1,856 research outputs found

    Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration

    Full text link
    Testing in Continuous Integration (CI) involves test case prioritization, selection, and execution at each cycle. Selecting the most promising test cases to detect bugs is hard if there are uncertainties on the impact of committed code changes or, if traceability links between code and tests are not available. This paper introduces Retecs, a new method for automatically learning test case selection and prioritization in CI with the goal to minimize the round-trip time between code commits and developer feedback on failed test cases. The Retecs method uses reinforcement learning to select and prioritize test cases according to their duration, previous last execution and failure history. In a constantly changing environment, where new test cases are created and obsolete test cases are deleted, the Retecs method learns to prioritize error-prone test cases higher under guidance of a reward function and by observing previous CI cycles. By applying Retecs on data extracted from three industrial case studies, we show for the first time that reinforcement learning enables fruitful automatic adaptive test case selection and prioritization in CI and regression testing.Comment: Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration. In Proceedings of 26th International Symposium on Software Testing and Analysis (ISSTA'17) (pp. 12--22). AC

    Prioritization of combinatorial test cases by incremental interaction coverage

    Get PDF
    Combinatorial testing is a well-recognized testing method, and has been widely applied in practice. To facilitate analysis, a common approach is to assume that all test cases in a combinatorial test suite have the same fault detection capability. However, when testing resources are limited, the order of executing the test cases is critical. To improve testing cost-effectiveness, prioritization of combinatorial test cases is employed. The most popular approach is based on interaction coverage, which prioritizes combinatorial test cases by repeatedly choosing an unexecuted test case that covers the largest number on uncovered parameter value combinations of a given strength (level of interaction among parameters). However, this approach suffers from some drawbacks. Based on previous observations that the majority of faults in practical systems can usually be triggered with parameter interactions of small strengths, we propose a new strategy of prioritizing combinatorial test cases by incrementally adjusting the strength values. Experimental results show that our method performs better than the random prioritization technique and the technique of prioritizing combinatorial test suites according to test case generation order, and has better performance than the interaction-coverage-based test prioritization technique in most cases

    Aggregate-strength interaction test suite prioritization

    Get PDF
    Combinatorial interaction testing is a widely used approach. In testing, it is often assumed that all combinatorial test cases have equal fault detection capability, however it has been shown that the execution order of an interaction test suite's test cases may be critical, especially when the testing resources are limited. To improve testing cost-effectiveness, test cases in the interaction test suite can be prioritized, and one of the best-known categories of prioritization approaches is based on “fixed-strength prioritization”, which prioritizes an interaction test suite by choosing new test cases which have the highest uncovered interaction coverage at a fixed strength (level of interaction among parameters). A drawback of these approaches, however, is that, when selecting each test case, they only consider a fixed strength, not multiple strengths. To overcome this, we propose a new “aggregate-strength prioritization”, to combine interaction coverage at different strengths. Experimental results show that in most cases our method performs better than the test-case-generation, reverse test-case-generation, and random prioritization techniques. The method also usually outperforms “fixed-strength prioritization”, while maintaining a similar time cost

    Test & Evaluation Best Practices for Machine Learning-Enabled Systems

    Full text link
    Machine learning (ML) - based software systems are rapidly gaining adoption across various domains, making it increasingly essential to ensure they perform as intended. This report presents best practices for the Test and Evaluation (T&E) of ML-enabled software systems across its lifecycle. We categorize the lifecycle of ML-enabled software systems into three stages: component, integration and deployment, and post-deployment. At the component level, the primary objective is to test and evaluate the ML model as a standalone component. Next, in the integration and deployment stage, the goal is to evaluate an integrated ML-enabled system consisting of both ML and non-ML components. Finally, once the ML-enabled software system is deployed and operationalized, the T&E objective is to ensure the system performs as intended. Maintenance activities for ML-enabled software systems span the lifecycle and involve maintaining various assets of ML-enabled software systems. Given its unique characteristics, the T&E of ML-enabled software systems is challenging. While significant research has been reported on T&E at the component level, limited work is reported on T&E in the remaining two stages. Furthermore, in many cases, there is a lack of systematic T&E strategies throughout the ML-enabled system's lifecycle. This leads practitioners to resort to ad-hoc T&E practices, which can undermine user confidence in the reliability of ML-enabled software systems. New systematic testing approaches, adequacy measurements, and metrics are required to address the T&E challenges across all stages of the ML-enabled system lifecycle

    Feedback driven adaptive combinatorial testing

    Get PDF
    The configuration spaces of modern software systems are too large to test exhaustively. Combinatorial interaction testing (CIT) approaches, such as covering arrays, systematically sample the configuration space and test only the selected configurations. The basic justification for CIT approaches is that they can cost-effectively exercise all system behaviors caused by the settings of t or fewer options. We conjecture, however, that in practice many such behaviors are not actually tested because of masking effects – failures that perturb execution so as to prevent some behaviors from being exercised. In this work we present a feedback-driven, adaptive, combinatorial testing approach aimed at detecting and working around masking effects. At each iteration we detect potential masking effects, heuristically isolate their likely causes, and then generate new covering arrays that allow previously masked combinations to be tested in the subsequent iteration. We empirically assess the effectiveness of the proposed approach on two large widely used open source software systems. Our results suggest that masking effects do exist and that our approach provides a promising and efficient way to work around them
    • …
    corecore