The key cryptographic protocols used to secure the internet and financial
transactions of today are all susceptible to attack by the development of a
sufficiently large quantum computer. One particular area at risk are
cryptocurrencies, a market currently worth over 150 billion USD. We investigate
the risk of Bitcoin, and other cryptocurrencies, to attacks by quantum
computers. We find that the proof-of-work used by Bitcoin is relatively
resistant to substantial speedup by quantum computers in the next 10 years,
mainly because specialized ASIC miners are extremely fast compared to the
estimated clock speed of near-term quantum computers. On the other hand, the
elliptic curve signature scheme used by Bitcoin is much more at risk, and could
be completely broken by a quantum computer as early as 2027, by the most
optimistic estimates. We analyze an alternative proof-of-work called Momentum,
based on finding collisions in a hash function, that is even more resistant to
speedup by a quantum computer. We also review the available post-quantum
signature schemes to see which one would best meet the security and efficiency
requirements of blockchain applications.Comment: 21 pages, 6 figures. For a rough update on the progress of Quantum
devices and prognostications on time from now to break Digital signatures,
see https://www.quantumcryptopocalypse.com/quantum-moores-law