12 research outputs found

    Dtn and non-dtn routing protocols for inter-cubesat communications: A comprehensive survey

    Get PDF
    CubeSats, which are limited by size and mass, have limited functionality. These miniaturised satellites suffer from a low power budget, short radio range, low transmission speeds, and limited data storage capacity. Regardless of these limitations, CubeSats have been deployed to carry out many research missions, such as gravity mapping and the tracking of forest fires. One method of increasing their functionality and reducing their limitations is to form CubeSat networks, or swarms, where many CubeSats work together to carry out a mission. Nevertheless, the network might have intermittent connectivity and, accordingly, data communication becomes challenging in such a disjointed network where there is no contemporaneous path between source and destination due to satellites’ mobility pattern and given the limitations of range. In this survey, various inter-satellite routing protocols that are Delay Tolerant (DTN) and Non Delay Tolerant (Non-DTN) are considered. DTN routing protocols are considered for the scenarios where the network is disjointed with no contemporaneous path between a source and a destination. We qualitatively compare all of the above routing protocols to highlight the positive and negative points under different network constraints. We conclude that the performance of routing protocols used in aerospace communications is highly dependent on the evolving topology of the network over time. Additionally, the Non-DTN routing protocols will work efficiently if the network is dense enough to establish reliable links between CubeSats. Emphasis is also given to network capacity in terms of how buffer, energy, bandwidth, and contact duration influence the performance of DTN routing protocols, where, for example, flooding-based DTN protocols can provide superior performance in terms of maximizing delivery ratio and minimizing a delivery delay. However, such protocols are not suitable for CubeSat networks, as they harvest the limited resources of these tiny satellites and they are contrasted with forwarding-based DTN routing protocols, which are resource-friendly and produce minimum overheads on the cost of degraded delivery probability. From the literature, we found that quota-based DTN routing protocols can provide the necessary balance between delivery delay and overhead costs in many CubeSat missions

    Timely Data Delivery in a Realistic Bus Network

    Get PDF
    Abstract—WiFi-enabled buses and stops may form the backbone of a metropolitan delay tolerant network, that exploits nearby communications, temporary storage at stops, and predictable bus mobility to deliver non-real time information. This paper studies the problem of how to route data from its source to its destination in order to maximize the delivery probability by a given deadline. We assume to know the bus schedule, but we take into account that randomness, due to road traffic conditions or passengers boarding and alighting, affects bus mobility. We propose a simple stochastic model for bus arrivals at stops, supported by a study of real-life traces collected in a large urban network. A succinct graph representation of this model allows us to devise an optimal (under our model) single-copy routing algorithm and then extend it to cases where several copies of the same data are permitted. Through an extensive simulation study, we compare the optimal routing algorithm with three other approaches: minimizing the expected traversal time over our graph, minimizing the number of hops a packet can travel, and a recently-proposed heuristic based on bus frequencies. Our optimal algorithm outperforms all of them, but most of the times it essentially reduces to minimizing the expected traversal time. For values of deadlines close to the expected delivery time, the multi-copy extension requires only 10 copies to reach almost the performance of the costly flooding approach. I

    Minimum Expected Delay-Based Routing Protocol (MEDR) for Delay Tolerant Mobile Sensor Networks

    Get PDF
    It is a challenging work to develop efficient routing protocols for Delay Tolerant Mobile Sensor Networks (DTMSNs), which have several unique characteristics such as sensor mobility, intermittent connectivity, energy limit, and delay tolerability. In this paper, we propose a new routing protocol called Minimum Expected Delay-based Routing (MEDR) tailored for DTMSNs. MEDR achieves a good routing performance by finding and using the connected paths formed dynamically by mobile sensors. In MEDR, each sensor maintains two important parameters: Minimum Expected Delay (MED) and its expiration time. According to MED, messages will be delivered to the sensor that has at least a connected path with their hosting nodes, and has the shortest expected delay to communication directly with the sink node. Because of the changing network topology, the path is fragile and volatile, so we use the expiration time of MED to indicate the valid time of the path, and avoid wrong transmissions. Simulation results show that the proposed MEDR achieves a higher message delivery ratio with lower transmission overhead and data delivery delay than other DTMSN routing approaches

    Learning Periodic Human Behaviour Models from Sparse Data for Crowdsourcing Aid Delivery in Developing Countries

    Full text link
    In many developing countries, half the population lives in rural locations, where access to essentials such as school materials, mosquito nets, and medical supplies is restricted. We propose an alternative method of distribution (to standard road delivery) in which the existing mobility habits of a local population are leveraged to deliver aid, which raises two technical challenges in the areas optimisation and learning. For optimisation, a standard Markov decision process applied to this problem is intractable, so we provide an exact formulation that takes advantage of the periodicities in human location behaviour. To learn such behaviour models from sparse data (i.e., cell tower observations), we develop a Bayesian model of human mobility. Using real cell tower data of the mobility behaviour of 50,000 individuals in Ivory Coast, we find that our model outperforms the state of the art approaches in mobility prediction by at least 25% (in held-out data likelihood). Furthermore, when incorporating mobility prediction with our MDP approach, we find a 81.3% reduction in total delivery time versus routine planning that minimises just the number of participants in the solution path.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    On exploiting priority relation graph for reliable multi-path communication in mobile social networks

    Full text link
    © 2018 Elsevier Inc. A mobile social network (MSN) consists of certain amount of mobile users with social characteristics, and it provides data delivery concerning social relationships between mobile users. In MSN, ordinary people contact each other more frequently if they have more social features in common. In this paper, we apply a new topology structure–priority relation graph (PRG) to evaluate the data delivery routing in MSN on the system-level. By using the natural order of nodes’ representation, the diameter, the regular degree and the multi-path technology, we determine the priority relation graph-based social feature routing (PRG-SFR) algorithm to find disjointed multi-paths in MSN. Here, the multi-path technology can be exploited for ensuring that, between each pair of sender and receiver, the important information can be delivered through a highly reliable path. Then we calculate the tolerant ability of ‘faults’ and estimate the availability of MSN on the theoretical level. Finally, we analyze the efficiency of PRG-SFR algorithm from the numerical standpoint in terms of fault tolerance, forwarding number, transmission time and delivery rate. Moreover, we make comparisons between PRG-SFR algorithm and certain state-of-the-art technologies

    A P2P Query Algorithm for Opportunistic Networks Utilizing betweenness Centrality Forwarding

    Get PDF

    Methodologies for the analysis of value from delay-tolerant inter-satellite networking

    Get PDF
    In a world that is becoming increasingly connected, both in the sense of people and devices, it is of no surprise that users of the data enabled by satellites are exploring the potential brought about from a more connected Earth orbit environment. Lower data latency, higher revisit rates and higher volumes of information are the order of the day, and inter-connectivity is one of the ways in which this could be achieved. Within this dissertation, three main topics are investigated and built upon. First, the process of routing data through intermittently connected delay-tolerant networks is examined and a new routing protocol introduced, called Spae. The consideration of downstream resource limitations forms the heart of this novel approach which is shown to provide improvements in data routing that closely match that of a theoretically optimal scheme. Next, the value of inter-satellite networking is derived in such a way that removes the difficult task of costing the enabling inter-satellite link technology. Instead, value is defined as the price one should be willing to pay for the technology while retaining a mission value greater than its non-networking counterpart. This is achieved through the use of multi-attribute utility theory, trade-space analysis and system modelling, and demonstrated in two case studies. Finally, the effects of uncertainty in the form of sub-system failure are considered. Inter-satellite networking is shown to increase a system's resilience to failure through introduction of additional, partially failed states, made possible by data relay. The lifetime value of a system is then captured using a semi-analytical approach exploiting Markov chains, validated with a numerical Monte Carlo simulation approach. It is evident that while inter-satellite networking may offer more value in general, it does not necessarily result in a decrease in the loss of utility over the lifetime.In a world that is becoming increasingly connected, both in the sense of people and devices, it is of no surprise that users of the data enabled by satellites are exploring the potential brought about from a more connected Earth orbit environment. Lower data latency, higher revisit rates and higher volumes of information are the order of the day, and inter-connectivity is one of the ways in which this could be achieved. Within this dissertation, three main topics are investigated and built upon. First, the process of routing data through intermittently connected delay-tolerant networks is examined and a new routing protocol introduced, called Spae. The consideration of downstream resource limitations forms the heart of this novel approach which is shown to provide improvements in data routing that closely match that of a theoretically optimal scheme. Next, the value of inter-satellite networking is derived in such a way that removes the difficult task of costing the enabling inter-satellite link technology. Instead, value is defined as the price one should be willing to pay for the technology while retaining a mission value greater than its non-networking counterpart. This is achieved through the use of multi-attribute utility theory, trade-space analysis and system modelling, and demonstrated in two case studies. Finally, the effects of uncertainty in the form of sub-system failure are considered. Inter-satellite networking is shown to increase a system's resilience to failure through introduction of additional, partially failed states, made possible by data relay. The lifetime value of a system is then captured using a semi-analytical approach exploiting Markov chains, validated with a numerical Monte Carlo simulation approach. It is evident that while inter-satellite networking may offer more value in general, it does not necessarily result in a decrease in the loss of utility over the lifetime

    A critical review of the routing protocols in opportunistic networks.

    Get PDF
    The goal of Opportunistic Networks (OppNets) is to enable message transmission in an infrastructure less environment where a reliable end-to-end connection between the hosts in not possible at all times. The role of OppNets is very crucial in today’s communication as it is still not possible to build a communication infrastructure in some geographical areas including mountains, oceans and other remote areas. Nodes participating in the message forwarding process in OppNets experience frequent disconnections. The employment of an appropriate routing protocol to achieve successful message delivery is one of the desirable requirements of OppNets. Routing challenges are very complex and evident in OppNets due to the dynamic nature and the topology of the intermittent networks. This adds more complexity in the choice of the suitable protocol to be employed in opportunistic scenarios, to enable message forwarding. With this in mind, the aim of this paper is to analyze a number of algorithms under each class of routing techniques that support message forwarding in OppNets and to compare those studied algorithms in terms of their performances, forwarding techniques, outcomes and success rates. An important outcome of this paper is the identifying of the optimum routing protocol under each class of routing

    Unterbrechungstolerante Fahrzeugkommunikation im öffentlichen Personennahverkehr

    Get PDF
    Communication systems play an important role in the efficient operation of public transport networks. Recently, traditional voice-centric real-time communication is complemented and often replaced by data-centric asynchronous machine-to-machine communication. Disruption tolerant networking in combination with license-exempt high bandwidth technologies have the potential to reduce infrastructure investments and operating costs for such applications, because a continuous end-to-end connectivity is no longer required. In this thesis the feasibility of such a system is investigated and confirmed. First, realistic use-cases are introduced and the requirements to the communication system are analyzed. Then the channel characteristics of several WLAN-based technologies are experimentally evaluated in real public transport scenarios. Since the results are promising, the next step is gaining a deeper understanding of the special mobility properties in public transport networks. Therefore, we analyze existing traces as well as our own newly acquired trace. Our trace features additional operator meta-data that is not available for existing traces, and we report on unexpected properties that have not been quantified before. Then the trace is combined with the experimentally obtained channel parameters in order to analyze the characteristics of inter-vehicle contacts. We present the statistical distribution of situation-specific contact events and the impact of radio range on contact capacity. Then results of all steps above are used to propose a routing scheme that is optimized for public transport networks. In the final simulation-based evaluation we show that this router outperforms previously proposed algorithms.Kommunikationssysteme leisten einen wichtigen Beitrag zum effizienten Betrieb des öffentlichen Personennahverkehrs. Seit einigen Jahren wird dabei der Sprechfunk zunehmend durch asynchronen M2M-Datenfunk ergänzt und in vielen Anwendungsgebieten sogar vollständig ersetzt. Die Kombination aus unterbrechungstoleranten Netzwerken und lizenzfreien Drahtlostechnologien birgt ein erhebliches Potential zur Reduzierung von Infrastrukturinvestitionen und Betriebskosten, da für diese Anwendungen eine dauerhafte Ende-zu-Ende Verbindung nicht mehr erforderlich ist. In dieser Arbeit wird die Machbarkeit eines solchen Systems untersucht und belegt. Zunächst werden dazu Anwendungsfälle vorgestellt und deren Anforderungen an das Kommunikationssystem analysiert. Dann werden die Kanalcharakteristika mehrerer WLAN-Technologien im realen ÖPNV-Umfeld experimentell ermittelt und bewertet. Auf Grundlage der erfolgversprechenden Ergebnisse werden im nächsten Schritt die besonderen Mobilitätseigenschaften von ÖPNV-Netzen untersucht. Zu diesen Zweck analysieren wir existierende und eigene, neu aufgezeichnete Bewegungsdaten von ÖPNV-Fahrzeugen. Unsere Daten enthalten dabei zusätzliche Metadaten der Verkehrsbetriebe, die zuvor nicht verfügbar waren, so dass wir unerwartete Effekte beschreiben und erstmals quantifizieren können. Anschließend werden die Bewegungsdaten mit den zuvor experimentell erfassten Kanaleigenschaften kombiniert, um so die Kommunikationskontakte zwischen den Fahrzeugen genauer zu betrachten. Wir stellen die statistische Verteilung der situationsabhängigen Kontaktereignisse vor, sowie den Einfluss der Funkreichweite auf die Kontaktkapazität. Dann werden die Ergebnisse aller vorhergehenden Schritte verwendet, um ein neues, optimiertes Routingverfahren für ÖPNV-Netze vorzuschlagen. In der simulationsbasierten Evaluation belegen wir, dass dieser Router die Leistung bisher bekannter Verfahren übertrifft

    Edge-Computing-Based Channel Allocation for Deadline-Driven IoT Networks

    Get PDF
    Multichannel communication is an important means to improve the reliability of low-power Internet-of-Things (IoT) networks. Typically, data transmissions in IoT networks are often required to be delivered before a given deadline, making deadline-driven channel allocation an essential task. The existing works on time-division multiple access often fail to establish channel schedules to meet the deadline requirement, as they often assume that transmissions can be successful within one transmission slot. Besides, the allocation and link estimation incur considerable overhead for the IoT nodes. In this article, we propose an edge-based channel allocation (ECA) for unreliable IoT networks. In ECA, we explicitly consider the impact of allocation sequences and employ a recurrent-neural-network-based channel estimation scheme. We utilize link quality and retransmission opportunities to maximize the packet delivery ratio before deadline. The allocation algorithms are executed on edge servers such that: 1) the channel allocation can be updated more frequently to deal with the wireless dynamics; 2) the allocation results can be obtained in real time; and 3) channel estimation can be more accurate. Extensive evaluation results show that ECA can significantly improve the reliability of deadline-driven IoT networks
    corecore