93 research outputs found

    Total Break of the l-IC Signature Scheme

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceIn this paper, we describe efficient forgery and full-key recovery attacks on the l-IC- signature scheme recently proposed at PKC 2007. This cryptosystem is a multivariate scheme based on a new internal quadratic primitive which avoids some drawbacks of previous multivariate schemes: the scheme is extremely fast since it requires one exponentiation in a finite field of medium size and the public key is shorter than in many multivariate signature schemes. Our attacks rely on the recent cryptanalytic tool developed by Dubois et al. against the SFLASH signature scheme. However, the final stage of the attacks require the use of Grobner basis techniques to conclude to actually forge a signature (resp. to recover the secret key). For the forgery attack, this is due to the fact that Patarin's attack is much more difficult to mount against l-IC. The key recovery attack is also very efficient since it is faster to recover equivalent secret keys than to forge

    SFLASHv3, a fast asymmetric signature scheme

    Get PDF
    SFLASH-v2 is one of the three asymmetric signature schemes recommended by the European consortium for low-cost smart cards. The latest implementation report published at PKC 2003 shows that SFLASH-v2 is the fastest signature scheme known. This is a detailed specification of SFLASH-v3 produced in 2003 for fear of v2 being broken. HOWEVER after detailed analysis by Chen Courtois and Yang [ICICS04], Sflash-v2 is not broken and we still recommend the previous version Sflash-v2, already recommended by Nessie, instead of this version

    Hash-based Multivariate Public Key Cryptosystems

    Get PDF
    Many efficient attacks have appeared in recent years, which have led to serious blow for the traditional multivariate public key cryptosystems. For example, the signature scheme SFLASH was broken by Dubois et al. at CRYPTO\u2707, and the Square signature (or encryption) scheme by Billet et al. at ASIACRYPTO\u2709. Most multivariate schemes known so far are insecure, except maybe the sigature schemes UOV and HFEv-. Following these new developments, it seems that the general design principle of multivariate schemes has been seriously questioned, and there is a rather pressing desire to find new trapdoor construction or mathematical tools and ideal. In this paper, we introduce the hash authentication techniques and combine with the traditional MQ-trapdoors to propose a novel hash-based multivariate public key cryptosystems. The resulting scheme, called EMC (Extended Multivariate Cryptosystem), can also be seen as a novel hash-based cryptosystems like Merkle tree signature. And it offers the double security protection for signing or encrypting. By the our analysis, we can construct the secure and efficient not only signature scheme but also encryption scheme by using the EMC scheme combined some modification methods summarized by Wolf. And thus we present two new schems: EMC signature scheme (with the Minus method ``- ) and EMC encryption scheme (with the Plus method ``+ ). In addition, we also propose a reduced scheme of the EMC signature scheme (a light-weight signature scheme). Precise complexity estimates for these schemes are provided, but their security proofs in the random oracle model are still an open problem

    Practical Cryptanalysis of k-ary C*

    Get PDF
    Recently, an article by Felke appeared in Cryptography and Communications discussing the security of biquadratic C* and a further generalization, k-ary C*. The article derives lower bounds for the complexity of an algebraic attack, directly inverting the public key, under an assumption that the first-fall degree is a good approximation of the solving degree, an assumption that the paper notes requires ``greater justification and clarification. In this work, we provide a practical attack breaking all k-ary C* schemes. The attack is based on differential techniques and requires nothing but the ability to evaluate the public key and solve linear systems. In particular, the attack breaks the parameters provided in CryptoChallenge11 by constructing and solving linear systems of moderate size in a few minutes

    Two-Face: New Public Key Multivariate Schemes

    Get PDF
    We present here new multivariate schemes that can be seen as HFE generalization having a property called `Two-Face\u27. Particularly, we present five such families of algorithms named `Dob\u27, `Simple Pat\u27, `General Pat\u27, `Mac\u27, and `Super Two-Face\u27. These families have connections between them, some of them are refinements or generalizations of others. Notably, some of these schemes can be used for public key encryption, and some for public key signature. We introduce also new multivariate quadratic permutations that may have interest beyond cryptography

    Properties of the Discrete Differential with Cryptographic Applications

    Get PDF
    Recently, the C∗−C^{*-} signature scheme has been completely broken by Dubois et al. (Dubois et al., CRYPTO and EUROCRYPT 2007). As a consequence, the security of SFLASH and other multivariate public key systems have been impaired. The attacks presented in (Dubois et al., CRYPTO and EUROCRYPT 2007) rely on a symmetry of the differential of the encryption mapping. In (Ding et al., 2007), Ding et al. experimentally justify the use projection as a method of avoiding the new attack. In this paper, we derive some properties of the discrete differential, give a theoretical justification for the reparation in (Ding et al., 2007), and establish the exact context in which this attack is applicable

    A study of big field multivariate cryptography.

    Get PDF
    As the world grapples with the possibility of widespread quantum computing, the cryptosystems of the day need to be up to date. Multivariate Public Key Cryptography is a leading option for security in a post quantum society. One goal of this work is to classify the security of multivariate schemes, especially C*variants. We begin by introducing Multivariate Public Key Cryptography and will then discuss different multivariate schemes and the main types of attacks that have been proven effective against multivariate schemes. Once we have developed an appropriate background, we analyze security of different schemes against particular attacks. Specifically, we will analyze differential security of HFEv- and PFLASH schemes. We then introduce a variant of C* that may be used as an encryption scheme, not just as a signature scheme. Finally, we will analyze the security and efficiency of a (n,d,s,a,p,t) scheme in general. This allows for individuals to generally discuss security and performance of any C* variant

    Under Quantum Computer Attack: Is Rainbow a Replacement of RSA and Elliptic Curves on Hardware?

    Get PDF
    Among cryptographic systems, multivariate signature is one of the most popular candidates since it has the potential to resist quantum computer attacks. Rainbow belongs to the multivariate signature, which can be viewed as a multilayer unbalanced Oil-Vinegar system. In this paper, we present techniques to exploit Rainbow signature on hardware meeting the requirements of efficient high-performance applications. We propose a general architecture for efficient hardware implementations of Rainbow and enhance our design in three directions. First, we present a fast inversion based on binary trees. Second, we present an efficient multiplication based on compact construction in composite fields. Third, we present a parallel solving system of linear equations based on Gauss-Jordan elimination. Via further other minor optimizations and by integrating the major improvement above, we implement our design in composite fields on standard cell CMOS Application Specific Integrated Circuits (ASICs). The experimental results show that our implementation takes 4.9 us and 242 clock cycles to generate a Rainbow signature with the frequency of 50 MHz. Comparison results show that our design is more efficient than the RSA and ECC implementations

    Cryptanalysis of SFlash v3

    Get PDF
    Sflash is a fast multivariate signature scheme. Though the first version Sflash-v1 was flawed, a second version, Sflash-v2 was selected by the Nessie Consortium and was recommended for implementation of low-end smart cards. Very recently, due to the security concern, the designer of Sflash recommended that Sflash-v2 should not be used, instead a new version Sflash-v3 is proposed, which essentially only increases the length of the signature. The Sflash family of signature schemes is a variant of the Matsumoto and Imai public key cryptosystem. The modification is through the Minus method, namely given a set of polynomial equations, one takes out a few of them to make them much more difficult to solve. In this paper, we attack the Sflash-v3 scheme by combining an idea from the relinearization method by Kipnis and Shamir, which was used to attack the Hidden Field Equation schemes, and the linearization method by Patarin. We show that the attack complexity is less than 2^80, the security standard required by the Nessie Consortium
    • …
    corecore