Y = Q+QW
Z = W + Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7.3: A patient pebbler with the same sub-pebbler structure as the ex-
ample in Figure 7.2. The dashed borders mark the confines within which the
hash function evaluations must be carried out to initialize the corresponding
sub-pebbler. For patiant pebblers we do not specify exactly how each initializa-
tion should proceed, and have consequently indicated these with zigzag lines.
Note that the sub-pebblers of W and the blue Q are not shown.
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E P Q Y P +Q W Z
sX 0 1 2 3 3 4 4
NX ∅ {2} {2, 4} {2, 4, 8} {2, 4, 6} {2, 4, 6, 8} {2, 4, 8, 16}
nX 1 2 4 8 6 8 16
wX 0 1 4 12 7 10 30
RX ∅ {1} {1, 3} {1, 3, 7} {1, 3, 5} {1, 3, 5, 7} {1, 3, 5, 7}
rX 0 1 3 7 5 7 7
DX ∅ {0} {0, 1} {0, 1, 5} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3}
dX 0 0 1 5 2 3 3
bX 0 0 1 3/2 1 1 3/2

Table 7.1: Properties of pebbler Z displayed in Figure 7.3 and its sub-pebblers.

bound is also not directly visible, however, the Figure does graphically represent
the components from which the budget bound is determined and can make the
explanation of its definition above more insightful.

Recall that we define the round number as the number of the position that
is output in that round. In the figure, the round number is therefore equal to
the position of the open circle on each line.

Consider first sub-pebbler Y = Q + Q on positions 8 through 15. Its right
sub-pebbler Q releases a storage unit in rounds 15 and 13. This is consistent
with RQ = {1, 3} translated by 12. The storage unit released in round 15 is
not reused by the left sub-pebbler Q of Y , but the storage unit released in
round 13 is reused. This storage unit is used for the initialization of the left
sub-pebbler Q, which covers positions 8 through 11. The initialization requires
3 hash function evaluations, corresponding to the NX − 1 term in the numer-
ator in the definition of the budget bound (here we specifically refer to the
second element of NQ - 1). The initialization has to be completed in 2 rounds,
corresponding to the denominator in the budget bound, specifically the second
element of 1 + ({0}‖RQ). This is represented in Figure 7.3 by the area marked
with the dashed border between positions 8 and 11. The 3 hash function evalu-
ations that must be performed in these 2 rounds, but are not specified further
as represented by the zigzag line running diagonally through this box.

As part of this initialization position 10 is stored. Position 11 is computed
but never stored. Computing position 11 from position 10 requires a single
hash function evaluation, which must be performed in round 11 itself. This is
represented by the small dashed box between positions 10 and 11 where the
zigzag line again represents the hash function evaluation.
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Since no evaluations are carried out within pebbler Y in parallel to the
initialization described above, the budget required to complete the initialization
of the left sub-pebbler Q of Y on time is determined by taking the maximum
of 3 evaluations in 2 rounds, 1 evaluation in 1 round, and the budget bounds
of the sub-pebblers themselves.

To determine the budget bound of Z, we study the initialization of W in
parallel to the evaluation of Y in the same way. We see that to initialize W
requires 7 hash function evaluations in 8 rounds, as indicated by the dashed
area from position 0 to 7. However, in this case, also 5 hash function evaluations
must be performed in the evaluation of Y , as indicated by the three marked
areas between positions 8 and 9, 8 and 11, and 12 and 13. It does no matter
exactly how the initializations within Y are scheduled, because they must be
completely performed in parallel to the outermost initialization of W .

This last point illustrates why patient pebblers can be analyzed without
fully specifying an evaluation schedule. The evaluation of a pebbler can be
broken down into the initialization of its sub-pebblers. Even though multiple
sub-pebblers can be in a state of initialization at the same time, due to structure
imposed by the patient reuse of storage units, it is not possible to interleave
these initializations, i.e., it is not possible to begin initialization within the
sub-pebbler while any initialization is carried out within the right sub-pebbler.
Therefore it suffices to only count the total number of hash function evaluations
when determining the contribution of the evaluation of the right sub-pebbler
to the budget bound. This is reflected by defining the remaining evaluation
schedule DX in terms of the (total) work size wX of its right sub-pebbler.

In the initialization of W from position 0 to 7, it must store positions 2,
4 and 6. The initialization of W begins as soon as Y releases its first storage
unit, but this initialization must store position 2 and cannot continue until Y
releases a second storage unit. In this case, the initialization can only continue
beyond position 2 in round 11. Therefore, the budget bound also includes the
fact that part of W must be initialized using 5 hash function evaluations in 4
rounds. We can see that in this case there is also one hash function evaluation
to be carried out in the evaluation of Y . This reasoning must also be applied
to the third section of W when the third storage unit is released by Y , and
so on. In determining the budget bound each section of initialization must be
considered and the maximum must be taken, as the outermost section spanning
the entire length of the sub-pebbler is not necessarily the one that requires the
highest budget.

There is no need for the initialization to already reach the “threshold”
position at the time the next storage unit is released, therefore we take the



160 Chapter 7. Asymptotically Optimal Hash Chain Reversal

entire section up to the final position of a pebbler into account when considering
the budget requirements for its initialization. In the figure this represented by
having multiple dashed areas overlap with a common bottom right corner.

7.5 Space-Time Product

Coppersmith and Jakobsson propose the product of the storage size and the
budget of a pebbler as complexity measure [CJ02].

The results of Griewank [Gri92] and Grimm et al. [GPRS96] (cf. Section 7.7
for more details) imply that for any pebbler X

wX ≥
nX
4sX

(log2 nX)2. (7.4)

A similar result, although with somewhat incompatible definitions to ours, is
also claimed independently by Coppersmith and Jakobsson [CJ02].

The work size wX is defined as the total number of hash function evaluations
required to reverse a hash chain and is equal to the sum of the number of hash
function evaluations over all rounds, including the initialization. The budget,
instead, is equal to the maximum of the number of hash function evaluations
over all rounds, excluding the initialization. We can therefore conclude for the
budget bound bX of any pebbler X that

bX ≥
wX − (nX − 1)

nX
>

1

4sX
(log2 nX)2 − 1. (7.5)

Coppersmith and Jakobsson [CJ02] also show the existence of pebblers Y
using a binary partitioning scheme such that

bY sY =
1

2
(log2 nY )2 +O(log nY log log nY ). (7.6)

These so-called binary pebblers were refined by Yum et al. [YSEL09] and
Schoenmakers [Sch16], showing the existence of pebblers that achieve exactly

bY sY =
1

2
(log2 nY )2. (7.7)

In this chapter we are interested in pebblers that achieve both budget and
storage size logarithmic in the length of the pebbler with a small constant in
the dominant factor. This leads us to the following definition.
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Definition 7.7. For any pebbler X 6= E, we define the space-time product
factor, φX , as

φX =
sXdbXe

(log2 nX)2
,

and the averaged space-time product factor, πX , as

πX =
sXwX

nX(log2 nX)2
.

Note that we use the actual budget, dbXe, of X in the definition of φX ,
rather than the budget bound, as explained in Section 7.4.

Due to (7.5) we can derive a lower bound on the space-time product factor
in terms of the averaged space-time product factor.

Corollary 7.8. For any pebbler X 6= E, we have

φX ≥ πX −
1

(log2 nX)2
,

Definition 7.7 allows us to state the objective of this chapter more precisely.
Our main question is whether there exist sequences of pebblers X1, X2, . . . of
increasing length, such that their space-time work factor approaches the known
lower bound of 1/4, i.e., such that limk→∞ φXk = 1/4.

7.6 Useful Facts

We will now give some simple facts about patient pebblers. First, we will
give some bounds on patient pebbler properties that will be useful in deriving
bounds on the resource utilization of complex pebblers. The proofs of the fol-
lowing are all straightforward by induction. All such proofs in this chapter are
deferred until Section 7.12.

Lemma 7.9. For any pebbler X, we have

1 ≤ nX
2 ≤ NX

NX ≤ nX .

Lemma 7.10. For any pebbler X, we have

nX − 1 ≤ wX ≤
(
nX
2

)
.
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Corollary 7.11. For any pebbler X, we have

wX
nX
≤ nX − 1

2
.

Lemma 7.12. For any pebbler X, we have

1 ≤ RX ≤ nX − 1.

Lemma 7.13. For any pebbler X, we have

0 ≤ DX ≤
(
RX
2

)
.

Corollary 7.14. For any pebbler X, we have

DX

RX
≤ rX − 1

2

Lemma 7.15. For any pebbler X, we have

0 ≤ bX ≤ nX − 1.

Next, we explicitly list the properties of patient pebblers in which one or
both of the constituent pebblers is the elementary pebbler. These serve as
simple examples of composite patient pebblers and the application of the com-
position rules, and form the base cases for the binomial pebblers defined in the
upcoming Section 7.7. Note that for pebblers X with sX ≥ 2, the pebbler X+E
of Corollary 7.17 does not satisfy the regularity requirement that sX ≤ sE + 1.

Corollary 7.16. The pebbler E + E has the following properties.

sE+E = 1

NE+E = {2}
wE+E = 1

RE+E = {1}
DE+E = {0}
bE+E = 0
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Corollary 7.17. For any pebbler X 6= E, we have

sX+E = sX

NX+E = {nX + 1}
wX+E = wX + nX

RX+E = RX

DX+E = DX

bX+E = nX − 1

Corollary 7.18. For any pebbler Y 6= E, we have

sE+Y = sY + 1

NE+Y = NY ‖{1 + nY }
wE+Y = wY + 1

RE+Y = ({0}‖RY ) + 1

DE+Y = {0}‖DY

bE+Y = bY

Finally, for pebblers X + Y that satisfy the regularity requirement that
sX ≤ sY + 1, we can simplify the composition rules for sX+Y and bX+Y as
follows.

Corollary 7.19. For any pebblers X and Y , such that sX ≤ sY + 1, we have

sX+Y = sY + 1

bX+Y = max

(
{bX , bY }

∥∥∥∥NX − 1 + ({0}‖DY )

1 + ({0}‖RY )

)
In case sX ∈ {sY , sY + 1}, we can also simplify the definition of RX+Y and

DX+Y as given by the following two corollaries.

Corollary 7.20. For any pebblers X and Y , such that sX = sY + 1, we have

RX+Y = RX

DX+Y = DX

Corollary 7.21. For any pebblers X and Y , such that sX = sY , we have

RX+Y = RX‖{nX + rY }
DX+Y = DX‖{wX + dY }
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7.7 Binomial Pebblers

Griewank and Grimm et al. give the optimal solution for program reversal in
terms of memory and computational time usage [Gri92, GPRS96]. This works
were performed in the context of reverse automatic differentiation, but can be
applied directly to hash chain reversal. In the terms we have introduced for
patient pebblers, these results state that the storage size and work size can
be simultaneously optimized using a sub-pebbler structure that is defined by
binomial coefficients. In this section, we will describe this solution in terms of
patient pebblers, which we will call binomial pebblers.

The optimality of binomial pebblers in regards to work size essentially stems
from the fact that the pebbler will keep reusing its storage units until the very
end of its evaluation, when the remainder of the chain is so short that not all
storage units can be usefully allocated. This means, however, that if two such
pebblers are composed through patient composition, the initialization of the
left sub-pebbler cannot begin until last rounds of evaluation of the right sub-
pebbler. It is precisely this ruthless efficiency of binomial pebblers that results
in optimal work size, but a very high budget bound.

Since we are interested in pebblers that exhibit low budget bound, bino-
mial pebblers are emphatically not the solution to our problem of hash chain
reversal. However, binomial pebblers turn out to be useful building blocks from
which more complex pebblers can be constructed and are, in fact, key to prov-
ing the asymptotic optimality, with respect to the budget bound rather than
to the work size, of our solution.

We will first define binomial pebblers as follows, which is reminiscent of the
definition of binomial coefficients in Pascal’s triangle.

Definition 7.22. For any σ ≥ 1 and β ≥ 1, we define the binomial pebbler

σBβ as

σBβ = σB̂β−1 + σ−1B̂β ,

where

σB̂β =

{
E if σ = 0 ∨ β = 0

σBβ otherwise.

An example of the binomial pebbler 3B3 is given in Figure 7.4.
We call σ the storage size of the binomial pebbler since, as will be shown

later, it coincides with the notion of storage size as defined for patient pebblers
in general. β is called the block size for reasons that will become evident when
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 7.4: Binomial pebbler 3B3 with possible schedule. Note that the initial-
ization of each sub-pebbler is completed in only σ rounds. This illustrates that
binomial pebblers have a high budget bound, despite minimizing the work size.
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combining the notion of trivial pebblers defined immediately below with the
notion of power pebblers as defined later in Section 7.10.

Definition 7.23. We call a binomial pebbler with σ = 1 a trivial pebbler and
a binomial pebbler with β = 1 a näıve pebbler.

The näıve pebbler is the pebbler that stores all positions on the hash chain
as part of its initialization. For evaluation, this pebbler does not have to re-
compute any position on the chain and simply outputs the appropriate stored
value. The work size of this pebbler is therefore minimal, within all pebblers
of the same length, but the storage size grows linearly with the length.

The trivial pebbler, on the other hand, stores only its seed value and must
therefore recompute the entire (remainder of the) chain for each output. It has
the minimum storage size 1 at every length, but the work size scales quadrati-
cally with the length, and the budget bound linearly.

Due to the super-logarithmic, in fact, linear resource utilization of these
pebblers neither of these pebblers is suitable in practice for reversing long
hash chains. However, as mentioned before, binomial pebblers in general can
serve as a useful building block to construct more complex pebblers. Using
trivial or näıve pebblers in our constructions lead to pebblers that are more
straightforward to analyze than using binomial pebblers in general.

Next, we will analyze the properties of binomial pebblers.

Lemma 7.24. For any σ ≥ 1 and β ≥ 1, the binomial pebbler σBβ has the
following properties:

sσBβ = σ

N
σBβ =

{(
β + i

β

)}σ
i=1

wσBβ = σ

(
β + σ

β − 1

)
R
σBβ = {i}σi=1

D
σBβ = {0}σ

b
σBβ =

1

σ

((
β − 1 + σ

β − 1

)
− 1

)
.
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Corollary 7.25. For any σ ≥ 1 and any β ≥ 1, we have

n
σBβ =

(
β + σ

β

)
rσBβ = σ

dσBβ = 0

There are several things of note. First, observe that for a binomial pebbler

σBβ the storage size is indeed equal to σ and that the length is equal to the

binomial coefficient
(
β+σ
β

)
. The release schedule consists of rounds 1 through σ,

which is due to the fact that the binomial pebblers reuses its storage units
until the very end of its evaluation. Correspondingly, the remaining evaluation
schedule is equal to zero everywhere, as there is nothing left to evaluate at this
point.

For any σ the binomial pebbler σB2 with block size 2 has budget bound
bσB2 = 1 and length nσB2 =

(
σ+2
2

)
. This pebbler corresponds to Sella’s optimal

pebbler with budget bound 1 [Sel03].
For the averaged space-time product factor we have the following.

Corollary 7.26. For any σ ≥ 1 and β ≥ 1,

π
σBβ =

βσ2

(σ + 1)
(

log2

(
β+σ
β

))2
Note that we can obtain binomial pebblers of length exponential in the

storage size and block size, if we let both sizes grow at the same (up to a linear
factor) rate. We therefore have the following lemma for the behavior of the
averaged space-time product factor in the limit.

Lemma 7.27. For any σ ≥ 1 and β ≥ 1, we have

lim
`→∞

`σB`β =
βσ(

β log2
β+σ
β + σ log2

β+σ
σ

)2 .
Proof. It is a well-known fact that, for n and k tending to infinity with k
growing linearly in n, the approximation

log2

(
n

k

)
∼ nH(k/n)

= k log2

(n
k

)
+ (n− k) log2

(
n

n− k

)
, (7.8)
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where H is the binary entropy function, can be used. Substitution of this ap-
proximation in the equation of Corollary 7.26 yields

lim
`→∞

`σB`β = lim
`→∞

`3βσ2

(`σ + 1)
(
`β log2

`(β+σ)
`β + `σ log2

`(β+σ)
`σ

)2 , (7.9)

from which the lemma directly follows.

Corollary 7.28. It is straightforward to see that taking σ = β in Lemma 7.27
then gives

lim
σ→∞

π
σBσ =

1

4
. (7.10)

In the limit of Lemma 7.27 we may also try to minimize πσBβ in σ and β
for given σ + β. We claim, without proof, that this in fact results in σ = β
for the optimum. This shows that the lower bound for the averaged space-
time product factor of 1/4 as given by [CJ02] is asymptotically approached
by binomial pebblers. Note that the results of Griewank [Gri92] and Grimm
et al. [GPRS96] imply that the minimal averaged space-time product factor is
achieved by binomial pebblers.

However, the averaged space-time product factor π only gives an indication
of a lower bound on the space-time product factor φ and, as noted before,
because of the ruthless efficiency of binomial pebblers with respect to the work
size the actual budget bound of a such binomial pebbler scales as O(n/ log n).

7.8 Fibonacci Pebblers

We introduce and analyze Fibonacci pebblers. Fibonacci sequence displays ex-
ponential growth by repeatedly composing smaller elements from the same se-
quence. As such, our framework of patient composition is naturally amenable
to the Fibonacci sequence.

As we shall show, Fibonacci pebblers give a first indication that pebblers
with space-time product factor smaller than 1/2 do exist. To allow for gener-
alization of the Fibonacci sequence, we permit the sequence to start with two
arbitrary pebblers, rather than the elementary pebbler. This generalization of
substituting an arbitrary pebbler for the elementary pebbler in compositions
is explored further in Section 7.9 and is fundamental for our final results.

We first give our definition of the Fibonacci sequence for completeness.
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Definition 7.29.

fk =

{
k if k ≤ 1

fk−1 + fk−2 otherwise

Our results also make use of the following sequence, defined in terms of the
Fibonacci sequence.

Definition 7.30.

gk =

k∑
i=0

fifk−i

Lemma 7.31. For any k

gk =

{
0 if k ≤ 1

gk−1 + gk−2 + fk−1 otherwise

Lemma 7.32. For any k

gk =
2kfk+1 − (k + 1)fk

5

The proofs of these lemmas are straightforward by induction and are in-
cluded in Section 7.12 for completeness.

It is a well-known fact that

fk =
ϕk − ψk√

5
, (7.11)

where ϕ = 1+
√
5

2 is the golden ratio and ψ = 1−
√
5

2 . We therefore have the
following.

Corollary 7.33.

fk ∼
ϕk√

5

gk ∼
kϕk(2ϕ− 1)

5
√

5
=
kϕk

5

We are now ready to define Fibonacci pebblers.
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Definition 7.34. For any pebblers X and Y , and any k ≥ 1, we define the
Fibonacci pebbler, denoted Y

XFk, as

Y
XFk =


X if k = 1

Y if k = 2
Y
XFk−1 + Y

XFk−2 otherwise.

The definition is analogous to that of the Fibonacci numbers. However, for
generality, we permit the base pebblers to be arbitrary. Additionally, because
patient composition is not commutative, the order of the two component peb-
blers in the recursive definition is important. At the end of this section we
will also briefly consider the reverse definition. We have chosen to treat this
order first and more extensively, because it features lower storage size when
compared to reverse Fibonacci pebblers.

An example of the Fibonacci pebbler EEF8 is given in Figure 7.5.
For our analysis of Fibonacci pebblers, we will focus on Fibonacci pebblers

Y
XFk whose base pebblers X and Y have the same storage size, i.e., sX = sY .
This is possible without loss of generality due to the following two corollaries.

Corollary 7.35. For any pebblers X and Y , such that sX < sY let X ′ = Y
and Y ′ = Y +X. Then, sX′ = sY ′ , and, for any k ≥ 1,

Y
XFk = Y ′

X′Fk−1.

Corollary 7.36. For any pebblers X and Y , such that sX ≥ sY let X ′ = Y +X
and Y ′ = (Y +X) + Y . Then, sX′ = sY ′ , and, for any k ≥ 2,

Y
XFk = Y ′

X′Fk−2.

Note that we did not enforce the regularity constraint that sX ≤ sY + 1 in
our definition of Fibonacci pebblers. The above corollary can also be applied
resolve violation of the regularity constraint.

To analyze the properties of Fibonacci pebblers, we distinguish between the
even and odd elements of the sequence.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 7.5: Fibonacci pebbler EEF8 with possible schedule. Note that the storage
size only increases for every second Fibonacci number, e.g., sE

EF8
= sE

EF7
, where

E
EF7 is the left sub-pebbler of EEF8.
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Lemma 7.37. For any pebblers X and Y , such that sX = sY , and any k ≥ 1,
we have

sY
XF2k

= sY + k − 1

NY
XF2k

= NY ‖{f2inX + f2i+1nY }k−1i=1

wY
XF2k

= f2k−2wX + f2k−1wY + g2k−2nX + g2k−1nY

RY
XF2k

= RY ‖{(f2i−1 − 1)nX + f2inY + rX}k−1i=1

DY
XF2k

= DY ‖{(f2i−1 − 1)wX + f2iwY +

(g2i−1 − f2i−1 + 1)nX + (g2i − f2i)nY + dX}k−1i=1

and

sY
XF2k+1

= sX + k

NY
XF2k+1

= NX‖{f2i−1nX + f2inY }ki=1

wY
XF2k+1

= f2k−1wX + f2kwY + g2k−1nX + g2knY

RY
XF2k+1

= RY ‖{(f2i−1 − 1)nX + f2inY + rX}ki=1

DY
XF2k+1

= DY ‖{(f2i−1 − 1)wX + f2iwY +

(g2i−1 − f2i−1 + 1)nX + (g2i − f2i)nY + dX}ki=1

The proof of this lemma is straightforward (though tedious) by induction
and is included in Section 7.12 for completeness.

Observe that the storage size, release schedule and remaining evaluation
schedule for even Fibonacci pebblers are the same as for the preceding odd
Fibonacci pebbler, i.e., sY

XF2k+2
= sY

XF2k+1
, as well as RY

XF2k+2
= RY

XF2k+1
and

DY
XF2k+2

= DY
XF2k+1

.
We have not included the budget bound in the properties of Fibonacci

pebblers given in Lemma 7.37. This is because the budget bound bY
XFk

does
not behave regularly for k ≤ 4. For k ≥ 5 we state the budget bound of
Fibonacci pebblers in the following lemma.

Lemma 7.38. For any pebblers X and Y , such that sX = sY , and any k ≥ 5,
we have

bY
XFk

= max

(
bY
XFk−1

,
nY
XFk−1

− 1 + dY
XFk−3

1 + rY
XFk−3

)
.
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Proof. By definition, we have for k ≥ 3

bY
XFk

= max

(
{bY
XFk−1

, bY
XFk−2

},
NY
XFk−1

− 1 + {0}‖DY
XFk−2

1 + {0}‖RY
XFk−2

)

= max

(
{bY
XFk−1

},
NY
XFk−1

− 1 + {0}‖DY
XFk−2

1 + {0}‖RY
XFk−2

)
, (7.12)

where the second equality holds because bY
XFk−1

= bY
XFk−2+YXFk−3

≥ bY
XFk−2

for
k ≥ 4.

For k ≥ 5, we can split off the last element of the sequence in (7.12):

NY
XFk−1

− 1 + {0}‖DY
XFk−2

1 + {0}‖RY
XFk−2

=
NY
XFk−3

− 1 + {0}‖DY
XFk−4

1 + {0}‖RY
XFk−4︸ ︷︷ ︸

≤bY
X
Fk−2

∥∥∥∥∥nYXFk−1
− 1 + dY

XFk−3

1 + rY
XFk−3

, (7.13)

The left hand subsequence is smaller than bY
XFk−2

by definition and is already

included in the maximum of (7.12). To see that the equality holds for the last
element, we must distinguish between even and odd k. First, for even k, the
sequences NY

XFk−1
and {0}‖DY

XFk−2
and {0}‖RY

XFk−2
(including the padding

with zero) have the same length and the last element of the sequence can
be expressed in terms of nY

XFk−1
, dY

XFk−2
, and rY

XFk−2
. For odd k, the se-

quences NY
XFk−1

is one shorter than {0}‖DY
XFk−2

and {0}‖RY
XFk−2

(including

the padding with zero) and the last element of the sequence can be expressed
in terms of nY

XFk−1
, dY

XFk−4
, and rY

XFk−4
, i.e., using the second-to-last elements

of DY
XFk−2

and RY
XFk−2

. However, we also make use of the fact that, if k is
even, we have dY

XFk−2
= dY

XFk−3
and rY

XFk−2
= rY

XFk−3
, whereas for odd k, we

have dY
XFk−4

= dY
XFk−3

and rY
XFk−4

= rY
XFk−3

. This holds for any k ≥ 5 by
Lemma 7.37.

For sufficiently large k, we can then give the budget bound more precisely.

Lemma 7.39. For any pebblers X and Y , such that sX = sY , there exists a
K such that for any k ≥ K

bY
XF2k+1

= bY
XF2k+2

=
nY
XF2k

− 1 + dY
XF2k−2

1 + rY
XF2k−2

.
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Proof (informal). We do not formally prove this lemma, but will argue its
correctness informally. It should be obvious that the equality

bY
XFk

=
nY
XFk−1

− 1 + dY
XFk−3

1 + rY
XFk−3

(7.14)

must hold for infinitely many k, because if this were not the case, this would
imply that there exists an upper bound c for any pebblers X and Y such that
bY
XFk

< c for all k, whereas the length of YXFk would grow unbounded with k
and the storage size would grow logarithmically in the length. Such a sequence
of pebblers of increasing length would therefore approach space-time product
factor 0, which is impossible.

This weaker statement suffices for our purposes; the more complete state-
ment of the lemma is given for concreteness. The remainder of the proof is only
given as an informal argument.

Using Corollary 7.33, it can be shown that, as k grows,

nY
XFk
∼ ϕk−2(nX + ϕnY )√

5
(7.15)

rY
XF2k+1

= rY
XF2k+2

∼ ϕ2k−1(nX + ϕnY )√
5

(7.16)

dY
XF2k+1

= dY
XF2k+2

∼ (2k − 1)ϕ2k−1(nX + ϕnY )

5
. (7.17)

The growth rate in the numerator of (7.14) dominates the growth rate in the
denominator. However, the fact that rY

XF2k+2
= rY

XF2k+1
and dY

XF2k+2
= dY

XF2k+1

for any k, also results in bY
XF2k+2

= bY
XF2k+1

for sufficiently large k.

As an immediate consequence of (7.15) through (7.17), combined with

sY
XF2k+1

= sY
XF2k+2

∼ k, (7.18)

we find the asymptotic space-time product factor of any Fibonacci pebbler for
large k.

Corollary 7.40. For any pebblers X and Y we have

lim
k→∞

φY
XFk

=
1

2
√

5(log2 ϕ)2
≈ 0.4639.
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Fibonacci pebblers are a first indication that pebblers with space-time prod-
uct factor smaller than 1/2 exist. Numerically it can be confirmed that, when
using the elementary pebbler for both bas pebblers, φE

EF42
≈ 0.4848 and, in fact,

φE
EFk

< 1/2 for every even k ≥ 42. For odd k, the same holds if k ≥ 61, except

for k = 77. The convergence is rather slow, though, as nE
EF42

= f42 ≈ 228, for
example.

Reverse Fibonacci Pebblers

Because the sequential composition of pebblers is not commutative, we can also
define the reverse Fibonacci Pebblers.

Definition 7.41. For any pebblers X and Y , and any k ≥ 1, we define the
reverse Fibonacci pebbler, denoted Y

XGk, as

Y
XGk =


X if k = 1

Y if k = 2
Y
XGk−2 + Y

XGk−1 otherwise.

An example of the reverse Fibonacci pebbler EEG8 is given in Figure 7.6.
For completeness, we state the properties, except the budget bound, of

reverse Fibonacci pebblers without proof.

Lemma 7.42. For any pebblers X and Y , such that sX + 1 = sY , and any
k ≥ 1, we have

sY
XG2k

= sY + 2k − 2

wY
XG2k

= f2k−2wX + f2k−1wY + (g2k−1 − g2k−2)nX + g2k−2nY

NY
XG2k

= NY ‖{fi−2nX + fi−1nY }2k−2i=1

RY
XG2k

= RY ‖{R′Y + f2i−2nX + (f2i−1 − 1)nY }k−1i=1

DY
XG2k

= DY ‖{D′Y + f2i−2wX + (f2i−1 − 1)wY + g2i−1nX +

(g2i−1 − f2i + 1)nY }
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 7.6: Reverse Fibonacci pebbler E
EG8 = E+E

E G7 with possible schedule.
Note that the storage size sE

EG8
= 2sE

EF8
(cf. Figure 7.5).
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and

sY
XG2k+1

= sY + 2k − 1

wY
XG2k+1

= f2k−1wX + f2kwY + (g2k − g2k−1)nX + g2k−1nY

NY
XG2k+1

= NY ‖{fi−2nX + fi−1nY }2k−1i=1

RY
XG2k+1

= RX‖{R′Y + f2k−1nX + (f2k − 1)nY }k−1i=1

DY
XG2k+1

= DX‖{D′Y + f2i−1wX + (f2i − 1)wY + g2inX +

(g2i − f2i+1 + 1)nY }

where R′Y and D′Y denote the last two elements of RY and DY , respectively.

As may be directly observed from the definition of reverse Fibonacci peb-
blers, the storage size of a reverse Fibonacci pebbler is twice a high when
compared to the ordinary Fibonacci pebbler of the same length.

7.9 Nested Composition

In the previous section we defined Fibonacci pebblers recursively as the com-
position of two smaller Fibonacci pebblers, analogous to the definition of Fi-
bonacci numbers. Instead of taking the elementary pebbler, we allowed for any
pair of pebblers as the base pebblers for constructing Fibonacci pebblers to
allow for more general sequences of pebblers. In this section we will further
explore the idea taking an arbitrary pebbler, rather than the elementary peb-
bler, as the elementary building block for composite pebblers. We will call this
notion nested composition. Intuitively, nested composition can be thought of as
replacing every instance of the elementary pebbler in a given pebbler X with
another pebbler Y . In terms of our visualization of pebblers, this corresponds
to replacing every open circle with a copy of the representation of Y . Formally,
we define nested composition as follows.

Definition 7.43. We recursively define the nested composition of pebblers X
and Y , denoted XY , as follows:

XY =

{
Y if X = E

(V Y ) + (WY ) if X = V +W .

Before giving an example of nested composition in Figure 7.7 we will first
analyze the pebbler properties, except the budget bound, of nested composi-
tion.



178 Chapter 7. Asymptotically Optimal Hash Chain Reversal

Lemma 7.44. The following holds for pebblers obtained through nested com-
position:

sXY = sX + sY

NXY = NY ‖(nYNX)

wXY = nY wX + nXwY

RXY = RY ‖(nYRX + rY )

DXY = DY ‖(nYDX + wYRX + dY )

Corollary 7.45. For all pebblers X and Y , we have

nXY = nY nX

rXY = nY rY + rY

dXY = nY dY + wY rY + dY

We have chosen the notation of nested composition suggestive of multipli-
cation to reflect the fact that the length nXY of a pebbler XY equal to the
product nXnY . This coincides with the intuition behind nested composition
that pebbler Y is repeated once in XY for every elementary pebbler of X.

An example of the nested composition XY , where X = 2B1 + 1B1 and
Y = 1B1 + 1B1 is given in Figure 7.7, complete with a possible initialization
schedule. Note that the pebbler Y is repeated nX = 5 times, once in each of
the marked areas. Furthermore, the marked areas themselves are positioned
according to X.

Although we do not explicitly define the initialization schedule for sequen-
tial composition (and therefore neither for nested composition), we have given
a possible initialization schedule in Figure 7.7. Note that in this case the only
possible initialization schedule for the sub-pebbler 2B1Y resulting the minimal
budget 2 is such that 2 hash evaluations are performed in each of the first 8
rounds. The example gives some indication that simply scaling up the initial-
ization schedule would not necessarily lead to an optimal budget and that the
analysis of the budget bound is more complicated. In general, we do not have
an exact equation for bXY . Instead we prove the following upper bound.

Lemma 7.46. For any pebblers X and Y , let

hXY = max

(
bY+Y ,

nY nX − 1 + dY
rY + 1

,
3

2
nX + max

(
wY
nY

,
dY
rY

))
.

Then
bXY ≤ hXY .
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 7.7: The nested pebbler (2B1 + 1B1)(1B1 + 1B1) with possible schedule.
Observe how the pebbler 1B1 + 1B1 is repeated in each of the n

2B1+1B1
= 5

marked areas and how the marked areas themselves have width n1B1+1B1 = 4
and are positioned as in 2B1 + 1B1
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For some simple pebblers we can work out the nested composition exactly.
The following lemma allows us to compare our framework to the results of
Sella [Sel03] and Kim [Kim03].

Lemma 7.47. For any pebbler Y and any σ ≥ 1, we have

b
σB1Y = bY+Y .

There are further similarities between the ordinary notion of multiplication
and nested composition. Indeed, nested composition is defined in terms of left
distributivity with the elementary pebbler as the left identity. From this, it
follows that the elementary pebbler is also the right identity element under
nested composition, and that nested composition is associative, as stated in
the following to lemmas. However, nested composition is not commutative, as
can readily be seen in the example of Figure 7.7, as it does contain 5 identical
sub-pebblers of length 4, but not 4 identical sub-pebblers of length 5.

Lemma 7.48. E is the identity element under nested composition, i.e., for
any pebbler X,

XE = X = EX.

Proof. The second equality holds by definition. The first we prove by induction.
In the base case, X = E, the first equality holds by definition. Suppose the
first equation holds for some pebblers V and W such that sV ≤ sW + 1. Then,
for X = V +W , we then have

XE = (V E) + (WE) = V +W = X. (7.19)

Lemma 7.49. Nested composition is associative, i.e., for all pebblers X, Y ,
and Z we have (XY )Z = X(Y Z).

Although nested composition is associative, it is not commutative. However,
we do have commutativity with respect to the averaged space-time product fac-
tor, as stated by the following lemma.

Lemma 7.50. For any pebblers X 6= E and Y 6= E, we have

πXY = πY X
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7.10 Power Pebblers

The nested composition of distinct pebblers tends to increase the averaged
space-time product factor with respect to the minimal averaged space-time
product factor of the two base pebblers, as evidenced by the following lemma
and its corollary.

Lemma 7.51. Let X 6= E and Y 6= E be pebblers. Without loss of generality,
assume that πX ≤ πY . Then

πXY ≥ πX

Proof.

πXY =
(sX + sY )(nY wX + nXwY )

nXnY (log2 nX + log2 nY )2

=
sX + sY

(log2 nX + log2 nY )2

(
wX
nX

+
wY
nY

)
=

sX + sY
(log2 nX + log2 nY )2

(
πX

(log2 nX)2

sX
+ πY

(log2 nY )2

sY

)
≥ πX

sX + sY
(log2 nX + log2 nY )2

(
(log2 nX)2

sX
+

(log2 nY )2

sY

)
= πX

(
1 +

(sX log2 nY − sY log2 nX)2

(log2 nX + log2 nY )2sXsY

)
≥ πX , (7.20)

where the first inequality holds because (log2NY )2

sY
> 0.

With a slight modification to the proof, we find the conditions under which
we have equality in Lemma 7.51.

Corollary 7.52.

πXY = πX ⇐⇒ πX = πY ∧
sX

log2 nX
=

sY
log2 nY

Proof. In case πX = πY and sX
log2 nX

= sY
log2 nY

the inequalities in the proof of

Lemma 7.51 become equalities. Similarly, of either of the conditions does not
hold, the corresponding inequality in the proof of Lemma 7.51 becomes a strict
inequality.



182 Chapter 7. Asymptotically Optimal Hash Chain Reversal

Note that in particular, this means that πXX = πX . In this section we
therefore focus on the nested composition of pebblers created from only a single
base pebbler. We take this beyond the nested composition of a pebbler with
itself, but iterate this process.

Definition 7.53. For any pebbler X and any k ≥ 0, we define the power
pebbler, denoted Xk, as

Xk =

{
E if k = 0

XXk−1 otherwise.

The process of iteratively taking the nested composition of a pebbler with
itself is analogous to exponentiation, we dub these power pebblers. As may be
expected, the length of a power pebbler is exponential in the length of its base
pebbler. The properties of power pebblers are as follows.

Lemma 7.54. For any pebbler X 6= E and any k ∈ N, we have

sXk = ksX

NXk =

∥∥∥∥k−1
i=0

(
niXNX

)
wXk = knk−1X wX

RXk =

∥∥∥∥k−1
i=0

(
niXRX +

niX − 1

nX − 1
rX

)

DXk =

∥∥∥∥k−1
i=0

(
niXDX +

niX − 1

nX − 1
dX +

ini−1X wXRX +

(
ini−1X

nX − 1
− niX − 1

(nX − 1)2

)
wXrX

)
Corollary 7.55. For any pebbler X 6= E and any k ∈ N, we have

nXk = nkX

rXk =
nkX − 1

nX − 1
rX

dXk =
nkX − 1

nX − 1
dX +

(
knk−1X

nX − 1
− nkX − 1

(nX − 1)2

)
wXrX
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If we combine our notion of power pebblers with the binomial pebbler 1B1

of length 2, we obtain the binary pebbler 1B
k
1 of length 2k. Although we do not

describe a schedule for the evaluation for such pebblers, and have not yet stated
the budget bound for power pebblers in general, these pebblers correspond to
the results of [Jak02, CJ02, YSEL09, Sch16].

Lemma 7.56. For any pebbler X 6= E and any k ≥ 1, we have

dXk

rXk
≤ dX
rX

+ k
wX
nX

Just as for nested composition, we do not have an exact expression for the
budget bound. Instead, we prove the following inequality.

Lemma 7.57. For any pebbler X 6= E, we have

bXk ≤ n3X +
dX
rX

+ (k − 2)
wX
nX

.

The binary pebbler strategies of [Jak02, CJ02, YSEL09, Sch16] correspond
to power pebblers 1B

k
1 and the pebbler strategy of [Sel03, Kim03] is the gen-

eralization to σB
k
1 for any σ. For these pebblers, we can work out the budget

bound exactly.

Lemma 7.58. For any σ ≥ 1 and any k ≥ 2, we have

b
σBk1

=
(k − 1)σ + 1

σ + 1
.

Using the above lemma, we can state the space-time product factor of these
pebblers exactly. In particular, this shows that the space-time product factor
of binary pebblers is exactly 1/2 for even k.

Corollary 7.59. For any σ ≥ 1 and any k ≥ 2, we have

φ
σBk1

=
σ
⌈
(k−1)σ+1
σ+1

⌉
k(log2(σ + 1))2

In the general case of power pebblers of arbitrary pebblers, we see that,
for large k, the upper bound on the budget bound is dominated by kwXnX . This
leads us to the following theorem, which is the main result of this chapter.
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Theorem 7.60. For any pebbler X 6= E

lim
k→∞

φXk = πX

Proof.

lim
k→∞

φXk = lim
k→∞

sXkbXk

(log2 nXk)2

≤ lim
k→∞

ksX

⌈
n3X + dX

rX
+ (k − 2)wXnX

⌉
k2(log2 nX)2

=
sXwX

nX(log2 nX)2

= πX (7.21)

Combined with the lower bound of Corollary 7.8, the theorem follows.

Theorem 7.60 states that in the limit of large k, the space-time product fac-
tor tends to the averaged space-time product factor. Because binomial pebblers
feature the optimal averaged space-time product factor and, in fact, binomial
pebblers approach the lower bound of the averaged space-time product factor
of 1/4, we therefore claim that power pebblers of binomial pebblers asymptot-
ically approach the optimal space-time product factor of 1/4.

7.11 Reflections on Existing Results

In this section we will discuss how existing results on hash chain reversal fit
within our framework. In our framework we do not specify an evaluation sched-
ule, rather we only show the existence of an evaluation schedule that satisfies
certain complexity bounds. This is in contrast to existing solutions, which spec-
ify an algorithm for reversing a hash chain of a particular length (or, more accu-
rately, a sequence of algorithms for reversing hash chains of increasing length).
Therefore, our framework can not be used to fully describe existing results. We
include this section to show how our framework can be applied to analyze the
complexity bounds on existing solutions.

We mention the results of Griewank and Grimm et al. on program reversal
for the purpose of reverse automatic differentiation [Gri92, GPRS96] for com-
pleteness. In our framework, these results are the binomial pebblers which we
have extensively studied in Section 7.7. Binomial pebblers are optimal in terms
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of storage size and work size. However, our quantity of interest is the budget,
rather than the work size, and binomial pebblers do not show the desired be-
havior where the length of the pebblers grows exponentially with the storage
size and budget.

Most of the results on hash chain reversal use the so-called binary pebbler
structure [Jak02, CJ02, YSEL09, Sch16, Sch17]. The binary pebbler structure
corresponds to the power pebblers 1B

k
1 in our framework. Using our framework,

it follows immediately that n
1Bk1

= 2k and π
1Bk1

= 1/2. Theorem 7.60 states

that limk→∞ φ
1Bk1

= 1/2 as well. However, as shown by [YSEL09, Sch16] for

binary pebblers 1B
k
1 the space-time product factor is actually equal to 1/2 for

all even k, not just asymptotically. The equality does not hold for odd k due to
rounding. Because our results only include an upper bound on the budget for
power pebblers, this does not immediately follow from our framework. Although
we do not have an exact solution for the budget bound for power pebblers in
general, it is straightforward to derive this for binary pebblers in our framework
as well.

The strategy of Sella [Sel03] and Kim [Kim03] can be seen as a generaliza-
tion of binary pebblers to a b-ary partitioning. In our framework, their results
correspond to power pebblers σB

k
1 , in which σ = b − 1 can be chose freely.

For σ = 1, these indeed reduce to binary pebblers. It follows immediately from

our framework that n
σBk1

= (σ+ 1)k and π
σBk1

= σ2

(σ+1)(log2(σ+1))2 . Sella shows

that the storage size of pebblers with this structure is at most k(σ + 1). Kim
improves this claim to s

σBk1
= kσ, which also follows from our framework.

In our framework we can easily express an alternative b-ary partitioning
constructed as 1B

k
β , where the blocksize β = b − 1 can be chosen freely. We

call such pebblers block pebblers, explaining why we called β the block size of
binomial pebblers. Compared to the strategy of Sella and Kim, block pebblers
have a lower storage size and necessarily to a greater budget. The space-time
product factor of block pebblers converges to π

1Bkβ
= β

2(log2(β+1))2 which, unlike

the pebbling strategy of Sella and Kim, can be smaller than 1/2. The optimum
is found for b = 5 for which π

1B4
≈ 0.37, first announced by Schoenmakers

in [Sch17].
Schoenmakers is the first to mention pebbler structure based on Fibonacci

numbers as pebblers that have lower space-time complexity than binary peb-
blers [Sch16]. We discuss Fibonacci pebblers extensively in Section 7.8. The
space-time product factor for Fibonacci pebblers converges to limk→∞ φY

XFk
=

1
2
√
5(log2 ϕ)

2
≈ 0.4639.
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7.12 Deferred Proofs

Several proofs in this chapter are straightforward by induction, but rather long-
winded and tedious. Such proofs have been collected in this section so as not
to distract from the main text.

Proof of Lemma 7.9. In the base case, X = E, the lemma holds because NE
is the empty sequence and nE = 1 by definition. For the induction hypothesis,
assume the lemma holds for pebblers V and W . Let X = V + W , then nX =
nV + nW and NX = NV+W = NW ‖{nW + nV }. We then have

1 ≤ 1 + 1

≤ nV + nW (7.22)

and

2 ≤ {2}sW ‖{1 + 1}
≤ NW ‖{nV + nW }
≤ {nW }sW ‖{nV + nW }
≤ nX , (7.23)

where, in fact nX ≥ 2, because X 6= E.

Proof of Lemma 7.10. The proof is by induction. In the base case, X = E,
the lemma holds because wE = 0 by definition. For the induction hypothesis,
assume the lemma holds for pebblers V and W . Let X = V +W , then wX =
wV+W = wV + wW + nV and

nX − 1 ≤ nV − 1 + nW − 1 + nV

≤ wV + wW + nV

≤
(
nV
2

)
+

(
nW
2

)
+ nV

=

(
nV + nW

2

)
− nV (nW − 1)

≤
(
nX
2

)
. (7.24)
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Proof of Lemma 7.12. The proof is by induction. In the base case, X = E, the
lemma holds because RE is the empty sequence by definition. For the induction
hypothesis, assume the lemma holds for pebblers V and W . Let X = V +W ,
then RX = RV+W = RV $ (({0}‖RW ) + nV ) and

1 ≤ {1}sV $ (({0}‖{1}sW ) + 1)

≤ RV $ (({0}‖RW ) + nV )

≤ {nV − 1}sV $ (({0}‖{nW − 1}sW ) + nV )

≤ nX − 1 (7.25)

Proof of Lemma 7.13. The proof is by induction. In the base case, X = E, the
lemma holds because DE is the empty sequence by definition. For the induction
hypothesis, assume the lemma holds for pebblers V and W . Let X = V +W ,
then DX = DV+W = DV $ (({0}‖DW ) + wV ) and

0 ≤ {0}sV $ (({0}‖{0}sW ) + 0)

≤ DV $ (({0}‖DW ) + wV )

≤
(
RV
2

)
$
((
{0}‖RW

2

)
+

(
nV
2

))
=

(
RV
2

)
$
((

({0}‖RW ) + nV
2

)
− nV ({0}‖RW )

)
≤
(
RX
2

)
, (7.26)

where we use the fact that
(
0
2

)
= 0.

Proof of Lemma 7.15. The proof is by induction. In the base case, X = E,
the lemma holds because bE = 0 and nE = 1 by definition. For the induction
hypothesis, assume the lemma holds for pebblers V and W . Let X = V +W ,



188 Chapter 7. Asymptotically Optimal Hash Chain Reversal

then bX = bV+W = max
(
{bV , bW }

∥∥∥(NV −1+({0}‖DW )
1+({0}‖RW ) $ NV +wW−nW

nW

))
and

0 ≤ bV

≤ max

(
{bV , bW }

∥∥∥∥(NV − 1 + ({0}‖DW )

1 + ({0}‖RW )
$
NV + wW − nW

nW

))
≤ max

({
nV − 1, nW − 1,

nV + wW − nW
nW

}∥∥∥∥nV − 1 + ({0}‖DW )

1 + ({0}‖RW )

)
≤ max

({
nW − 1, nV +

nW − 1

2
− 1

}∥∥∥∥nV − 1 +

(
{0}‖RW − 1

2

)
︸ ︷︷ ︸

<
nW−1

2

)

≤ max

(
nW − 1, nV + nW −

nW + 3

2

)
≤ nX − 1 (7.27)

Proof of Lemma 7.24. We first prove by induction on β that the lemma holds
for all trivial pebblers, i.e., all binomial pebblers σBβ , where σ = 1. For the
base case, β = 1, we have 1B1 = E + E and, by Corollary 7.16,

sE+E = 1 = σ (7.28)

NE+E = {2} =

{(
β + i

β

)}σ
i=1

(7.29)

wE+E = 1 = σ

(
β + σ

β − 1

)
(7.30)

RE+E = {1} = {i}σi=1 (7.31)

DE+E = {0} = {0}σ (7.32)

bE+E = 0 =
1

σ

((
β − 1 + σ

β − 1

)
− 1

)
. (7.33)

For the induction hypothesis, assume the lemma holds for σ = 1 and some
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β. Then, for 1Bβ+1 = 1Bβ + E, we apply Corollary 7.17 and obtain

s
1Bβ+E = s

1Bβ

= 1

= σ (7.34)

N
1Bβ+E = {n

1Bβ + 1}

=

{(
β + 1

β

)
+ 1

}
=

{(
β + 1 + i

β + 1

)}σ
i=1

(7.35)

w1Bβ+E = w1Bβ +N1Bβ

= 1 ·
(
β + 1

β − 1

)
+

(
β + 1

β

)
= σ

(
β + 1 + σ

β

)
(7.36)

R
1Bβ+E = R

1Bβ

= {1}
= {i}σi=1 (7.37)

D
1Bβ+E = D

1Bβ

= {0}
= {0}σ (7.38)

b1Bβ+E = n1Bβ − 1

=

(
β + 1

β

)
− 1

=
1

σ

((
β + σ

β

)
− 1

)
(7.39)

Next, we prove by induction on σ that the lemma holds for all näıve peb-
blers, i.e., all binomial pebblers σBβ , where β = 1. We have already proved
this for the base case, σ = 1.

For the induction hypothesis, assume the lemma holds for β = 1 and some
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σ. Then, for σ+1B1 = E + σB1, we apply Corollary 7.18 and we obtain

sE+σB1
= s

σB1
+ 1

= σ + 1 (7.40)

NE+σB1
= N

σB1
‖{1 + n

σB1
}

=

{(
1 + i

1

)}σ
i=1

∥∥∥∥{1 +

(
1 + σ

1

)}
=

{(
β + i

β

)}σ+1

i=1

(7.41)

wE+σB1
= w

σB1
+ 1

= σ

(
1 + σ

0

)
+ 1

= (σ + 1)

(
β + σ

β − 1

)
(7.42)

RE+σB1
= ({0}‖R

σB1
) + 1

= ({0}‖{i}σi=1) + 1

= {i}σ+1
i=1 (7.43)

DE+σB1
= {0}‖D

σB1

= {0}‖{0}σ

= {0}σ+1 (7.44)

bE+σB1
= b

σB1

= 0

=
1

σ + 1

((
β + σ

β − 1

)
− 1

)
(7.45)

We will now prove by induction that the lemma holds for all σ and β. We
have proved this for the base cases in which σ = 1 ∨ β = 1. For the induction
hypothesis, assume the lemma holds for all σ and β such that σ + β ≤ k for
some k. Then for any σ and β such that σ > 1 ∧ β > 1 ∧ σ + β = k + 1, we
have σBβ = σBβ−1 + σ−1Bβ . Since sσBβ−1

= σ = (σ − 1) + 1 = sσ−1Bβ + 1 by



7.12. Deferred Proofs 191

the induction hypothesis, we can apply Corollaries 7.19 and 7.20, and obtain

s
σBβ−1+σ−1Bβ = s

σ−1Bβ + 1

= σ (7.46)

N
σBβ−1+σ−1Bβ = N

σ−1Bβ‖{nσBβ−1
+ n

σBβ−1
})

=

{(
β + i

β

)}σ−1
i=1

∥∥∥∥∥
{(

β − 1 + σ

β − 1

)
+

(
β + σ − 1

β

)}
=

{(
β + i

β

)}σ
i=1

(7.47)

w
σBβ−1+σ−1Bβ = w

σBβ−1
+ w

σ−1Bβ + n
σBβ−1

= σ

(
β − 1 + σ

β − 1− 1

)
+ (σ − 1)

(
β + σ − 1

β − 1

)
+

(
β − 1 + σ

β − 1

)
= σ

(
β + σ

β − 1

)
(7.48)

R
σBβ−1+σ−1Bβ = R

σBβ−1

= {i}σi=1 (7.49)

DσBβ−1+σ−1Bβ = DσBβ−1

= {0}σ (7.50)

bσBβ−1
+ σ−1Bβ = max

(
{bσBβ−1

, bσ−1Bβ}
∥∥∥∥NσBβ−1

− 1 + {0}‖D
σ−1Bβ

1 + {0}‖R
σ−1Bβ

)
= max

({
1

σ

((
β − 2 + σ

β − 2

)
− 1

)
,

1

σ − 1

((
β − 2 + σ

β − 1

)
− 1

)}∥∥∥∥{(
β−1+i
β−1

)}σ
i=1
− 1 + {0}‖{0}σ−1

1 + {0}‖{i}σ−1i=1

= max

({
1

i

((
β − 1 + i

β − 1

)
− 1

)}σ
i=1

)
=

1

σ

((
β − 1 + σ

β − 1

)
− 1

)
. (7.51)
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Proof of Lemma 7.31. The proof is by induction on k. In the base cases, when
k ≤ 1, the lemma clearly holds, because

g0 = f0f0 = 0 (7.52)

g1 = f0f1 + f1f0 = 0 (7.53)

For the induction hypothesis, assume the lemma holds for some k ≥ 0 and
k + 1 ≥ 1. Then

gk+2 =

k+2∑
i=0

fifk+2−i

=

k∑
i=0

fi(fk+1−i + fk−i) + fk+1f1 + fk+2f0

=

k+1∑
i=0

fifk+1−i − fk+1f0 +

k∑
i=0

fifk−i + fk+1

= gk+1 + gk + fk+1 (7.54)

Proof of Lemma 7.32. The proof is by induction on k. In the base cases, when
k ≤ 1, the lemma clearly holds, since g0 = g1 = 0 by Lemma 7.31. For the
induction hypothesis, assume the lemma holds for some k ≥ 0 and k + 1 ≥ 1.
Then

gk+2 = gk+1 + gk + fk+1

=
(2k + 2)fk+2 − (k + 2)fk+1

5
+

2kfk+1 − (k + 1)fk
5

+ fk+1

=
(2k + 2)fk+2 + (k + 3)fk+1 − (k + 1)fk

5

=
(k + 1)fk+2 + (2k + 4)fk+1

5

=
(2k + 4)fk+3 − (k + 3)fk+2

5
(7.55)
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Proof of Lemma 7.37. The proof is by induction on k. In the base case, k = 1,
we have Y

XF2k = Y and Y
XF2k+1 = Y +X. Therefore

sY = sY + k − 1 (7.56)

wY = f2k−2wX + f2k−1wY + g2k−2nX + g2k−1nY (7.57)

NY = NY ‖{f2inX + f2i+1nY }k−1i=1 (7.58)

RY = RY ‖{(f2i−1 − 1)nX + f2inY + rX}k−1i=1 (7.59)

DY = DY ‖{(f2i−1 − 1)wX + f2iwY +

(g2i−1 − f2i−1 + 1)nX + (g2i − f2i)nY + dX}k−1i=1 (7.60)

and

sY+X = sX + 1

= sX + k (7.61)

wY+X = wY + wX + nY

= f2k−1wX + f2kwY + g2k−1nX + g2knY (7.62)

NY+X = NX‖{nX + nY }
= NX‖{f2i−1nX + f2inY }ki=1 (7.63)

RY+X = RY ‖{nY + rX}
= RY ‖{(f2i−1 − 1)nX + f2inY + rX}ki=1 (7.64)

DY+X = DY ‖{wY + dX}
= DY ‖{(f2i−1 − 1)wX + f2iwY +

(g2i−1 − f2i−1 + 1)nX + (g2i − f2i)nY + dX}ki=1 (7.65)

For the induction hypothesis, assume the lemma holds for some k. Then for
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Y
XF2(k+1) = Y

XF2k+1 + Y
XF2k we apply Corollary 7.20 and obtain

sY
XF2k+1+YXF2k

= sY + k (7.66)

wY
XF2k+1+YXF2k

= wY
XF2k+1

+ wY
XF2k

+ nY
XF2k+1

= f2k−1wX + f2kwY + g2knX + g2k+1nY +

f2k−2wX + f2k−1wY + g2k−1nX + g2knY +

f2k−1nX + f2knY

= f2kwX + f2k+1wY + g2k+1nX + g2k+2nY (7.67)

NY
XF2k+1+YXF2k

= NY
XF2k
‖{nY

XF2k+1
+ nY

XF2k
}

= NY ‖{f2inX + f2i+1nY }k−1i=1 ‖
{f2k−1nX + f2knY + f2k−2nX + f2k−1nY }

= NY ‖{f2inX + f2i+1nY }ki=0 (7.68)

RY
XF2k+1+YXF2k

= RY
XF2k+1

= RY ‖{(f2i−1 − 1)nX + f2inY + rX}ki=1 (7.69)

DY
XF2k+1+YXF2k

= DY
XF2k+1

= DY ‖{(f2i−1 − 1)wX + f2iwY + (g2i−1 − f2i−1 + 1)nX +

(g2i − f2i)nY + dX}ki=1 (7.70)

Combining the results for Y
XF2(k+1) with the induction hypothesis, we can
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apply Corollary 7.21 to Y
XF2(k+1)+1 = Y

XF2(k+1) + Y
XF2k+1 and obtain

sY
XF2k+2+YXF2k+1

= sX + k + 1 (7.71)

wY
XF2k+2+YXF2k+1

= wY
XF2k+2

+ wY
XF2k+1

+ nY
XF2k+2

= f2kwX + f2k+1wY + g2k+1nX + g2k+2nY +

f2k−1wX + f2kwY + g2knX + g2k+1nY +

f2knX + f2k+1nY

= f2(k+1)−1wX + f2(k+1)wY + g2(k+1)nX +

g2(k+1)+1nY (7.72)

NY
XF2k+2+YXF2k+1

= NY
XF2k+1

‖{nY
XF2k+2

+ nY
XF2k+1

}

= NX‖{f2i−1nX + f2inY }ki=1‖
{f2knX + f2k+1nY + f2k−1nX + f2knY }

= NX‖{f2i−1nX + f2inY }k+1
i=0 (7.73)

RY
XF2k+2+YXF2k+1

= RY
XF2k+2

‖{nY
XF2k+2

+ rY
XF2k+1

}

= RY ‖{(f2i−1 − 1)nX + f2inY + rX}ki=1‖
{f2knX + f2k+1nY +

(f2k−1 − 1)nX + f2knY + rX}
= RY ‖{(f2i−1 − 1)nX + f2inY + rX}k+1

i=1 (7.74)

DY
XF2k+2+YXF2k+1

= DY
XF2k+2

‖{wY
XF2k+2

+ dY
XF2k+1

}

= DY ‖{(f2i−1 − 1)wX + f2iwY + (g2i−1 − f2i−1 + 1)nX +

(g2i − f2i)nY + dX}ki=1‖
{f2kwX + f2k+1wY + g2knX + g2k+1nY +

(f2k−1 − 1)wX + f2kwY + (g2k−1 − f2k−1 + 1)nX +

(g2k − f2k)nY + dX}
= DY ‖{(f2i−1 − 1)wX + f2iwY + (g2i−1 − f2i−1 + 1)nX +

(g2i − f2i)nY + dX}ki=1‖
{(f2k+1 − 1)wX + f2k+2wY + (g2k+1 − f2k+1 + 1)nX +

(g2k+2 − f2k+2)nY + dX}
= DY ‖{(f2i−1 − 1)wX + f2iwY + (g2i−1 − f2i−1 + 1)nX +

(g2i − f2i)nY + dX}k+1
i=1 (7.75)
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Proof of Lemma 7.44. The proof is by induction. In the base case, X = E,
the defining sequences of X are all empty and sX = wX = 0 and nX = 1.
The lemma clearly holds in this case. For the induction hypothesis, assume the
lemma holds for some pebblers V and W . Then, for X = V +W , we have

sV Y+WY = max(sV Y , sWY + 1)

= max(sV + sY , sW + sY + 1)

= max(sV , sW + 1) + sY

= sX + sY (7.76)

NV Y+WY = NWY ‖{nV Y + nWY }
= NY ‖(nYNW )‖{nY nV + nY nW }
= NY ‖(nY (NW ‖{nV + nW }))
= NY ‖(nYNX) (7.77)

wV Y+WY = wV Y + wWY + nV Y

= nY wV + nV wY + nY wW + nWwY + nY nV

= nY (wV + wW + nV ) + (nV + nW )wY

= nY wX + nXwY (7.78)

RV Y+WY = RV Y $ (({0}‖RWY ) + nV Y )

= (RY ‖(nYRV + rY )) $
(({0}‖RY ‖(nYRW + rY )) + nY nV )

= RY ‖(nY (RV $ (({0}‖RW ) + nV )) + rY )

= RY ‖(nYRX + rY ) (7.79)

DV Y+WY = DV Y $ (({0}‖DWY ) + wV Y )

= (DY ‖(nYDV + wYRV + dY )) $
(({0}‖DY ‖(nYDW + wYRW + dY )) + nY wV + nV wY )

= DY ‖(nY (DV $ (({0}‖DW ) + wV )) +

wY (RV $ (({0}‖RW ) + nV )) + dY )

= DY ‖(nYDX + wYRX + dY ) (7.80)

Proof of Lemma 7.46. The proof is by induction on. In the base case, X = E,
the lemma holds since bXY = bY ≤ bY+Y ≤ hXY .
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For the induction hypothesis, assume bV Y ≤ hV Y and bWY ≤ hWY for
some pebblers V and W . Then, for X = V +W , we have

bV Y+WY = max

((
NV Y − 1 + ({0}‖DWY )

1 + {0}‖RWY )
$
NV Y + wWY − nWY

nWY

)∥∥∥∥
{bV Y , bWY }

)
≤ max

(
NV Y − 1 + ({0}‖DWY )

1 +RWY

∥∥∥∥{wWY

nWY
, bV Y , bWY

})
. (7.81)

Since nV < nX and nW < nX we have hV Y ≤ hXY and hWY ≤ hXY . By
the induction hypothesis, we therefore have

max({bV Y , bWY }) ≤ max({hV Y , hWY })
≤ hXY . (7.82)

For wWY

nWY
, we have

wWY

nWY
=
nY wW + nWwY

nY nW

=
wW
nW

+
wY
nY

<
nW
2

+
wY
nY

≤ hXY , (7.83)

where the first inequality follows from Corollary 7.11.
What remains to show is that hXY is an upper bound to

NV Y − 1 + ({0}‖DWY )

1 + {0}‖RWY
≤ NY − 1 + {0}‖DY

1 + {0}‖RY︸ ︷︷ ︸
≤bY+Y ≤hXY

∥∥∥∥{nY nX − 1 + dY
1 + rY

}
︸ ︷︷ ︸

≤hXY

∥∥∥∥
nY nX + nYDW + wYRW + dY

1 + nYRW + rY
. (7.84)

The first two subsequences are trivially bounded by hXY . For the third, we
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have

nY nX + nYDW + wYRW + dY
1 + nYRW + rY

≤ nY (nX +DW )

nYRW
+
wYRW + dY
nYRW + rY

<
nX
RW

+
nW
2

+ max

(
wY
nY

,
dY
rY

)
<

3

2
nX + max

(
wY
nY

,
dY
rY

)
≤ hXY (7.85)

Here, we use rW ≥ 1 and apply Corollary 7.14 to DW
RW

.

Proof of Lemma 7.47. The proof is by induction on σ. In the base case, σ = 1,
the lemma holds, because 1B1Y = Y + Y for all pebblers Y . For the induction
hypothesis, assume the lemma holds for all pebblers Y and some σ. Then

b
σ+1B1Y = bY+σB1Y (7.86)

= max

(
{bY , bσB1Y }

∥∥∥∥NY − 1 + ({0}‖DσB1Y )

1 + ({0}‖R
σB1Y )

)
(7.87)

= max

(
{bY , bY+Y }

∥∥∥∥NY − 1 + ({0}‖DY )

1 + ({0}‖RY )

)
(7.88)

= bY+Y , (7.89)

where the third equality holds due the induction hypothesis and Lemma 7.44
by discarding the tail of the R and D terms, and the last equality because
bY+Y ≥ bY .

Proof of Lemma 7.49. The proof is by induction on. In the base case, X = E,
the lemma holds because

(EY )Z = Y Z = E(Y Z) (7.90)

by definition. For the induction hypothesis, suppose there exist pebblers V and
W such that (V Y )Z = V (Y Z) and (WY )Z = W (Y Z) for all pebblers Y and
Z. Then, for X = V +W , we have

((V +W )Y )Z = (V Y +WY )Z

= (V Y )Z + (WY )Z

= V (Y Z) +W (Y Z)

= (V +W )(Y Z). (7.91)
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Proof of Lemma 7.50. We have

sXY = sX + sY = sY X (7.92)

nXY = nXnY = nY X (7.93)

wXY = nY wX + nXwY = wY X . (7.94)

Therefore

πXY =
sXY wXY

nXY (log2 nXY )2

=
sY XwY X

nY X(log2 nY X)2

= πY X (7.95)

Proof of Lemma 7.54. The proof is by induction on k. In the base case, k = 0,
the defining sequences are all empty and the lemma clearly holds. For the
induction hypothesis, assume the lemma holds for some k. Then for Xk+1 =
XXk

sXXk = sX + sXk

= sX + ksX

= (k + 1)sX (7.96)

wXXk = nXkwX + nXwXk

= nkXwX + nXkn
k−1
X wX

= (k + 1)nkXwX (7.97)
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NXXk = NXk‖(nXkNX)

=

(∥∥∥∥k−1
i=0

(
niXNX

))
‖(nkXNX)

=

∥∥∥∥k
i=0

(niXNX) (7.98)

RXXk = RXk‖(nXkRX + rXk)

=

(∥∥∥∥k−1
i=0

(
niXRX +

niX − 1

nX − 1
rX

))∥∥∥∥(nkXRX +
nkX − 1

nX − 1
rX

)

=

∥∥∥∥k
i=0

(
niXRX +

niX − 1

nX − 1
rX

)
(7.99)

DXXk =

(∥∥∥∥k−1
i=0

(
niXDX +

niX − 1

nX − 1
dX + ini−1X wXRX +(

ini−1X

nX − 1
− niX − 1

(nX − 1)2

)
wXrX

))∥∥∥∥(
nkXDX + knk−1X wXRX +

nkX − 1

nX − 1
dX +(

knk−1X

nX − 1
− nkX − 1

(nX − 1)2

)
wXrX

)

=

∥∥∥∥k−1
i=0

(
niXDX +

niX − 1

nX − 1
dX +

ini−1X wXRX +

(
ini−1X

nX − 1
− niX − 1

(nX − 1)2

)
wXrX

)
(7.100)
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Proof of Lemma 7.56.

dXk

rXk
=
dX
rX
− wX
nX − 1

+ k
wX

nX(1− n−kX )

=
dX
rX

+
wX
nX

(
knkX
nkX − 1

− nX
nX − 1

)
=
dX
rX

+
wX
nX

(
k +

k

nkX − 1
− nX
nX − 1

)
<
dX
rX

+ k
wX
nX

+
wX
nX

k + 1− nkX
nkX − 1

≤ dX
rX

+ k
wX
nX

, (7.101)

where the last inequality is due to the fact that k ≥ 1 and nX ≥ 2.

Proof of Lemma 7.57. The proof is by induction on k. The lemma holds for
any k ≤ 2, because

n3X +
dX
rX

+ (k − 2)
wX
nX
≥ n3X − 2

wX
nX

> n3X − nX
> n2X (7.102)

and bXk < nkX . For the induction hypothesis, suppose bXj ≤ n3X + dX
rX

+ (j −
2)wXnX for all 0 ≤ j ≤ k for some k ≥ 2. We can take Xk+1 = X2Xk−1 due to
associativity of nested composition. Then, by Lemma 7.46, we have

bX2Xk−1 ≤ max

(
bXk−1+Xk−1 ,

nXk−1nX2 − 1 + dXk−1

1 + rXk−1

,

3

2
nX + max

(
wXk−1

nXk−1

,
dXk−1

rXk−1

))
. (7.103)

We need to show that none of these terms is greater than n3X + dX
rX

+(k−1)wXnX .
For the first term, we have

bXk−1+Xk−1 ≤ bXk

≤ n3X +
dX
rX

+ (k − 2)
wX
nX

≤ n3X +
dX
rX

+ (k − 1)
wX
nX

(7.104)
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by the induction hypothesis.
Because X 6= E we have sXk−1 > sXk−2 and we can therefore conclude that

rXk−1 > nXk−2 = nk−2X . Combining this with Lemma 7.56 gives

nXk−1nX2 − 1 + dXk−1

1 + rXk−1

≤
nk+1
X

nk−2X

+
dX
rX

+ (k − 1)
wX
nX

(7.105)

for the second term.
Finally, for the third term, we have

3

2
nX + max

(
wXk−1

nXk−1

,
dXk−1

rXk−1

)
≤ n3X +

dX
rX

+ (k − 1)
wX
nX

. (7.106)

by Lemma 7.56 and the fact that nX ≥ 2.

Proof of Lemma 7.58. The proof is by induction on k. In the base case, k = 2,
we apply Lemma 7.47:

b
σB2

1
= bσB1+σB1

= max

(
{b
σB1
}

∥∥∥∥∥{j + 1}σj=1 − 1 + ({0}‖{0}σ)

1 + ({0}‖{j}σj=1

)
= 1

=
(k − 1)σ + 1

σ + 1
. (7.107)

For ease of notation, let γ = σ + 1. By Lemma 7.54 we have

N
σBk1

=

∥∥∥∥k−1
i=0

γi{j + 1}σj=1 (7.108)

R
σBk1

=

∥∥∥∥k−1
i=0

(
γi{j + 1}σj=1 − 1

)
(7.109)

D
σBk2

=

∥∥∥∥k−1
i=0

(
iγi−1σ{j + 1}σj=1 − γi + 1

)
. (7.110)
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For the induction hypothesis, assume the lemma holds for some k. Then,
for b

σB
k+1
1

, we have

b
σB

k+1
1

= b
σBk1+σB

k
1

= max

({
b
σBk1

,
2γk−1 − 1 + (k − 2)γk−2σ − γk−1 + 1

γk−1

}∥∥∥∥
γk−1{j + 2}σ−1j=1 − 1 + (k − 1)γk−2σ{j + 1}σj=1 − γk−1 + 1

)
= max

(
(k − 1)σ + 1

σ + 1
,
kσ + 1

σ + 1

)
=
kσ + 1

σ + 1
. (7.111)
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Summary

Assorted Algorithms and Protocols
for Secure Computation

Secure multiparty computation allows multiple mutually distrusting parties
holding private inputs to securely compute a function on their joint inputs
without revealing any private information. This thesis covers a variety of topics
related to secure protocols with a particular focus on protocols involving secure
multiparty computation.

Chapter 2 presents a study of the multiplicative complexity of polynomial
evaluation and its generalization to the d-linear complexity. From these results,
lower bounds for the secure evaluation of symmetric functions using secure
arithmetic are derived. The results can also be applied directly to efficiently
implement secure functions with small domains.

Chapter 3 introduces novel protocols for securely sampling random permu-
tations and obliviously manipulating permutations or applying permutations to
input lists of secret-shared values. Such protocols are a useful building block for
more complex protocols for secure computation. One particular example appli-
cation combining techniques from Chapters 2 and 3, oblivious array indexing,
is presented in detail. The final section of Chapter 3 is dedicated to using the
secure random permutation protocol to deal and play out online card games
and illustrates how the protocols described in this chapter can be modified to
provide additional security properties, or optimized under certain assumptions.

Chapter 4 is dedicated to secure sorting, which is another application made
possible by the secure random permutation protocol. This chapter introduces
a multi-pivot variant of quicksort, which is particularly suited for practically
efficient application in secure computation when used in conjunction with the
aforementioned protocols for oblivious permutation.

Chapter 5 introduces novel secure protocols for the computation of the



Moore-Penrose pseudoinverse. In particular, the protocols are more practically
efficient than existing protocols. Furthermore, the chapter deals with the condi-
tions under which the pseudoinverse computed over a finite field, as is typical
for secure computation, corresponds to the pseudoinverse over the rational
numbers, which is required for most real-world applications.

Chapter 6 presents novel secure protocols for outsourced computation, in
which computational tasks can be outsourced to computation providers in such
a way that both data privacy and correctness of computation are provided. This
is achieved using a combination of secure multiparty computation techniques
and results in verifiable computation.

Chapter 7 introduces a novel framework for hash chain reversal. Hash chains
find practical application in authentication protocols for resource-constrained
devices. The generality of the framework is demonstrated by providing a uni-
form description of previously known results. Furthermore, using the frame-
work a long-standing open question regarding achievability of a lower bound is
answered in the affirmative.
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