3,868 research outputs found

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Quantum Emulation of Molecular Force Fields: A Blueprint for a Superconducting Architecture

    Get PDF
    In this work, we propose a flexible architecture of microwave resonators with tunable couplings to perform quantum simulations of problems from the field of molecular chemistry. The architecture builds on the experience of the D-Wave design, working with nearly harmonic circuits instead of qubits. This architecture, or modifications of it, can be used to emulate molecular processes such as vibronic transitions. Furthermore, we discuss several aspects of these emulations, such as dynamical ranges of the physical parameters, quenching times necessary for diabaticity, and, finally, the possibility of implementing anharmonic corrections to the force fields by exploiting certain nonlinear features of superconducting devices.Comment: 14 pages, 4 figure

    A multifunctional dynamic voltage restorer for power quality improvement

    Get PDF
    Power quality is a major concern in electrical power systems. The power quality disturbances such as sags, swells, harmonic distortion and other interruptions have an impact on the electrical devices and machines and in severe cases can cause serious damages. Therefore it is necessary to recognize and compensate all types of disturbances at an earliest time to ensure normal and efficient operation of the power system. To solve these problems, many types of power devices are used. At the present time, one of those devices, Dynamic Voltage Restorer (DVR) is the most efficient and effective device used in power distribution systems. In this paper, design and modeling of a new structure and a new control method of multifunctional DVRs for voltage quality correction are presented. The new control method was built in the stationary frame by combining Proportional Resonant controllers and Sequence-Decouple Resonant controllers. The performance of the device and this method under different conditions such as voltage swell, voltage sag due to symmetrical and unsymmetrical short circuit, starting of motors, and voltage distortion are described. Simulation result show the superior capability of the proposed DVR to improve power quality under different operating conditions and the effectiveness of the proposed method. The proposed new DVR controller is able to detect the voltage disturbances and control the converter to inject appropriate voltages independently for each phase and compensate to load voltage through three single-phase transformers.Web of Science116art. no. 135

    On the Application of Modal Transient Analysis for Online Fault Localization in HVDC Cable Bundles

    Get PDF

    Transmission and Distribution Co-Simulation and Applications

    Get PDF
    As the penetration of flexible loads and distributed energy resources (DERs) increases in distribution networks, demand dispatch schemes need to consider the effects of large-scale load control on distribution grid reliability. Thus, we need demand dispatch schemes that actively ensure that distribution grid operational constraints are network-admissible and still deliver valuable market services. In this context, this work develops and evaluates the performance of a new network-admissible version of the device-driven demand dispatch scheme called Packetized Energy Management (PEM). Specifically, this work develops and investigates the live grid constraint-based coordinator and metrics for performance evaluation. The effects of grid measurements for a practical-sized, 2,522-bus, unbalanced distribution test feeder with a 3000 flexible kW-scale loads operating under the network-admissible PEM scheme is discussed. The results demonstrate the value of live grid measurements in managing distribution grid operational constraints while PEM can effectively deliver frequency regulation services. Increased penetration of flexible loads and DERs on distribution system (DS) will lead to increased interaction of transmission and distribution (T&D) system operators to ensure reliable operation of the interconnected power grids, as well as the control actions at LV/MV grid in aggregation will have significant impact on the transmission systems (TS). Thus, a need arises to study the coupling of the transmission and distribution (T&D) systems. Therefore, this work develops a co-simulation platform based on decoupled approach to study integrated T&D systems collectively. Additionally, the results of a decoupled method applied for solving T&D power flow co-simulation is benchmarked against the collaborator developed unified solution which proves the accuracy of the decoupled approach. The existing approaches in the literature to study steady-state interaction of TS-DS have several shortcomings including that the existing methods exhibit scalability, solve-time and computational memory usage concerns. In this regard, this work develops comprehensive mathematical models of T&D systems for integrated power flow analysis and brings advancements from the algorithmic perspective to efficiently solve large-scale T&D circuits. Further, the models are implemented in low-cost CPU-GPU hybrid computing platform to further speed up the computational performance. The efficacy of the proposed models, solution algorithms, and their hardware implementation are demonstrated with more than 13,000 nodes using an integrated system that consists of 2383-bus Polish TS and multiple instances of medium voltage part of the IEEE 8,500-node DS. Case studies demonstrate that the proposed approach is scalable and can provide more than tenfold speed up on the solve time of very large-scale integrated T&D systems. Overall, this work develops practically applicable and efficient demand dispatch coordinator able to integrate DERs into DS while ensuring the grid operational constraints are not violated. Additionally, the dynamics introduced in the DS with such integration that travels to TS is also studied collectively using integrated T&D co-simulation and in the final step, a mathematically comprehensive model tackles the scalability, solve-time and computational memory usage concerns for large scale integrated T&D co-simulation and applications
    corecore