11 research outputs found

    Low-order continuous finite element spaces on hybrid non-conforming hexahedral-tetrahedral meshes

    Get PDF
    This article deals with solving partial differential equations with the finite element method on hybrid non-conforming hexahedral-tetrahedral meshes. By non-conforming, we mean that a quadrangular face of a hexahedron can be connected to two triangular faces of tetrahedra. We introduce a set of low-order continuous (C0) finite element spaces defined on these meshes. They are built from standard tri-linear and quadratic Lagrange finite elements with an extra set of constraints at non-conforming hexahedra-tetrahedra junctions to recover continuity. We consider both the continuity of the geometry and the continuity of the function basis as follows: the continuity of the geometry is achieved by using quadratic mappings for tetrahedra connected to tri-affine hexahedra and the continuity of interpolating functions is enforced in a similar manner by using quadratic Lagrange basis on tetrahedra with constraints at non-conforming junctions to match tri-linear hexahedra. The so-defined function spaces are validated numerically on simple Poisson and linear elasticity problems for which an analytical solution is known. We observe that using a hybrid mesh with the proposed function spaces results in an accuracy significantly better than when using linear tetrahedra and slightly worse than when solely using tri-linear hexahedra. As a consequence, the proposed function spaces may be a promising alternative for complex geometries that are out of reach of existing full hexahedral meshing methods

    Finding Hexahedrizations for Small Quadrangulations of the Sphere

    Full text link
    This paper tackles the challenging problem of constrained hexahedral meshing. An algorithm is introduced to build combinatorial hexahedral meshes whose boundary facets exactly match a given quadrangulation of the topological sphere. This algorithm is the first practical solution to the problem. It is able to compute small hexahedral meshes of quadrangulations for which the previously known best solutions could only be built by hand or contained thousands of hexahedra. These challenging quadrangulations include the boundaries of transition templates that are critical for the success of general hexahedral meshing algorithms. The algorithm proposed in this paper is dedicated to building combinatorial hexahedral meshes of small quadrangulations and ignores the geometrical problem. The key idea of the method is to exploit the equivalence between quad flips in the boundary and the insertion of hexahedra glued to this boundary. The tree of all sequences of flipping operations is explored, searching for a path that transforms the input quadrangulation Q into a new quadrangulation for which a hexahedral mesh is known. When a small hexahedral mesh exists, a sequence transforming Q into the boundary of a cube is found; otherwise, a set of pre-computed hexahedral meshes is used. A novel approach to deal with the large number of problem symmetries is proposed. Combined with an efficient backtracking search, it allows small shellable hexahedral meshes to be found for all even quadrangulations with up to 20 quadrangles. All 54,943 such quadrangulations were meshed using no more than 72 hexahedra. This algorithm is also used to find a construction to fill arbitrary domains, thereby proving that any ball-shaped domain bounded by n quadrangles can be meshed with no more than 78 n hexahedra. This very significantly lowers the previous upper bound of 5396 n.Comment: Accepted for SIGGRAPH 201

    HexaLab.net: An online viewer for hexahedral meshes

    Full text link
    © 2018 Elsevier Ltd We introduce HexaLab: a WebGL application for real time visualization, exploration and assessment of hexahedral meshes. HexaLab can be used by simply opening www.hexalab.net. Our visualization tool targets both users and scholars. Practitioners who employ hexmeshes for Finite Element Analysis, can readily check mesh quality and assess its usability for simulation. Researchers involved in mesh generation may use HexaLab to perform a detailed analysis of the mesh structure, isolating weak points and testing new solutions to improve on the state of the art and generate high quality images. To this end, we support a wide variety of visualization and volume inspection tools. Our system offers also immediate access to a repository containing all the publicly available meshes produced with the most recent techniques for hexmesh generation. We believe HexaLab, providing a common tool for visualizing, assessing and distributing results, will push forward the recent strive for replicability in our scientific community

    Loopy Cuts: Surface-Field Aware Block Decomposition for Hex-Meshing.

    Full text link
    We present a new fully automatic block-decomposition hexahedral meshing algorithm capable of producing high quality meshes that strictly preserve feature curve networks on the input surface and align with an input surface cross-field. We produce all-hex meshes on the vast majority of inputs, and introduce localized non-hex elements only when the surface feature network necessitates those. The input to our framework is a closed surface with a collection of geometric or user-demarcated feature curves and a feature-aligned surface cross-field. Its output is a compact set of blocks whose edges interpolate these features and are loosely aligned with this cross-field. We obtain this block decomposition by cutting the input model using a collection of simple cutting surfaces bounded by closed surface loops. The set of cutting loops spans the input feature curves, ensuring feature preservation, and is obtained using a field-space sampling process. The computed loops are uniformly distributed across the surface, cross orthogonally, and are loosely aligned with the cross-field directions, inducing the desired block decomposition. We validate our method by applying it to a large range of complex inputs and comparing our results to those produced by state-of-the-art alternatives. Contrary to prior approaches, our framework consistently produces high-quality field aligned meshes while strictly preserving geometric or user-specified surface features

    Solid NURBS Conforming Scaffolding for Isogeometric Analysis

    Get PDF
    This work introduces a scaffolding framework to compactly parametrise solid structures with conforming NURBS elements for isogeometric analysis. A novel formulation introduces a topological, geometrical and parametric subdivision of the space in a minimal plurality of conforming vectorial elements. These determine a multi-compartmental scaffolding for arbitrary branching patterns. A solid smoothing paradigm is devised for the conforming scaffolding achieving higher than positional geometrical and parametric continuity. Results are shown for synthetic shapes of varying complexity, for modular CAD geometries, for branching structures from tessellated meshes and for organic biological structures from imaging data. Representative simulations demonstrate the validity of the introduced scaffolding framework with scalable performance and groundbreaking applications for isogeometric analysis

    Practical Hex-Mesh optimization via edge-cone rectification

    No full text
    The usability of hexahedral meshes depends on the degree to which the shape of their elements deviates from a perfect cube; a single concave, or inverted element makes a mesh unusable. While a range of methods exist for discretizing 3D objects with an initial topologically suitable hex mesh, their output meshes frequently contain poorly shaped and even inverted elements, requiring a further quality optimization step. We introduce a novel framework for optimizing hex-mesh quality capable of generating inversion-free high-quality meshes from such poor initial inputs. We recast hex quality improvement as an optimization of the shape of overlapping cones, or unions, of tetrahedra surrounding every directed edge in the hex mesh, and show the two to be equivalent. We then formulate cone shape optimization as a sequence of convex quadratic optimization problems, where hex convexity is encoded via simple linear inequality constraints. As this solution space may be empty, we therefore present an alternate formulation which allows the solver to proceed even when constraints cannot be satisfied exactly. We iteratively improve mesh element quality by solving at each step a set of local, per-cone, convex constrained optimization problems, followed by a global energy minimization step which reconciles these local solutions. This latter method provides no theoretical guarantees on the solution but produces inversion-free, high quality meshes in practice. We demonstrate the robustness of our framework by optimizing numerous poor quality input meshes generated using a variety of initial meshing methods and producing high-quality inversion-free meshes in each case. We further validate our algorithm by comparing it against previous work, and demonstrate a significant improvement in both worst and average element quality
    corecore