
Feedback Driven Adaptive Combinatorial Testing

Emine Dumlu and Cemal
Yilmaz

Faculty of Eng. and Nat. Sci.
Sabanci University

Istanbul, Turkey
{edumlu,cyilmaz}@sabanciuniv.edu

Myra B. Cohen
Dept. of Comp. Sci. & Eng.

University of Nebraska-Lincoln
Lincoln, NE 68558
myra@cse.unl.edu

Adam Porter
Dept. of Comp. Sci.

University of Maryland
College Park, MD 20742

aporter@cs.umd.edu

ABSTRACT
The configuration spaces of modern software systems are
too large to test exhaustively. Combinatorial interaction
testing (CIT) approaches, such as covering arrays, system-
atically sample the configuration space and test only the
selected configurations. The basic justification for CIT ap-
proaches is that they can cost-effectively exercise all system
behaviors caused by the settings of t or fewer options. We
conjecture, however, that in practice many such behaviors
are not actually tested because of masking effects – failures
that perturb execution so as to prevent some behaviors from
being exercised. In this work we present a feedback-driven,
adaptive, combinatorial testing approach aimed at detecting
and working around masking effects. At each iteration we
detect potential masking effects, heuristically isolate their
likely causes, and then generate new covering arrays that
allow previously masked combinations to be tested in the
subsequent iteration. We empirically assess the effective-
ness of the proposed approach on two large widely used open
source software systems. Our results suggest that masking
effects do exist and that our approach provides a promising
and efficient way to work around them.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Combinatorial testing, adaptive testing, covering arrays, soft-
ware quality assurance

1. INTRODUCTION
Software customization, through the modification of run-

time or compile-time preferences, allows users to make con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/07 ...$10.00.

trolled variations to how their software behaves. Customiz-
able systems such as web servers (e.g. Apache), databases
(e.g. MySQL), application servers (e.g. Tomcat) or office
applications (e.g. MS Word) which have dozens or even hun-
dreds of customizable options can have an enormous number
of configurations.

While validating the correctness of the system across its
entire configuration space is desirable, exhaustive testing of
all configurations is generally infeasible. One solution ap-
proach, called combinatorial interaction testing (CIT), sys-
tematically samples the configuration space and tests only
the selected configurations [2, 7, 9, 11,18].

CIT approaches generally work by first defining a model
of the system’s configuration space – the set of valid ways
it can be configured. Typically, this model includes a set
of configuration options, each of which can take on a small
number of option settings. Given this model, CIT methods
next compute a small set of concrete configurations, a t-way
covering array, in which each possible combination of option
settings for every combination of t options appears at least
once [7]. Finally, the system is tested by running its test
suite on each configuration in the covering array.

Covering array approaches generally assume that there are
no unknown control dependencies among the configuration
options, option setting combinations that effectively cancel
other options setting combinations. Known control depen-
dencies are worked around by specifying constraints [7, 8]
or by defining a set of default test cases in addition to the
covering array [7]. Given these assumptions, and assuming
the existence of a well constructed test suite, the basic jus-
tification for covering arrays is that they can cost-effectively
exercise all system behaviors caused by the settings of t or
fewer options.

We hypothesize however that in practice many such be-
haviors are not actually tested due to masking effects. That
is, we believe that some test failures can perturb program
execution in ways that prevent other behaviors from being
tested. Moreover, we believe that masking effects are not
accounted for with current test processes. As a result, devel-
opers may develop a false confidence in their test processes,
believing them to have tested certain option setting combi-
nations, when they in fact have not. One simple example of
a masking effect would be an error that crashes a program
early in the program’s execution. The crash then prevents
some configuration dependent behaviors, that would nor-
mally occur later in the program’s execution, from being
exercised. Unless the combinations controlling those behav-
iors are tested in a different configuration, or unless the error

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’11, July 17–21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00

243

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11742562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is fixed and the faulty configuration is re-tested, we cannot
conclude that those configuration dependent behaviors have
been tested.

Figure 1a (we discuss Figure 1b in Section 3) illustrates
masking effects in a hypothetical covering array-based test-
ing scenario. In this scenario, we have a 3-way covering
array created for a configuration model with 4 configuration
options (o1, o2, o3, and o4). Each option takes a boolean
value (0 or 1) and there are no inter-option constraints. The
configurations are tested using three tests (t1, t2, and t3).
Literals P and F indicate a test success or a test failure,
respectively. Consider test case t1. This test case failed
whenever o1 = 1. As a result, it is possible that the 3-way
option setting combinations for options o2, o3, and o4 that
appear with o1 = 1 in the 4 failing runs were not actually
tested. In fact, as these 4 combinations appear nowhere
else in the covering array, it’s possible that they were never
tested at all. In this case, a solution could be to set o1 = 0 in
each of the failing configurations and to rerun the test case.
For more complex examples, where the failure is caused by
more than one option setting combination and where there
are multiple failures, a more complicated response may be
necessary.

In this work we present a feedback driven adaptive com-
binatorial testing approach to prevent the harmful conse-
quences of masking effects. At each iteration, we detect po-
tential masking effects, isolate their likely causes, and then
schedule the set of t-way option combinations that are be-
ing masked for testing in the subsequent iteration. The pro-
cess iterates until for all tests each and every t-way option
setting combination is present in at least one configuration
in which the test passed or failed with a non-option-related
cause, or the combination is marked as failure inducing. Our
empirical evaluation, conducted on two large and popular
open source software systems, suggests that the proposed ap-
proach is better than other approaches in preventing mask-
ing effects.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly presents some background information and
discusses the related work; Section 3 describes the proposed
approach; Section 4 describes the empirical studies; and Sec-
tion 5 presents concluding remarks.

2. BACKGROUND AND RELATED WORK
Covering array based sampling for software testing, is a

specification-based technique that was originally proposed
as a way to ensure even coverage of combinations of input
parameters to programs [2,5,7,9]. In more recent work cov-
ering arrays have been used to model configurations that
should be selected for testing [10,15,18], where the covering
array defines a test schedule and each configuration is tested
with an entire suite of test cases. Some other domains for
which covering arrays have been used in testing is to test
graphical user interfaces [19] and in model based testing [4].

A covering array [7] is an array of size N × k where N de-
fines the number of configurations to be tested and k is the
number of configuration options that can be manipulated.
Each of the configuration options will have some number
of settings (often denoted as v or v1 when different config-
uration options have differing numbers of settings). Each
configuration (or row of the array) is a set of valid settings,
one for each configuration option, of the software under test.
Within the set of N configurations, each t-way combination

of option settings will be found at least once, where t , the
test strength, is usually much smaller than k, with t=2 as
the most common strength. Empirical research has shown
that t < 6 can potentially find a large proportion of inter-
action faults [11]. An interaction fault is one that can only
be manifested when a specific set of t settings is used in
the same configuration. Further empirical results show that
covering arrays are effective in practice [10,15,16,18].

The core of a covering array is the model which defines it,
that includes k, each of the vi’s, and t as well as any depen-
dencies between option settings. Configuration options that
are modeled may be controlled at both run-time or compile-
time [18]. While both important in the model, failures may
impact the results of testing in different ways. For instance
if a compile-time option fails to build, we cannot run even a
single test, whereas if a run-time option fails on one test, it
may succeed on another.

A recent focus for research on covering arrays has been the
study of the impact of inter-option constraints, dependencies
between specific settings [3, 6, 8]. For instance, the presence
of setting on for one configuration option, may force another
configuration option to take a setting of off. This changes
how many valid combinations of t-way settings there are,
and may impact the number of configurations needed for
testing. Constraints may also be responsible for masking
effects as we see in our experiments. We use the notion of
constraints in this work to encode masking-combinations as
to be avoided.

The work in this paper uses classification trees to char-
acterize faults (see the next section) based on the pass/fail
results of the covering array test schedules. This follows
along the lines of a previous work of us in [18]. In addition,
in [10] we developed an incremental method for building cov-
ering arrays which provides a way to reuse results between
test schedules, building higher strength covering arrays from
lower strength ones that can be used when there is little a
priori knowledge of testing time and resources. In both of
these papers classification is important for fault character-
ization. Our use of classification in this paper is different.
We use it to identify the masking effects so that they can
be prevented; e.g. it is not the end result but part of the
process.

In specification based testing, there has been considerable
work on modeling partitions of a system, through techniques
such as the category partition method or the Test Specifi-
cation Language, TSL [14]. In category partition, one first
identifies the parameters and their choices. Once this has
been achieved then several types of constraints are added.
Some choices may be dependent on others which become
dependency constraints, while others choices must be tested
alone and are flagged as error or single and are never com-
bined with other option settings. This is similar to one part
of our masking problem, yet the constraints in category par-
tition are manually discovered.

In prior work on using covering arrays for testing configu-
rations [15,18], the system under test has one configuration
model and each configuration runs the same set of test cases.
The work in this paper differs in that it creates a configu-
ration model for each test case and schedules potentially
different sets of test cases to be executed in each configura-
tion. We do not know of other work that uses this notion of
a per-test configuration model.

244

o1 o2 o3 o4 t1 t2 t3

1 1 1 1 F F P
1 1 0 0 F F P
1 0 1 0 F F P
1 0 0 1 F F P
0 1 1 0 P F F
0 1 0 1 P P F
0 0 1 1 P P F
0 0 0 0 P P F

(a)

o1

1

F P

0

o1=1→F (score: 1)

t1

o1

1

F P

0

o1=1→F (score:0.89)

t2

o1

1

P F

0

o1=0→F (score: 1)

t3

(b)

Figure 1: Classification models created for an example scenario.

test-specific constraint

o1!=1

seed

o1 o2 o3 o4

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

(a)

test-specific constraint

o1!=0

seed

o1 o2 o3 o4

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

(b)

o1 o2 o3 o4 tests

0 1 1 1 {t1, t2}
0 1 0 0 {t1, t2}
0 0 1 0 {t1, t2}
0 0 0 1 {t1, t2}
1 1 1 0 {t3}
1 1 0 1 {t3}
1 0 1 1 {t3}
1 0 0 0 {t3}

(c)

Figure 2: (a) Configuration model for t1 and t2 (happen to share the same model). (b) Configuration model
for t3. (c) Covering array computed.

3. FEEDBACK DRIVEN ADAPTIVE COM-
BINATORIAL TESTING

In this paper, we create and evaluate tools and techniques
that attempt to ensure that each test case has a fair chance
to test all required option combinations. In short, we want
to prevent masking effects from fooling us into thinking that
we have tested option setting combinations when we have in
fact not.

To do this we first modify the definition of t-way inter-
action coverage as follows: For a given value of t, the con-
figuration space is covered, iff, for all test cases, and for all
valid s ≤ t-way combinations of option settings, the option
setting combination was present in at least one configura-
tion in which 1) the test case passed, 2) the option setting
combination is designated as a failure cause, or 3) the option
setting combination was present in at least one configuration
in which the test case failed with a non-option-related cause.

The rationale for this criterion is as follows; when a test
case runs successfully in a given configuration, all s ≤ t-way
option setting combinations present in that configuration
have been tested with that test case. When we determine
that some specific option setting combination is causing a
test case to fail, then we have tested that combination, but
may not have tested any other combinations present in the
configuration. When a test case fails, but we cannot deter-
mine an option-related cause, then we have not detected a
masking effect and must assume that all option setting com-
binations present in the configuration have been tested with
that test case.

We refer to the new coverage criterion as tested t-way in-
teraction coverage. A masked t-way combination-test case
pair is then defined as a valid t-way combination-test case

pair that is not considered to be covered by the tested t-way
coverage criterion.

Using this definition of coverage we then implement an au-
tomated process that takes a system, its configuration space
model, and a set of test cases as input and iteratively at-
tempts to achieve complete coverage under our new crite-
rion.

3.1 Process Overview
At a high level our Feedback-Driven Adaptive Combina-

torial Testing process operates as follows:

1. Generate a covering set of configurations meeting the
t-way interaction coverage criterion.

2. Execute each test case on each configuration in the
covering set.

3. Analyze the test case results to identify possible mask-
ing effects.

4. Compute Coverage to determine if the tested t-way
coverage has been achieved. If not, continue to the
next step. Else, finish the process.

5. Regenerate new covering sets to test previously masked
t-way combination-test case pairs. Return to step 2.

We now present a general summary and rationale for each
step in the process. Following this section we present an
equivalent, but more detailed algorithmic view of the pro-
cess.
Step 1: Generating covering sets. At each iteration of
our process, we compute a set of t-way combinations, one
for each test, to be covered in the current iteration. To re-
duce testing costs, we would like to cover these combinations

245

using as few concrete configurations and test runs as possi-
ble. Consequently, we compute a traditional t-way covering
array for this purpose. One problem with this approach
however is that, in practice, each test case can have its own
test-specific constraints. For example, each test case may
be designed to run in some configurations, but not in oth-
ers. Thus, constructing a single covering array across all test
cases might lead to larger covering arrays than is strictly nec-
essary for many test cases. For instance, in a previous work
with MySQL (a widely-used open source database manage-
ment system), we observed that roughly 250 of about 1000
test cases can only run in certain configurations. In essence,
large portions of the configuration space simply don’t exist
for these test cases.

We were unable to find any existing research or tools deal-
ing with unified covering array generation for multiple test
cases1. We, therefore, developed a novel approach to han-
dle test-specific constraints in the computation of covering
arrays. Our approach uses covering array construction as a
computational primitive. In this case, we use a tool, called
ACTS [1], but other tools may work just as well.

ACTS takes as input a configuration model. The model
includes configuration options, their settings, globally en-
forced inter-option constraints, and a seed. The seed is a
set of configurations fed to the tool. Given a strength of
the array (i.e., t), ACTS generates a traditional t-way cov-
ering array around the seed. Conceptually, ACTS treats all
the valid t-way combinations included in the seed as already
covered and generates new configurations to cover the rest
of the combinations.

To this we add a separate configuration submodel for each
test. This submodel, in addition to inheriting all inter-
option constraints that must be enforced globally, includes
the test-specific constraints. Furthermore, all t-way combi-
nations of option settings considered to be already covered
by the test are expressed as a seed in the model (i.e., all the
currently covered interactions). As an example, Figure 2a-b
depict the configuration models created for the tests in our
running example. We are only showing the test constraints
and seeds (the base model can be extracted from Figure 1).

For each test, we feed its configuration model to ACTS.
The output is a covering array containing the yet uncovered
combinations. We then merge the covering arrays generated
for the tests and apply a greedy reduction algorithm to fur-
ther reduce the number of new configurations to be tested
as well as the number of test runs to be performed in the
subsequent iteration (Section 3.2).

The output of this process is then a set of final configura-
tions together with the list of the test cases to be executed in
each configuration. Figure 2c illustrates a 3-way test-aware
covering array computed for the configuration models given
in Figure 2a-b.
Step 2: Execute test cases. At each iteration, we execute
the tests in the covering set and record their pass/fail result.
The test results are then organized in a data table which is
structurally similar to the one given in Figure 1a.

One optional step, that we include in this work, is that
we treat the process of building the system as a special test,
called a build test. This test must, of course, run before
other traditional runtime tests unless a properly-configured,

1Existing work tends to view each configuration as input to
a single test case, or uses a single covering array across all
test cases.

compiled system is available. For the build test, a passing
result means that the system built without any build errors.
Fail means that some build error occurred. As with any
other regular test, we seek to achieve a complete coverage
for the build test.
Step 3: Analyze test case results. Next we analyze the
test results to identify the option setting combinations that
are causing failures and thus potentially creating masking ef-
fects. Since we cannot do this in a fully automated fashion,
we instead use a machine learning approach, called classifi-
cation trees, to automatically identify likely failure causes.

Classification trees use a recursive partitioning approach
to build a model that predicts class membership (i.e., pass-
ing or failing a test case) in terms of a set of measurable
features (i.e., configuration option settings) [12]. For exam-
ple, we feed the test result data from Figure 1a to a classifi-
cation tree algorithm, it might generate three classification
models, one for each test case, such as those shown in Fig-
ure 1b. Non-leaf nodes represent options, edges represent
option settings, and leaf nodes indicate expected test re-
sults. The simple classification model obtained for t1, for
instance, tells us that when test case t1 runs on a configura-
tion in which o1 = 1, the test case can be expected to fail.
Otherwise, the test case can be expected to pass.

These simple classification models have only one single leaf
node indicating test case failure, but there could be more
than one such leaf node in general. In these cases, we can
extract all likely failure inducing interactions, by examining
each leaf node that indicates a failure. For each such leaf
node, we identify the path from the tree root to the leaf and
output a logical rule corresponding to the conjunction of
option settings found on the path. This rule indicates a set
of option setting combinations that when present resulted
in the test case failing. Once we have processed all such
paths, the set of likely failure inducing option combinations
is simply the disjunction of the path rules.

While producing the classification trees, we take several
steps to prevent overfitting the data. That is, we try to make
sure our classification models are not treating random errors
or noise as failure causes. One standard technique we use
is to create the classification models using n-fold stratified
cross-validation [12]. This approach essentially builds multi-
ple models from different subsets of the input data, and uses
the results to identify candidate models that are not overly
influenced by a few individual data points.

Finally, for each likely failure inducing interaction we as-
sign a score, called the F1-measure, indicating the success
of the rule in predicting failures in the test data. The F1-
measure is a well-known metric, which is computed by com-
bining two standard metrics: precision (P) and recall (R).
For a given rule U , F1-measure is defined as follows:

recall =
of correctly predicted failures by U

total# of failures

precision =
of correctly predicted failures by U

total# of predicted failures by U

F1−measure =
2PR

P +R

246

The F1-measure ranges between 0 and 1, inclusive. Fig-
ure 1b shows the F1-measures for the rules obtained in our
running example. For example, the recall and precision
value of the rule obtained for test case t2 is 4/5 = 0.8 (the
prediction for the fifth configuration is a false negative) and
4/4 = 1, respectively. Thus, the F1-measure of the rule is
0.89. The higher the F1-measure, the better the rule is in
predicting failures.

For this paper, an interaction is considered likely to be
failure inducing, iff, the corresponding rule score is greater
than a predetermined value, called the cutoff. Any failures
that are not explained by a significant failure cause are con-
sidered to be non-option-related.

As an example, consider test case t2 in Figure 1. The
first four failures for this test case occurred when o1 = 1.
Assuming that 0.89 is above the F1-measure cutoff, then
those failures are considered to be option-related (i.e., o1 = 1
is a likely failure inducing cause). The fifth failure, however,
cannot be attributed to a significant rule, so that failure is
considered to be non-option-related.
Step 4: Compute coverage. In this step we compute the
coverage to determine if we should invoke another iteration
of our process. We remove from further consideration all test
cases that have covered all their interactions. If complete
coverage has been achieved for each and every test under
our coverage criterion, the process exits. Otherwise, we now
generate a new covering set and return to step 2.
Step 5: Regenerating covering sets. The output from
the previous step gives us several pieces of information for
each test case. First, we know each interaction that was cov-
ered because the test case passed. These are the interactions
present in at least one configuration on which the test case
passed. Second, we know each interaction that was covered
even though the test case failed. These comprise the interac-
tions present in at least one configuration on which the test
case failed and the failure was non-option-related, and those
interactions that are likely to be failure inducing. Third,
we know each interaction that was potentially masked and
therefore remains uncovered.

Using this information, our goal is to generate an updated
covering set containing new configurations that cover any
currently uncovered interactions. Before doing this we take
several preparatory steps. First we identify all newly covered
interactions for each test case and add them as seeds to the
test-specific configuration models. Next, we take the com-
plement of each newly identified failure-inducing interaction
and add them as constraints to each test-specific configura-
tion model. In addition, the test-specific models for runtime
tests incorporate any failure inducing interactions stemming
from build test failures. Both of these last two steps help
the process avoid known failure causes in subsequent test
iterations.

Next we examine each test-specific configuration model
to determine whether they contain unsatisfiable constraints.
Such situations can arise when a test case fails in multiple
ways. For example, suppose a given test case fails one way
when a particular binary option is true, and fails differently
when the same option is false. In this case, our process gen-
erates contradictory constraints that no configuration can
satisfy. We attempt to accommodate the conflicts in an it-
erative way by handling only a non-conflicting subset of the
constraints at each iteration. We defer the remaining con-
straints to be handled in subsequent iterations.

Algorithm 1 – adaptiveCA

Input t: Covering array strength
Input cfgMdl : Config. model

1: fMatrix ← empty
2: knownCauses ← empty
3: currentCA← computeCA(t, cfgModel)
4: repeat
5: executeCA(currentCA, fMatrix)
6: currentCA← prepareNextRound(t, cfgMdl ,

fMatrix , knownCauses)
7: until currentCA is empty

Algorithm 2 – prepareNextRound

Input t: Covering array strength
Input cfgMdl : Config. model
Input fMatrix : Fault matrix
Input knownCauses: Likely failure inducing option combi-
nations

1: nextCA← empty
2: for each test τ do
3: knownCausesτ ← identifyCauses(fMatrix τ ,

knownCausesτ)
4: cfgMdlτ ← updateCfgMdl(fMatrix τ , knownCausesτ)
5: CAτ ← computeCA(t, cfgMdlτ)
6: CA′

τ ← reduceCA(CAτ)
7: nextCA← nextCA ∪ CA′

τ

8: end for
9: return nextCA

As a further heuristic we also developed and experimented
with a rule prioritization strategy. In preliminary work we
had observed from manual analysis that longer rules were
much more likely to give incorrect labelings than shorter
rules. Consequently, when using this heuristic we look at all
rules produced for a test case in the current iteration and
compute the length of the shortest rule. We then proceed
with only the rules whose length is the same as the shortest
rule. The rest of the rules for the test case are deferred to
subsequent iterations.

3.2 Algorithms
Given the previous discussion our basic algorithm should

now be easy to follow. Algorithm 1 describes the main
adaptiveCA routine. adaptiveCA loops until no test case
is scheduled for testing, making a call to prepareNextRound
once per iteration.

These routines define and use three main data structures:
fMatrix , knownCauses, and cfgMdl . fMatrix is a fault ma-
trix that keeps track of all configurations tested, the test
cases executed on them, and the test results obtained.
knownCauses keeps track of all currently known likely fail-
ure inducing interactions. cfgMdl is a set of configuration
models, storing options, their settings, constraints among
them, and a seed. When these variables are subscripted
with a test case τ , they refer to the test-specific informa-
tion in the respective data structures. All changes made on
the subscripted variables are assumed to be reflected in the
original variables.

Looking now at the main adaptiveCA routine, we see that
it takes an initial configuration model cfgMdl , and a strength
t, as input. It first initializes the fMatrix and knownCauses

247

data structures. At line 3, it creates an initial t-way cov-
ering array and enters the testing loop. At line 5, all se-
lected configuration-test case pairs are tested and the re-
sults are returned. These test results are then passed to
prepareNextRound , where they are analyzed and the cover-
ing array to be tested in the next iteration is computed (line
6). The loop terminates when the newly computed covering
array is empty (line 7), indicating that full coverage under
our coverage criterion has been obtained.

Algorithm 2 depicts prepareNextRound , which works as
follows. For each test case, we first identify the likely failure
inducing interactions by using a classification tree algorithm
(line 3). To compute the classification model, we create ap-
propriate data files containing all the configurations tested
so far, in which the test case either passed or failed with
non-option-related cause. The training data is fed to the
classification algorithm. Likely failure inducing options are
extracted from the resulting classification model and then
scored (Section 3.1). Among the likely failure inducing com-
binations, only the ones that have a score greater than a
given cutoff value are selected. The rest are ignored. As
mentioned previously, strategies to reduce overfitting and to
handle conflicting constraints (Section 3.1) are also imple-
mented at this step.

Next, we update the test-specific configuration model (line
4). To do this we first populate the list of the constraints
for the test case with the newly identified test-specific con-
straints. Note that the list of constraints included in the con-
figuration model of a test case grows monotonically. That
is, once a constraint is included in a configuration model, it
stays there during the life time of the process. This prevents
the process from examining previously identified failing sub-
spaces. We then compute a seed for the configuration model
of the test case, indicating the t-way combinations that are
considered to be already covered. The seed contains all the
configurations tested so far, in which the test case passed or
failed with non-option-related cause.

The configuration model of the test case is then fed to
the ACTS tool (line 5). The output is a set of configu-
rations in which the test case needs to be executed in the
next iteration. Since the seeded configurations may include
configurations that are redundant in terms of coverage, we
use a greedy algorithm to identify and eliminate redundant
configurations at this step (line 6).

Finally, we merge together the covering arrays computed
for each test case (line 7) and then return it (line 9). The
result is a set of configuration-test case pairs to be tested in
the subsequent iteration.

4. EXPERIMENTS
To evaluate our approach we conducted a set of empirical

studies. The subject systems for these studies are MySQL
(v5.1) and GCC (v4.5.2). MySQL is a database manage-
ment system; GCC is the GNU’s compiler collection. Both
systems are publicly-available.

4.1 Experimental Setup
For these experiments, we used the ACTS tool [1] to con-

struct covering arrays. We used Weka’s J48 algorithm to
build our classification trees, setting the confidence factor
to 0.25 and the minimum allowable number of objects in
each class to 2 [17]. The classification models were trained

Table 1: The configuration model of MySQL used
in the study. ct and rt stand for compile-time and
runtime, respectively.

name settings type

asm {NULL,enable-assembler} ct
linfile {NULL,enable-local-infile} ct
tsc {NULL,disable-thread-safe-client} ct
bt {NULL,with-big-tables} ct
ec {NULL,with-extra-charsets=complex,

with-extra-charsets=all} ct
innodb {with-innodb,without-innodb} ct
libedit {with-libedit,without-libedit} ct
ndbcluster {NULL,with-ndbcluster} ct
pic {NULL, with-pic} ct
readline {with-readline,without-readline} ct
ssl {NULL,with-yassl} ct
zdir {NULL,with-zlib-dir=bundled} ct
ase {NULL,with-archive-storage-engine} ct
bse {NULL,with-blackhole-storage-engine} ct
fse {NULL,with-federated-storage-engine} ct
trans.-iso. {NULL,uncommitted, serializable,

committed, repeatable} rt
flush {NULL, 0, 1, 2} rt
sql mode {strict all tables, traditional, ansi} rt
lp {NULL,large-pages} rt
eng-pdown {on, off} rt
rbt {NULL,big-tables} rt
log-format {row, statement, mixed} rt
lb {skip-log-bin,log-bin} rt

and evaluated with 5-fold cross validation and pruning. The
cutoff value used for identifying likely failure-inducing inter-
actions was set to 0.8. We used the prioritization heuristic
that favors shorter rules over longer rules and we resolved
conflicting constraints iteratively (see Section 3). All the
experiments were performed on a dual Intel Xeon processor
machine with 2GB of RAM, running the CentOS 5.2 oper-
ating system. We describe specific metrics and our subjects
in their respective study sections.

4.2 Study 1: MySQL Experiments
MySQL is an open-source, multi-threaded, SQL database

management system (DBMS) [13]. Initially released 12 years
ago, its various components contain 2+ million lines of code.
It has been downloaded 10+ million times and is available for
use on over 20 platforms. MySQL has a significant number
of test cases (including both installation tests and generic
SQL tests). Furthermore, MySQL enjoys a large developer
community that actively updates and tests the system.

4.2.1 Study Setup
We created an initial configuration model for MySQL con-

taining 23 options (15 compile-time and 8 runtime). The
number of settings for each configuration option varied. We
had 18 options with 2 different settings, 3 options with 3, 1
option with 4, and another option with 5 settings (Table 1).
The configuration model initially had no constraints.

For our test suite, we used a set of 738 test cases that came
with the MySQL source distribution. Each test case has its
own oracle which determines whether each test case exe-
cution “passed”, “failed”, or was “skipped”. Successful test
cases simply emit pass. Failed test cases emit fail and addi-
tionally include an error code. A test case returns skipped
when it determines that it cannot run on a given configura-
tion. For example, a number of test cases were designed
to run only if MySQL is configured with an NDB clus-

248

Table 2: Proposed approach with t = 2.

cfgs test lines branches unique unique testing analysis total
iteration tested runs covered covered errs test-errs t-masked time time time

1 20 5896 161556 82316 96 1052 525149 266 1 267
2 31 12529 223074 108606 117 1380 278228 818 6 824
3 34 14740 223164 108679 117 1381 242368 1005 10 1015
4 71 17588 223455 108890 118 1388 186919 1604 26 1630
5 121 18599 223621 108967 118 1388 180064 2003 44 2047
6 159 19395 223656 108993 118 1388 179174 2382 74 2456
7 167 19585 223663 108995 118 1388 179166 2455 115 2570
8 178 19753 223669 109004 118 1388 178798 2634 147 2781
9 181 19765 223669 109004 118 1388 178794 2656 247 2903
10 182 19769 223669 109004 118 1388 178794 2665 300 2965

ter support, an in-memory clustered storage engine (i.e.,
ndbcluster=with-ndbcluster). If the current configuration
does not support NDB, these test cases will exit immediately
returning the skipped result. Classification models built for
these test cases, therefore, involve ternary rather than bi-
nary classification.

4.2.2 Evaluation Framework
To precisely evaluate the proposed approach, we would

need to know the number of valid interactions that never
had a chance to get tested with the test cases (i.e., the ones
that are masked). We would then need to analyze how much
the proposed approach improved on that. However, this
would require us to manually identify all the failure inducing
interactions and to quantify their masking effects for tens of
thousands of failures occurring on hundreds of configurations
tested in the experiments. Since this was not feasible, we
opted to evaluate the approach only on those failures for
which we had a definitive cause and knew exactly what the
masking effects were. We, therefore, evaluate the approach
on the basis of masking effects caused by build failures and
test skips.

We have defined a metric, called t-masked. This metric
counts the number of unique t-way combination-test pairs
that are untested because of build failures or test skips (i.e.,
the number of t-way combination-test case pairs that are
only observed in configurations that failed to build or in
configurations that were skipped). If a configuration fails
to build, then we know that none of the test cases get to
test the valid t-way interactions present in the configuration.
Similarly, if a test case skips a configuration, then none of
the valid t-way combinations present in the configuration
will be tested. The lower the value of t-masked, the better
the approach is at removing masking effects. While build
failures are real failures, we do not consider test skips to
be. To the degree that developers precisely know all the
reasons for which each test can skip, they can deal with
the issue by introducing test constraints into the covering
array construction. Therefore, t-masked will overstate the
practical value of our approach. Nevertheless, the effect of
not accounting for such test skips is that interactions do not
get tested, which is exactly the problem our technique aims
to address, and, therefore, the experiment is a useful test of
our approach.

In addition to measuring t-masked, we also count the num-
ber of source lines and branches covered, as well as the num-
ber of unique errors and unique test-error pairs observed. To
identify the unique errors and test-error pairs, we analyze
the error codes emitted when test cases fail. These metrics

give us another way to measure the impact of masking on
our testing process.

4.2.3 Data and Analysis
We first ran the process with t = 2. Table 2 presents

the results. In this table, columns 1-3 indicate the iteration
number, number of configurations tested, and number of
test runs performed, respectively. The next two columns
present the number of lines and branches covered in the
application. The next three columns present the number of
unique errors, the unique test-error pairs, and the value of
t-masked. The last three columns depict the testing time
(i.e., the time spent to build the program and run the test
cases), analysis time (i.e., the time spent to identify likely
failure inducing options and compute test schedules), and
the total time, respectively. All the time measurements are
given in minutes. Furthermore, all of the numbers reported
for an iteration reflect the measurements obtained over all
the iterations up to and including the current one.

In this experiment it took 10 iterations to achieve full cov-
erage. The first two iterations addressed two build failures.
The test skips were addressed in the remaining iterations.
After the first iteration, i.e., after performing traditional 2-
way testing, we observed that 55% (525, 149 out of 961, 795)
of all valid 2-way combination-test case pairs were actually
masked because of build failures or test skips. Among these
failures, the process correctly identified a deprecated option
setting, ssl=with-yassl, that caused 11 out of 20 configu-
rations to fail to build. The logical negation of the combina-
tion (i.e., ssl!=with-yassl) was then automatically added
to the configuration model and a set of 11 new configurations
with ssl=NULL were computed. Testing these configurations
in the second iteration, greatly reduced the number of pairs
masked by 47%.

After the second iteration, a failure inducing dependency
between libedit=with-libedit and readline=with-readline

was correctly identified. An interesting observation is that
although this error was observed in the first iteration, the
classification models created then were not able to reveal any
statistical pattern. The reason was that all but one of the
configurations in the first iteration that had this dependency
had already failed because of the ssl error. That is, the
first failure masked the second failure. However, avoiding
the first failure in the current iteration helped us correctly
identify the cause of the second failure by making it possible
to observe the second failure in more configurations. A total
of 3 configurations failed to build because of the error. A set
of 3 new configurations with (i.e., libedit!=with-libedit
∨ readline!=with-readline) were scheduled to be tested
in the next iteration. Testing them in the third iteration fur-

249

Table 3: Traditional t-way covering array-based
testing.

test line branch test-err total
t cfgs runs cov. cov. errs pairs time

2 20 5896 161556 82316 96 1052 267
3 72 18425 216612 106506 119 1377 1775
4 248 67804 218170 107187 122 1428 4681

ther reduced the number of pairs masked by 13% compared
to the previous iteration.

From the third iteration to the last one, since there were
no more build failures, the process addressed the test skips.
In total, the genuine test constraints for the 225 (76%) of
298 test cases with known constraints were correctly iden-
tified. This further reduced the number of pairs masked by
an additional 26%.

To understand why we were unable to identify all of the
test constraints we conducted a manual analysis. We deter-
mined that the reason was that some of the test skips were
not deterministic. Some test cases skipped for reasons not
related to the configuration – we believe that the real cause
was a timeout because the startup took too long.

We observed that the classification models identified the
patterns in most of these intermittent skips, but they did
so with a lower confidence. One approach to address this
issue in the proposed approach is to use a smaller value for
the cutoff parameter. For example, had we used 0.6 as the
cutoff value in the experiments (instead of 0.8), 94% of the
genuine test constraints would have been correctly identified
at the end of the fourth iteration.

At the end of the process, the number of 2-way combination-
test pairs being masked was reduced by 66% compared to
the first iteration. Furthermore, avoiding the masking effects
greatly improved the source line coverage by 39%, branch
coverage by 32%, the number of unique errors by 23%, and
the number of unique test-error pairs by 32%.

These improvements were obtained at the cost of an in-
creased number of configurations and test runs. This is as
expected, because, at the end of the first iteration, for exam-
ple, if one would like to remove the maskings effects caused
by the build failures, the only choice he/she has is to select
new configurations and run all the test cases in them. An
important observation, though, is that much of the improve-
ments were obtained at early stages of the process. For ex-
ample, at the end of the fourth iteration, the improvements
were within less than 4% of those obtained at the end. Had
we stopped after this iteration, compared to the last iter-
ation, the number of configurations tested, the number of
test runs performed, and the total time required would have
been reduced by 60%, 11%, and 45%, respectively. This is
important when test resources are scarce and prioritization
is needed.

Another observation is that after the fourth iteration, al-
though the process removed new masking effects at each
subsequent iteration (except for the last one), the structural
code coverage measurements and the number of unique er-
rors and test-error pairs appear to stabilize. We attribute
this to the software under test, its test suite, and the con-
figuration model chosen for the study; the tests were given
a fair chance to exercise new combinations, but this was not
reflected on the metrics observed.

Table 4: Comparing the proposed approach with
t = 2 to traditional t-way testing.

approach 2-masked reduction

proposed approach 178794 n/a
2-way traditional 525149 66%
3-way traditional 240489 26%
4-way traditional 133977 -34%

Comparison with Higher Strength Traditional Ar-
rays. Next, we compared using our approach with t = 2
to using traditional 3- and 4-way covering array-based test-
ing. Using a higher strength traditional covering array is the
best candidate that we know of to compare our results. For
instance, if we use a 3-way covering array to avoid masking
effects caused by 1- or 2-way combinations of option set-
tings, we expect that each 1- and 2-way combination will
appear multiple times in different 3-way combinations and
may avoid the masking. Table 3 summarizes the perfor-
mance on the traditional testing approaches.

We wanted to know how much higher strength covering
arrays help in removing masking effects. Table 4 presents
the numbers of 2-way combination-test case pairs masked
in the traditional covering array-based testing approaches
and in the proposed approach. We observed that, although,
using higher strength covering-arrays reduces the unwanted
consequences of masking effects, it certainly does not solve
the problem entirely.

The last column in Table 4 shows 1 minus the propor-
tion of masked pairs obtained by our approach to masked
pairs with the traditional approaches. For instance, our ap-
proach had 26% fewer masked pairs than did the traditional
3-way approach. Compared to the traditional 4-way ap-
proach, ours had 34% more masked pairs. At the same
time, however, our approach covered more total lines and
branches and took about 35% less time.

To investigate further we tried running our approach with
higher values of t = 3, but still monitored the 2-way combina-
tion-test pairs. This time we observed that both approaches
performed essentially the same (133, 636 masked pairs for
our approach vs. 133, 977 for the 4-way traditional ap-
proach).

These results suggest that it will be important to further
study the various cost/benefit tradeoffs afforded by our ap-
proach. If we allow our approach to run more iterations it
may take longer, but reduce masking effects. Instead, using
a higher strength covering array to start with might provide
smaller reduction in masking, but might run in a shorter
amount of time.
Evaluating the approach with t = 3. Finally, to evalu-
ate the approach on a larger value of t, we reran the study
with t = 3 and monitored the 3-way combination-test case
pairs. Table 5 depicts our results. It turned out that 44% of
the 15, 144, 193 valid 3-way combination-test case pairs were
masked in traditional 3-way testing (i.e., the first round of
the process).

Our approach took four iterations. This was less than the
10 iterations we had with t = 2. The reason for this was
that the larger data sets we ran at each iteration, allowed
us to discover constraints more quickly. We observed that
at each iteration, the process reduced the number of 3-way
combination-test case pairs masked. All of the option com-
binations causing build failures and 61% of the combinations
causing test skips were correctly identified. Had we used 0.6

250

Table 5: Proposed approach with t = 3.

cfgs test lines branches unique unique testing analysis total
iteration tested runs covered covered errs test-errs 3-masked time time time

1 72 18425 216612 106506 119 1377 6670639 1774 1 1775
2 108 44957 223500 127900 125 1438 3365540 3909 6 3915
3 230 51626 223719 128001 125 1440 2915475 6183 128 6311
4 315 52171 223725 128010 125 1440 2797589 6869 152 7017

Table 6: Comparing the proposed approach with
t = 3 to traditional t-way testing.

approach 3-masked reduction

proposed approach 2797589 n/a
3-way traditional 6670639 58%
4-way traditional 2970152 6%

as the cutoff value, 96% of the constraints would have been
correctly identified.

By the fourth iteration our approach reduced the num-
ber of 3-way combination-test case pairs by 58% relative to
the first iteration. Source line coverage and branch coverage
improved by only 3% and 2%, respectively. We, further-
more, identified 5% more unique errors and 7% more unique
test-error pairs. Compared to the 4-way traditional test-
ing, the proposed approach reduced the number of 3-way
combination-test case pairs masked by 6% (Table 6).

In summary, for the subject application, its test suite, and
the configuration model chosen, we observed that our ap-
proach was able to accurately identify masking effects and
to generate new configurations that improved overall cov-
erage. In particular, our approach always significantly in-
creased coverage as it progressed. Had we simply stopped
after the first iteration as most current approaches do, sig-
nificant number of interactions would have remained silently
untested.

At the same time our approach incurs costs and must
be compared against alternative approaches. For instance,
using sufficiently higher strength traditional covering arrays
reduces masking to some degree, but at greater fixed costs.

4.3 Study 2: GCC Experiments
One important observation we made in the previous study

is that much of the observed improvements came from the
test cases in which multiple different interactions caused dif-
ferent failures. This occurs when a test case exercises mul-
tiple option-related defects present in the program. In this
study we explore this scenario with a somewhat artificial
test scenario. For this study we use GCC as our subject
application.

4.3.1 Study Setup
We first studied the command line options of GCC and

identified a small, but quite problematic configuration sub-
space. Table 7 depicts the 14 binary options used in the
study. The NULL setting indicates the absence of the respec-
tive command line option. The first three options (help,
version, and targetversion) are quite interesting, since
the presence of any one of these options makes GCC quit
the compilation right after printing either a help message
or some version information. In effect, no compilation at
all is performed. Similarly, the next three options (syntax,
preprocess, and assemble) make GCC compile the code

Table 7: Selected command line options of GCC.

option settings

help {NULL, –help}
version {NULL, –version}
targethelp {NULL, –target-help}
assemble {NULL, -S}
preprocess {NULL, -E}
syntax {NULL, -fsyntax-only}
mips1 {NULL, -mips1}
mips2 {NULL, -mips2}
mips3 {NULL, -mips3}
mips4 {NULL, -mips4}
mips32 {NULL, -mips32}
mips32r {NULL, -mips32r}
mips64 {NULL, -mips64}
mips64r {NULL, -mips64r2}

up to a certain stage and then GCC exits. syntax checks
the code for syntax errors, but does not do anything be-
yond that. preprocess stops the compilation right after
the preprocessing step; no compilation proper is performed.
assemble stops the compilation right after the stage of com-
pilation proper; no assembling is performed. The remain-
ing options (mips*), on the other hand, are all platform-
dependent options. When they are not supported on a given
platform (as is the case in our experiments), GCC quits right
away with an error message.

We then created a single test case and its oracle. The test
case makes GCC build itself. For the sake of the study, the
test oracle regarded a test run in which GCC builds itself in
full as a successful run. Any other outcome is considered to
be a failure. The oracle was able to categorize the failures
into 14 classes (one class for each failure inducing option
setting).

Note that the correctness of each option present in the
configuration model should be validated via testing and can
be handled in some cases by using single configuration test
cases [14]. However, the presence of any one of them creates
a masking effect, since it prevents the test from exercising
the remaining option settings, thus the remainder of the
system. Consequently, out of 214 configurations, there is
only one configuration that actually builds GCC in full; the
one in which all the options take the setting of NULL. We
refer to this configuration as the golden configuration.

4.3.2 Data and Analysis
We ran our process with t = 2. Table 8 presents the results

we obtained. Our approach achieved complete coverage in 13
iterations. Our analysis revealed that, for each iteration but
one, one failure inducing option-setting pair was correctly
identified. In the last iteration though, no such pair was
revealed because the coverage criterion had been reached.

Note that although one failure inducing option setting was
identified at each iteration and it was successfully avoided in
the subsequent iteration, the improvement was not reflected

251

Table 8: Approach with t = 2 on GCC.

cfgs lines branches
iteration tested covered covered

1 7 4652 2546
2 11 4693 2567
3 15 4693 2567
4 19 4693 2567
5 22 4693 2567
6 25 4693 2567
7 29 4693 2567
8 32 4693 2567
9 35 4693 2567
10 38 14636 7931
11 41 143939 106554
12 44 143939 106554
13 45 143939 106554

on the structural code coverage measurements up until the
tenth iteration. The reason was, since all the configura-
tions except for the golden one were destined to fail, even
though a failure inducing setting was avoided by computing
and testing a new set of configurations, the newly generated
configurations failed. This prevented the test from exercis-
ing the code to the fullest extent possible.

The process, however, happened to hit the golden config-
uration at iteration 11, after correctly identifying and fixing
10 failure inducing option-setting pairs. At this iteration,
the source line and branch coverage were improved by 31
and 42 times, respectively. Had we carried out a traditional
2-way covering array-based testing (i.e., had we stopped af-
ter the first iteration), any chances for improvement would
have been lost. The code coverage measurements stayed the
same in the rest of the iterations, since the maximum cover-
age that the test could have achieved was already obtained
at iteration 11.

One further observation is that the process stopped after
identifying 12 out of 14 failure inducing option settings. An
in-depth analysis revealed that the classification algorithm
was not able to expose the remaining faulty option settings
due to the limited amount of data present for analysis. After
iteration 12, the entire configuration space was reduced to
only four configurations, i.e., the exhaustive combinations of
the remaining two options. At the end of the last iteration,
all of these configurations happened to be tested already.
One of them was the golden configuration. The remaining
three configurations were marked as failures by using two
different labels. However, the classification algorithm was
not able to reveal any pattern; a common issue with data
mining approaches caused by insufficient amount of data for
analysis. In such situations where the configuration space is
reduced to the point so that exhaustive testing is feasible,
the entire space can be scheduled for testing in the next
iteration to exploit the chance of potential improvements.

We also repeated the experiments with t = 3 and ob-
tained similar results. The initial 3-way covering array had
18 configurations. The process stopped after 12 iterations,
throughout which a total of 101 configurations were tested.
The golden configuration happened to be tested at the last
iteration, in which similar code coverage improvements were
observed.

Finally, we compared our results to those of traditional t-
way covering array-based approaches. Table 9 presents the
results. Our approach with t = 2 and t = 3 revealed all 14
types of failures as well as the golden configuration, whereas

Table 9: Comparing the proposed approach to tra-
ditional t-way testing in GCC experiments.

uniq.
approach cfgs errs 1-masked 2-masked 3-masked

2-way 7 3 15 182 n/a
3-way 18 5 6 108 790
4-way 40 6 6 81 611
5-way 133 6 6 72 440
ours t=2 45 14 0 0 n/a
ours t=3 101 14 0 0 0

the traditional testing (including the 5-way covering array-
based testing) revealed at most 6 types of failures. None
of the traditional arrays created for the study revealed the
golden configuration.

We then computed the number of 1-, 2-, and 3-way op-
tion setting combinations masked. There were a total of 28
1-way, 238 2-way, and 1232 3-way valid combinations that
could be exercised. As the table indicates, the proposed ap-
proach (with t = 2 and 3) removed all the masking effects
and exercised all the t-way combinations that could be ex-
ercised. On the other hand, the traditional 5-way covering
array-based testing, for example, was not able to exercise
even the settings of each and every option. The reason was
that all the statically chosen configurations failed due to one
option setting or another. On the other hand, the proposed
approach, in a feedback-driven manner, identified the cause
of masking effects and removed them iteratively.

4.4 Threats to Validity
We have identified several threats to validity for these ex-

periments. First, we have only studied two software systems.
This may impact the generality of our results. However,
both GCC and MySQL are widely-used non-trivial appli-
cations with large configuration spaces and both have been
used in other related works in the literature.

For our experiments we selected a cutoff value of 0.8. As
discussed, if we chose a lower value (e.g., 0.6), we may have
found more constraints, but we did not experiment exhaus-
tively with this parameter tuning and leave this as future
work.

Finally, we do not remove constraints during experimen-
tation; as we find new failure inducing option combinations
we continue to add them to our configuration model. In a
real testing environment it is possible that at some point the
defect causing a masking effect is fixed, but in this work we
do not examine that scenario. However, we believe that the
scenarios studied in this work are realistic, since long times
to defect fixes is common.

5. CONCLUDING REMARKS
The basic justification for combinatorial interaction test-

ing approaches, such as covering arrays, is that they can
cost-effectively exercise all system behaviors caused by the
settings of t or fewer options. We conjecture however that in
actuality many such behaviors may not be tested, because
of masking effects caused by failures.

To address masking effects, we developed a feedback driven
combinatorial testing approach. Instead of statically com-
puting the covering arrays, we compute them in an iterative
manner aimed at identifying masking effects and removing
them from the covering array construction process in order
to better meet our interaction coverage goals. At each it-

252

eration of the process, we execute test cases, analyze the
results, detect potential masking effects by identifying likely
option-related causes, and then generate new covering arrays
that avoid the likely failure causes while covering previously
masked interactions. The process iterates until for all tests
each and every t-way option setting combination is present
in at least one configuration in which the test passed or
failed with a non-option-related cause, or the combination
is marked as failure inducing.

We then evaluated this new process by conducting two
empirical studies. These studies used two large open source
software systems, MySQL and GCC as subject applications.
We observed that the proposed approach always significantly
reduced the number of t-way combination-test case pairs
masked compared to traditional t-way covering arrays. The
number of pairs masked was reduced by 66% when t = 2,
and by 58% when t = 3. In both cases, only 19% of all valid
intended combination-test case pairs remained masked.

We, furthermore, observed that, for a given t, the pro-
posed approach generally performed better in reducing the
number of t-way combination-test case pairs masked com-
pared to higher strength traditional covering arrays. The
proposed approach with t = 2 reduced the number of 2-way
combination-test case pairs masked by 26% compared to us-
ing traditional 3-way testing. When t = 3 the approach
reduced the 3-way combination-test case pairs masked by
only 6% compared to using 4-way testing, but had greater
line and branch coverage and ran less number of test cases.
Overall, we see a variety of cost/benefit tradeoffs that will
need further study.

We think that this line of research is promising. One obvi-
ous open issue we intend to pursue is to quantify the preva-
lence of masking effects in more practical settings. We will
also examine alternative machine learning approaches and
optimizations for identifying likely configuration-related fail-
ure causes. Another interesting goal is to work on further
improving the approach by automatically identifying con-
trol dependencies among configuration options. This would
require us to use successful test runs, in addition to failing
runs, for inference.

6. ACKNOWLEDGMENTS
This research was supported by a Marie Curie Interna-

tional Reintegration Grant within the 7th European Com-
munity Framework Programme (FP7-PEOPLE-IRG-2008),
by the Scientific and Technological Research Council of Turkey
(109E182), and by the US NSF awards CCF-0811284 and
CCF-0747009 and AFOSR award FA9550-09-1-0129.

7. REFERENCES
[1] Advanced Combinatorial Testing System (ACTS),

2010. http://csrc.nist.gov/groups/SNS/acts/
documents/comparison-report.html.

[2] R. Brownlie, J. Prowse, and M. S. Phadke. Robust
testing of AT&T PMX/StarMAIL using OATS.
AT&T Technical Journal, 71(3):41–7, 1992.

[3] R. C. Bryce and C. J. Colbourn. Prioritized
interaction testing for pair-wise coverage with seeding
and constraints. Journal of Information and Software
Technology, 48(10):960–970, 2006.

[4] R. C. Bryce, A. Rajan, and M. P. Heimdahl.
Interaction testing in model-based development:

Effect on model-coverage. In Asia Pacific Software
Engineering Conference, pages 259–268, 2006.

[5] K. Burr and W. Young. Combinatorial test
techniques: Table-based automation, test generation
and code coverage. In Proceedings of the International
Conference on Software Testing Analysis & Review,
1998.

[6] A. Calvagna and A. Gargantini. A logic-based
approach to combinatorial testing with constraints. In
Tests and Proofs, Lecture Notes in Computer Science,
4966, pages 66–83, 2008.

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–44, 1997.

[8] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems
in the presence of constraints: A greedy approach.
IEEE Transactions on Software Engineering,
34(5):633–650, 2008.

[9] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-based testing in practice. In Proceedings of the
International Conference on Software Engineering,
pages 285–294, 1999.

[10] S. Fouché, M. B. Cohen, and A. Porter. Incremental
covering array failure characterization in large
configuration spaces. In Proceedings of the
International Symposium on Software Testing and
Analysis, pages 177–188, New York, NY, USA, 2009.
ACM.

[11] D. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing.
IEEE Transactions on Software Engingeering,
30(6):418–421, 2004.

[12] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[13] MySQL, 2006. http://www.mysql.com.

[14] T. J. Ostrand and M. J. Balcer. The category-partition
method for specifying and generating functional tests.
Communications of the ACM, 31:678–686, 1988.

[15] X. Qu, M. B. Cohen, and G. Rothermel.
Configuration-aware regression testing: An empirical
study of sampling and prioritization. In International
Symposium on Software Testing and Analysis, pages
75–85, July 2008.

[16] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial
interaction regression testing: A study of test case
generation and prioritization. In International
Conference on Software Maintenance, pages 255–264,
October 2007.

[17] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 1999.

[18] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 31(1):20–34, Jan 2006.

[19] X. Yuan, M. Cohen, and A. M. Memon. Covering
array sampling of input event sequences for automated
GUI testing. In International Conference on
Automated Software Engineering, pages 405–408, 2007.

253

