493 research outputs found

    Practical design and evaluation of a 1 kW PFC power supply based on reduced redundant power processing principle

    Get PDF
    Author name used in this publication: Martin K. H. CheungAuthor name used in this publication: Chi K. Tse2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Three-Phase Unfolding Based Soft DC-Link Converter Topologies for AC to DC Applications

    Get PDF
    Battery electric vehicles (BEVs) and plugin hybrid electric vehicles (PHEVs) are more efficient than internal combustion-based vehicles. Adaption of EVs will help reduce the carbon emissions produced by the transportation sector. The charging infrastructure has to grow at a rapid pace to encourage EV adaption. Installing higher capacity fast chargers will help alleviate the range anxiety of battery electric vehicle customers. More public charging stations are required for the full adaption of EVs. Utility power is distributed as ‘alternating current.’ A battery requires ‘direct current’ (DC) source to charge it. Hence a power converter that converts AC source to DC source is required to charge an electric vehicle battery. Public transportation is another sector that is adapting electric vehicles at a fast pace. These vehicles require more power to operate and hence have huge battery packs. These vehicles require ultra-high-power charger to keep the charging time reasonable. A 60 Hz stepdown transformer is required at the facility to use the power. The cost and time to install this heavy transformer will inhibit the setting up a charging station. Power converters than can connect to medium voltage directly will eliminate the need for the step-down transformer saving space and cost. Commercially available state-of-the-art fast charging converters are adapted from general purpose commercial and industrial application rectifiers. The efficiencies of these converters tend to be lower (around 94%) due to the two-stage power conversion architecture. All the power that flows from the AC utility grid to charge the battery will be processed and filtered through two power conversion stages. Due to the anticipated increase in demand, there is a renewed interest in developing power converter topologies specific to battery charging applications. The objective here is to develop cheaper and compact power converters for battery charging. This dissertation proposes an innovative quasi-single stage power converter topologies for battery charging applications and direct medium voltage connected converters. The proposed topology fundamentally can achieve higher efficiency and power density than the conventional two-stage based converters. Only one stage requires filtering and incurs power conversion losses. Control burden is usually higher for single stage topologies. Innovative control approaches are presented to simplify the control complexity

    Applications of Power Electronics:Volume 1

    Get PDF

    Advances in Theoretical and Computational Energy Optimization Processes

    Get PDF
    The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes

    10th EASN International Conference on Innovation in Aviation & Space to the Satisfaction of the European Citizens

    Get PDF
    This Special Issue book contains selected papers from works presented at the 10th EASN (European Aeronautics Science Network) International Conference on Innovation in Aviation & Space, which was held from the 2nd until the 4th of September, 2020. About 350 remote participants contributed to a high-level scientific gathering providing some of the latest research results on the topic, as well as some of the latest relevant technological advancements. Eleven interesting articles, which cover a wide range of topics including characterization, analysis and design, as well as numerical simulation, are contained in this Special Issue

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    A Single-phase Rectifier With Ripple-power Decoupling and Application to LED Lighting

    Get PDF
    In recent years, Light-Emitting-Diode (LED) is widely used in lighting applications for its high efficacy and high reliability. However, the rectifier, which is required by the LEDs to convert the AC power from the grid into DC power, suffers from low-reliability caused by the filtering capacitor. In order to fully utilize the long operational hours of the LEDs, this thesis proposes a rectifier that has improved reliability by adding a ripple-port to eliminate the non-reliable electrolytic capacitor. The ripple-port is capable of decoupling the ripple-power inherited in a single-phase rectifier, which enables using the reliable film capacitor to replace the electrolytic capacitor. To guarantee that the ripple-port can effectively decouple the ripple-power, a closed-loop control scheme is designed and implemented in a digital controller. Simulation and experimental results show that the proposed rectifier can reduce the required capacitance by 70%, which results in a 60% increase in lifetime. The proposed ripple-port circuit can be considered as an add-on module to be integrated into the rectifiers used in applications that require long lifetime. A detailed analysis of the efficiency, cost and reliability of applying the ripple-port in LED lighting applications supports the feasibility of the proposed circuit

    Intelligent distribution network design

    Get PDF
    Distribution networks (medium voltage and low voltage) are subject to changes caused by re-regulation of the energy supply, economical and environmental constraints more sensitive equipment, power quality requirements and the increasing penetration of distributed generation. The latter is seen as one of the main challenges for today’s and future network operation and design. In this thesis it is investigated in what way these developments enforce intelligent distribution network design and new engineering tools. Furthermore it should be investigated how a new design and control strategy can contribute to meet the power quality and performance requirements in distribution networks in future. This thesis focuses on network structures that, typical for the Netherlands, are based on relatively short underground cables.Managing current and voltage in such networks both during normal and disturbed operation, requires a good network design and an adequate earthing concept. The limited size of Dutch distribution networks has a positive effect on power quality aspects and reliability. The use of impedance earthing for medium voltage (MV) cable networks reduces the risk of multi-phase faults that cause large fault currents and deep dips. It also reduces the risk on transient overvoltages due to re-striking of cable faults. A TN earthing system for the low voltage (LV) network reduces the risk of damaged apparatus and it maintains safety for people. However, care must be taken for the earthing of devices of other service providers, which requires a co-operative solution. The fast developments of computation techniques and IT equipment in the network opened the possibility to perform many calculations in short time based on both actual and historical data. Examples are the on-line distribution loadflow and the short-circuit calculation for protection coordination and intelligent fault location. In LV and MV network calculations the accuracy of the models and the availability of data are the main obstacles. Because of the unsymmetrical nature of load and generation in LV networks a multiple conductor model is needed. For safety calculations also the earth impedances have to be modelled as well as the neutral and protective earth impedances and their mutual interactions. The protection philosophy in MV networks must take into account the changing requirements regarding safety and power quality. An overall philosophy concerning both network and generator protection is necessary. New developments in substation automation benefit future upgrade and refurbishment of substation control and protection. As a result, also cheap,accurate and fast fault location becomes feasible, reducing the outage time of the customers. Next the influence of distributed generation on the above subjects is investigated. The increasing magnitude of short-circuit currents and the increasing voltage variations in the network are seen as a major challenge for the network planners. Conventional measures for reducing voltage problems may introduce problems with the short-circuit current level and vice versa. In networks which contain a large amount of both load and distributed generation, adverse voltage problems may occur, especially when the generation is located in the LV network. In order to reduce this, specific control strategies need to be developed. The last part of the thesis is related to these control strategies as a solution for operating future distribution networks. By introducing storage and power electronics, networks can be transformed into autonomously controlled networks. These networks remain an inseparable part of the electricity network but may behave in a fairly autonomous manner, both internally and externally, with respect to the rest of the network. The focus in this thesis is on maintaining an optimal voltage for all customers during all combinations of load and generation. Because of the autonomous behaviour of the control systems, their operation must be based on local measurements. A suggested approach is to replace the normal open point between MV feeders by a so called "intelligent node". This node is able to control the power flow in several feeders by means of power electronics and, if provided, by electricity storage. The voltage profile can be improved further, by introducing an intelligent voltage control on the HV/MV transformer feeding the distribution network. The simulation studies in this research have been performed on a realistic model of a typical Dutch MV/LV distribution system. Based on the results the following conclusions are drawn: • The HV/MV transformer control must be based on line drop compensation. This compensation must use the load situation instead of the measured exchange signal. The compensation factor must differ between cases of high load and of high generation. • The optimal control of the intelligent node is a voltage control, based on a linear dependence of the voltage at the node and the power flow towards that node. This method can be improved when the voltage of the MV bus bar in the substation is taken into account. • Methods to obtain a perfect voltage profile will lead to a storage device that is not available for this voltage level yet. • A voltage control based on a fixed value at both terminals of the intelligent node and at the MV bus bar of the HV/MV substation does not result in the optimal voltage profile, although guarantee a good voltage quality and might therefore be a good alternativ
    corecore