232 research outputs found

    DPA on quasi delay insensitive asynchronous circuits: formalization and improvement

    Full text link
    The purpose of this paper is to formally specify a flow devoted to the design of Differential Power Analysis (DPA) resistant QDI asynchronous circuits. The paper first proposes a formal modeling of the electrical signature of QDI asynchronous circuits. The DPA is then applied to the formal model in order to identify the source of leakage of this type of circuits. Finally, a complete design flow is specified to minimize the information leakage. The relevancy and efficiency of the approach is demonstrated using the design of an AES crypto-processor.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    A Network-based Asynchronous Architecture for Cryptographic Devices

    Get PDF
    Institute for Computing Systems ArchitectureThe traditional model of cryptography examines the security of the cipher as a mathematical function. However, ciphers that are secure when specified as mathematical functions are not necessarily secure in real-world implementations. The physical implementations of ciphers can be extremely difficult to control and often leak socalled side-channel information. Side-channel cryptanalysis attacks have shown to be especially effective as a practical means for attacking implementations of cryptographic algorithms on simple hardware platforms, such as smart-cards. Adversaries can obtain sensitive information from side-channels, such as the timing of operations, power consumption and electromagnetic emissions. Some of the attack techniques require surprisingly little side-channel information to break some of the best known ciphers. In constrained devices, such as smart-cards, straightforward implementations of cryptographic algorithms can be broken with minimal work. Preventing these attacks has become an active and a challenging area of research. Power analysis is a successful cryptanalytic technique that extracts secret information from cryptographic devices by analysing the power consumed during their operation. A particularly dangerous class of power analysis, differential power analysis (DPA), relies on the correlation of power consumption measurements. It has been proposed that adding non-determinism to the execution of the cryptographic device would reduce the danger of these attacks. It has also been demonstrated that asynchronous logic has advantages for security-sensitive applications. This thesis investigates the security and performance advantages of using a network-based asynchronous architecture, in which the functional units of the datapath form a network. Non-deterministic execution is achieved by exploiting concurrent execution of instructions both with and without data-dependencies; and by forwarding register values between instructions with data-dependencies using randomised routing over the network. The executions of cryptographic algorithms on different architectural configurations are simulated, and the obtained power traces are subjected to DPA attacks. The results show that the proposed architecture introduces a level of non-determinism in the execution that significantly raises the threshold for DPA attacks to succeed. In addition, the performance analysis shows that the improved security does not degrade performance

    A Comprehensive Survey on the Implementations, Attacks, and Countermeasures of the Current NIST Lightweight Cryptography Standard

    Full text link
    This survey is the first work on the current standard for lightweight cryptography, standardized in 2023. Lightweight cryptography plays a vital role in securing resource-constrained embedded systems such as deeply-embedded systems (implantable and wearable medical devices, smart fabrics, smart homes, and the like), radio frequency identification (RFID) tags, sensor networks, and privacy-constrained usage models. National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight cryptography and after a relatively-long multi-year effort, eventually, in Feb. 2023, the competition ended with ASCON as the winner. This lightweight cryptographic standard will be used in deeply-embedded architectures to provide security through confidentiality and integrity/authentication (the dual of the legacy AES-GCM block cipher which is the NIST standard for symmetric key cryptography). ASCON's lightweight design utilizes a 320-bit permutation which is bit-sliced into five 64-bit register words, providing 128-bit level security. This work summarizes the different implementations of ASCON on field-programmable gate array (FPGA) and ASIC hardware platforms on the basis of area, power, throughput, energy, and efficiency overheads. The presented work also reviews various differential and side-channel analysis attacks (SCAs) performed across variants of ASCON cipher suite in terms of algebraic, cube/cube-like, forgery, fault injection, and power analysis attacks as well as the countermeasures for these attacks. We also provide our insights and visions throughout this survey to provide new future directions in different domains. This survey is the first one in its kind and a step forward towards scrutinizing the advantages and future directions of the NIST lightweight cryptography standard introduced in 2023

    Null Convention Logic applications of asynchronous design in nanotechnology and cryptographic security

    Get PDF
    This dissertation presents two Null Convention Logic (NCL) applications of asynchronous logic circuit design in nanotechnology and cryptographic security. The first application is the Asynchronous Nanowire Reconfigurable Crossbar Architecture (ANRCA); the second one is an asynchronous S-Box design for cryptographic system against Side-Channel Attacks (SCA). The following are the contributions of the first application: 1) Proposed a diode- and resistor-based ANRCA (DR-ANRCA). Three configurable logic block (CLB) structures were designed to efficiently reconfigure a given DR-PGMB as one of the 27 arbitrary NCL threshold gates. A hierarchical architecture was also proposed to implement the higher level logic that requires a large number of DR-PGMBs, such as multiple-bit NCL registers. 2) Proposed a memristor look-up-table based ANRCA (MLUT-ANRCA). An equivalent circuit simulation model has been presented in VHDL and simulated in Quartus II. Meanwhile, the comparison between these two ANRCAs have been analyzed numerically. 3) Presented the defect-tolerance and repair strategies for both DR-ANRCA and MLUT-ANRCA. The following are the contributions of the second application: 1) Designed an NCL based S-Box for Advanced Encryption Standard (AES). Functional verification has been done using Modelsim and Field-Programmable Gate Array (FPGA). 2) Implemented two different power analysis attacks on both NCL S-Box and conventional synchronous S-Box. 3) Developed a novel approach based on stochastic logics to enhance the resistance against DPA and CPA attacks. The functionality of the proposed design has been verified using an 8-bit AES S-box design. The effects of decision weight, bitstream length, and input repetition times on error rates have been also studied. Experimental results shows that the proposed approach enhances the resistance to against the CPA attack by successfully protecting the hidden key --Abstract, page iii

    Systematic Literature Review of EM-SCA Attacks on Encryption

    Full text link
    Cryptography is vital for data security, but cryptographic algorithms can still be vulnerable to side-channel attacks (SCAs), physical assaults exploiting power consumption and EM radiation. SCAs pose a significant threat to cryptographic integrity, compromising device keys. While literature on SCAs focuses on real-world devices, the rise of sophisticated devices necessitates fresh approaches. Electromagnetic side-channel analysis (EM-SCA) gathers information by monitoring EM radiation, capable of retrieving encryption keys and detecting malicious activity. This study evaluates EM-SCA's impact on encryption across scenarios and explores its role in digital forensics and law enforcement. Addressing encryption susceptibility to EM-SCA can empower forensic investigators in overcoming encryption challenges, maintaining their crucial role in law enforcement. Additionally, the paper defines EM-SCA's current state in attacking encryption, highlighting vulnerable and resistant encryption algorithms and devices, and promising EM-SCA approaches. This study offers a comprehensive analysis of EM-SCA in law enforcement and digital forensics, suggesting avenues for further research
    corecore