3,906 research outputs found

    Efficient Hybrid Proxy Re-Encryption for Practical Revocation and Key Rotation

    Get PDF
    We consider the problems of i) using public-key encryption to enforce dynamic access control on clouds; and ii) key rotation of data stored on clouds. Historically, proxy re-encryption, ciphertext delegation, and related technologies have been advocated as tools that allow for revocation and the ability to cryptographically enforce \emph{dynamic} access control on the cloud, and more recently they have suggested for key rotation of data stored on clouds. Current literature frequently assumes that data is encrypted directly with public-key encryption primitives. However, for efficiency reasons systems would need to deploy with hybrid encryption. Unfortunately, we show that if hybrid encryption is used, then schemes are susceptible to a key-scraping attack. Given a proxy re-encryption or delegation primitive, we show how to construct a new hybrid scheme that is resistant to this attack and highly efficient. The scheme only requires the modification of a small fraction of the bits of the original ciphertext. The number of modifications scales linearly with the security parameter and logarithmically with the file length: it does not require the entire symmetric-key ciphertext to be re-encrypted! Beyond the construction, we introduce new security definitions for the problem at hand, prove our construction secure, discuss use cases, and provide quantitative data showing its practical benefits and efficiency. We show the construction extends to identity-based proxy re-encryption and revocable-storage attribute-based encryption, and thus that the construction is robust, supporting most primitives of interest

    Combining Decentralized IDentifiers with Proof of Membership to Enable Trust in IoT Networks

    Full text link
    The Self-Sovereign Identity (SSI) is a decentralized paradigm enabling full control over the data used to build and prove the identity. In Internet of Things networks with security requirements, the Self-Sovereign Identity can play a key role and bring benefits with respect to centralized identity solutions. The challenge is to make the SSI compatible with resource-constraint IoT networks. In line with this objective, the paper proposes and discusses an alternative (mutual) authentication process for IoT nodes under the same administration domain. The main idea is to combine the Decentralized IDentifier (DID)-based verification of private key ownership with the verification of a proof that the DID belongs to an evolving trusted set. The solution is built around the proof of membership notion. The paper analyzes two membership solutions, a novel solution designed by the Authors based on Merkle trees and a second one based on the adaptation of Boneh, Boyen and Shacham (BBS) group signature scheme. The paper concludes with a performance estimation and a comparative analysis

    Self-sovereign identity decentralized identifiers, claims and credentials using non decentralized ledger technology

    Get PDF
    Dissertação de mestrado integrado em Engenharia InformáticaCurrent identity management systems rely on centralized databases to store user’s personal data, which poses a great risks for data security, as these infrastructure create a critical point of failure for the whole system. Beside that service providers have to bear huge maintenance costs and comply with strict data protection regulations. Self-sovereign identity (SSI) is a new identity management paradigm that tries to answer some of these problems by providing a decentralized user-centric identity management system that gives users full control of their personal data. Some of its underlying concepts include Decentralized Identifiers (DIDs), Verifiable Claims and Credentials. This approach does not rely on any central authority to enforce trust as it often uses Blockchain or other Decentralized Ledger Technologies (DLT) as the trust anchor of the system, although other decentralized network or databases could also be used for the same purpose. This thesis focuses on finding alternative solutions to DLT, in the context of SSI. Despite being the most used solution some DLTs are known to lack scalability and performance, and since a global identity management system heavily relies on these two requirements it might not be the best solution to the problem. This document provides an overview of the state of the art and main standards of SSI, and then focuses on a non-DLT approach to SSI, referencing non-DLT implementations and alternative decentralized infrastructures that can be used to replace DLTs in SSI. It highlights some of the limitations associated with using DLTs for identity management and presents a SSI framework based on decentralized names systems and networks. This framework couples all the main functionalities needed to create different SSI agents, which were showcased in a proof of concept application.Actualmente os sistemas de gestão de identidade digital estão dependentes de bases de dados centralizadas para o armazenamento de dados pessoais dos seus utilizadores. Isto representa um elevado risco de segurança, uma vez que estas infra-estruturas representam um ponto crítico de falha para todo o sistema. Para além disso os service providers têm que suportam elevados custos de manutenção para armazenar toda esta informaçao e ainda são obrigados a cumprir as normas de protecção de dados existentes. Self-sovereign identity (SSI) é um novo paradigma de identidade digital que tenta dar resposta a alguns destes problemas, criando um sistema focado no utilizador e totalmente descentralizado que oferece aos utilizadores total controlo sobre os seus dados pessoais. Alguns dos conceitos subjacentes incluem Decentalized Identifiers (DIDs), Verifiable Credentials e Presentations. Esta abordagem não depende de qualquer autoridade central para estabelecer confiança, dado que utiliza Blockchains ou outras Decentralized Ledger Technilogies (DLT) como âncora de confiança do sistema. No entanto outras redes ou bases de dados descentralizadas podem também ser utilizadas para alcançar o mesmo objectivo. Esta tese concentra-se em encontrar soluções alternativas para a DLT no âmbito da SSI. Apesar de esta ser a solução mais utilizada, sabe-se que algumas DLTs carecem de escalabilidade e desempenho. Sendo que um sistema de identidade digital com abrangência global dependerá bastante destes dois requisitos, esta pode não ser a melhor solução. Este documento fornece uma visão geral do estado da arte e principais standards da SSI, focando-se de seguida numa abordagem não DLT, que inclui uma breve referência a implementações não-DLT e tecnologias alternativas que poderão ser utilizadas para substituir as DLTs na SSI. Alem disso aborda algumas das principais limitações associadas ao uso de DLTs na gestão de identidades digitais e apresenta uma framework baseada em name systems e redes descentralizadas. Esta framework inclui as principais funcionalidades necessárias para implementar os diferentes agentes SSI, que foram demonstradas através de algumas aplicações proof of concept

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 17)

    Get PDF
    Abstracts are cited for 150 patents and applications for patents introduced into the NASA scientific and technical information system during the period January 1980 through June 1980. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent

    Access Control for Binary Integrity Protection using Ethereum

    Get PDF
    The integrity of executable binaries is essential to the security of any device that runs them. At best, a manipulated binary can leave the system in question open to attack, and at worst, it can compromise the entire system by itself. In recent years, supply-chain attacks have demonstrated that binaries can even be compromised unbeknownst to their creators. This, in turn, leads to the dissemination of supposedly valid binaries that need to be revoked later. In this paper, we present and evaluate a concept for publishing and revoking integrity protecting information for binaries, based on the Ethereum Blockchain and its underlying peer-to-peer network. Smart Contracts are used to enforce access control over the publication and revocation of integrity preserving information, whereas the peer-to-peer network serves as a fast, global communication service to keep user clients informed. The Ethereum Blockchain serves as a tamper-evident, publicly-verifiable log of published and revoked binaries. Our implementation incurs costs comparable to registration fees for centralised software distribution platforms but allows publication and revocation of individual binaries within minutes. The proposed concept can be integrated incrementally into existing software distribution platforms, such as package repositories or various app stores

    Modern Family: A Revocable Hybrid Encryption Scheme Based on Attribute-Based Encryption, Symmetric Searchable Encryption and SGX

    Get PDF
    Secure cloud storage is considered as one of the most important issues that both businesses and end-users take into account before moving their private data to the cloud. Lately, we have seen some interesting approaches that are based either on the promising concept of Symmetric Searchable Encryption (SSE) or on the well-studied field of Attribute-Based Encryption (ABE). In the first case, researchers are trying to design protocols where users' data will be protected from both internal and external attacks without paying the necessary attention to the problem of user revocation. In the second case, existing approaches address the problem of revocation. However, the overall efficiency of these systems is compromised since the proposed protocols are solely based on ABE schemes and the size of the produced ciphertexts and the time required to decrypt grows with the complexity of the access formula. In this paper, we propose a hybrid encryption scheme that combines both SSE and ABE by utilizing the advantages of both these techniques. In contrast to many approaches, we design a revocation mechanism that is completely separated from the ABE scheme and solely based on the functionality offered by SGX

    The Cloud we Share: Access Control on Symmetrically Encrypted Data in Untrusted Clouds

    Get PDF
    Along with the rapid growth of cloud environments, rises the problem of secure data storage. – a problem that both businesses and end-users take into consideration before moving their data online. Recently, a lot of solutions have been proposed based either on Symmetric Searchable Encryption (SSE) or Attribute-Based Encryption (ABE). SSE is an encryption technique that offers security against both internal and external attacks. However, since in an SSE scheme, a single key is used to encrypt everything, revoking a user would imply downloading the entire encrypted database and re-encrypt it with a fresh key. On the other hand, in an ABE scheme, the problem of revocation can be addressed. Unfortunately, though, the proposed solutions are based on the properties of the underlying ABE scheme and hence, the revocation costs grow along with the complexity of the policies. To this end, we use these two cryptographic techniques that squarely fit cloud-based environments to design a hybrid encryption scheme based on ABE and SSE in such a way that we utilize the best out of both of them. Moreover, we exploit the functionalities offered by Intel’s SGX to design a revocation mechanism and an access control one, that are agnostic to the cryptographic primitives used in our construction
    • …
    corecore