417,281 research outputs found

    Practical Private Range Search in Depth

    Get PDF
    We consider a data owner that outsources its dataset to an untrusted server. The owner wishes to enable the server to answer range queries on a single attribute, without compromising the privacy of the data and the queries. There are several schemes on “practical” private range search (mainly in database venues) that attempt to strike a trade-off between efficiency and security. Nevertheless, these methods either lack provable security guarantees or permit unacceptable privacy leakages. In this article, we take an interdisciplinary approach, which combines the rigor of security formulations and proofs with efficient data management techniques. We construct a wide set of novel schemes with realistic security/performance trade-offs, adopting the notion of Searchable Symmetric Encryption (SSE), primarily proposed for keyword search. We reduce range search to multi-keyword search using range-covering techniques with tree-like indexes, and formalize the problem as Range Searchable Symmetric Encryption (RSSE). We demonstrate that, given any secure SSE scheme, the challenge boils down to (i) formulating leakages that arise from the index structure and (ii) minimizing false positives incurred by some schemes under heavy data skew. We also explain an important concept in the recent SSE bibliography, namely locality, and design generic and specialized ways to attribute locality to our RSSE schemes. Moreover, we are the first to devise secure schemes for answering range aggregate queries, such as range sums and range min/max. We analytically detail the superiority of our proposals over prior work and experimentally confirm their practicality

    Guilt By Genetic Association: The Fourth Amendment and the Search of Private Genetic Databases by Law Enforcement

    Get PDF
    Over the course of 2018, a number of suspects in unsolved crimes have been identified through the use of GEDMatch, a public online genetic database. Law enforcement’s use of GEDMatch to identify suspects in cold cases likely does not constitute a search under the Fourth Amendment because the genetic information hosted on the website is publicly available. Transparency reports from direct-to-consumer (DTC) genetic testing providers like 23andMe and Ancestry suggest that federal and state officials may now be requesting access to private genetic databases as well. Whether law enforcement’s use of private DTC genetic databases to search for familial relatives of a suspect’s genetic profile constitutes a search within the meaning of the Fourth Amendment is far less clear. A strict application of the third-party doctrine suggests that individuals have no expectation of privacy in genetic information that they voluntarily disclose to third parties, including DTC providers. This Note, however, contends that the U.S. Supreme Court’s recent decision in Carpenter v. United States overwhelmingly supports the proposition that genetic information disclosed to third-party DTC providers is subject to Fourth Amendment protection. Approximately fifteen million individuals in the United States have already submitted their genetic information to DTC providers. The genetic information held by these providers can reveal a host of highly intimate details about consumers’ medical conditions, behavioral traits, genetic health risks, ethnic background, and familial relationships. Allowing law enforcement warrantless access to investigate third-party DTC genetic databases circumvents their consumers’ reasonable expectations of privacy by exposing this sensitive genetic information to law enforcement without any meaningful oversight. Furthermore, individuals likely reasonably expect that they retain ownership over their uniquely personal genetic information despite their disclosure of that information to a thirdparty provider. This Note therefore asserts that the third-party doctrine does not permit law enforcement to conduct warrantless searches for suspects on private DTC genetics databases under the Fourth Amendment

    An empirical study evaluating depth of inheritance on the maintainability of object-oriented software

    Get PDF
    This empirical research was undertaken as part of a multi-method programme of research to investigate unsupported claims made of object-oriented technology. A series of subject-based laboratory experiments, including an internal replication, tested the effect of inheritance depth on the maintainability of object-oriented software. Subjects were timed performing identical maintenance tasks on object-oriented software with a hierarchy of three levels of inheritance depth and equivalent object-based software with no inheritance. This was then replicated with more experienced subjects. In a second experiment of similar design, subjects were timed performing identical maintenance tasks on object-oriented software with a hierarchy of five levels of inheritance depth and the equivalent object-based software. The collected data showed that subjects maintaining object-oriented software with three levels of inheritance depth performed the maintenance tasks significantly quicker than those maintaining equivalent object-based software with no inheritance. In contrast, subjects maintaining the object-oriented software with five levels of inheritance depth took longer, on average, than the subjects maintaining the equivalent object-based software (although statistical significance was not obtained). Subjects' source code solutions and debriefing questionnaires provided some evidence suggesting subjects began to experience diffculties with the deeper inheritance hierarchy. It is not at all obvious that object-oriented software is going to be more maintainable in the long run. These findings are sufficiently important that attempts to verify the results should be made by independent researchers

    Unifying an Introduction to Artificial Intelligence Course through Machine Learning Laboratory Experiences

    Full text link
    This paper presents work on a collaborative project funded by the National Science Foundation that incorporates machine learning as a unifying theme to teach fundamental concepts typically covered in the introductory Artificial Intelligence courses. The project involves the development of an adaptable framework for the presentation of core AI topics. This is accomplished through the development, implementation, and testing of a suite of adaptable, hands-on laboratory projects that can be closely integrated into the AI course. Through the design and implementation of learning systems that enhance commonly-deployed applications, our model acknowledges that intelligent systems are best taught through their application to challenging problems. The goals of the project are to (1) enhance the student learning experience in the AI course, (2) increase student interest and motivation to learn AI by providing a framework for the presentation of the major AI topics that emphasizes the strong connection between AI and computer science and engineering, and (3) highlight the bridge that machine learning provides between AI technology and modern software engineering

    Quantum attacks on Bitcoin, and how to protect against them

    Get PDF
    The key cryptographic protocols used to secure the internet and financial transactions of today are all susceptible to attack by the development of a sufficiently large quantum computer. One particular area at risk are cryptocurrencies, a market currently worth over 150 billion USD. We investigate the risk of Bitcoin, and other cryptocurrencies, to attacks by quantum computers. We find that the proof-of-work used by Bitcoin is relatively resistant to substantial speedup by quantum computers in the next 10 years, mainly because specialized ASIC miners are extremely fast compared to the estimated clock speed of near-term quantum computers. On the other hand, the elliptic curve signature scheme used by Bitcoin is much more at risk, and could be completely broken by a quantum computer as early as 2027, by the most optimistic estimates. We analyze an alternative proof-of-work called Momentum, based on finding collisions in a hash function, that is even more resistant to speedup by a quantum computer. We also review the available post-quantum signature schemes to see which one would best meet the security and efficiency requirements of blockchain applications.Comment: 21 pages, 6 figures. For a rough update on the progress of Quantum devices and prognostications on time from now to break Digital signatures, see https://www.quantumcryptopocalypse.com/quantum-moores-law

    Analysis of Dialogical Argumentation via Finite State Machines

    Get PDF
    Dialogical argumentation is an important cognitive activity by which agents exchange arguments and counterarguments as part of some process such as discussion, debate, persuasion and negotiation. Whilst numerous formal systems have been proposed, there is a lack of frameworks for implementing and evaluating these proposals. First-order executable logic has been proposed as a general framework for specifying and analysing dialogical argumentation. In this paper, we investigate how we can implement systems for dialogical argumentation using propositional executable logic. Our approach is to present and evaluate an algorithm that generates a finite state machine that reflects a propositional executable logic specification for a dialogical argumentation together with an initial state. We also consider how the finite state machines can be analysed, with the minimax strategy being used as an illustration of the kinds of empirical analysis that can be undertaken.Comment: 10 page

    POPE: Partial Order Preserving Encoding

    Get PDF
    Recently there has been much interest in performing search queries over encrypted data to enable functionality while protecting sensitive data. One particularly efficient mechanism for executing such queries is order-preserving encryption/encoding (OPE) which results in ciphertexts that preserve the relative order of the underlying plaintexts thus allowing range and comparison queries to be performed directly on ciphertexts. In this paper, we propose an alternative approach to range queries over encrypted data that is optimized to support insert-heavy workloads as are common in "big data" applications while still maintaining search functionality and achieving stronger security. Specifically, we propose a new primitive called partial order preserving encoding (POPE) that achieves ideal OPE security with frequency hiding and also leaves a sizable fraction of the data pairwise incomparable. Using only O(1) persistent and O(nÏ”)O(n^\epsilon) non-persistent client storage for 0<Ï”<10<\epsilon<1, our POPE scheme provides extremely fast batch insertion consisting of a single round, and efficient search with O(1) amortized cost for up to O(n1−ϔ)O(n^{1-\epsilon}) search queries. This improved security and performance makes our scheme better suited for today's insert-heavy databases.Comment: Appears in ACM CCS 2016 Proceeding
    • 

    corecore