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ABSTRACT

A STUDY OF BIG FIELD MULTIVARIATE CRYPTOGRAPHY

Ryann Cartor

May 17, 2019

As the world grapples with the possibility of widespread quantum comput-

ing, the cryptosystems of the day need to be up to date. Multivariate Public Key

Cryptography is a leading option for security in a post quantum society. One goal

of this work is to classify the security of multivariate schemes, especially C∗ vari-

ants. We begin by introducing Multivariate Public Key Cryptography and will then

discuss different multivariate schemes and the main types of attacks that have been

proven effective against multivariate schemes. Once we have developed an appropri-

ate background, we analyze security of different schemes against particular attacks.

Specifically, we will analyze differential security of HFEv− and PFLASH schemes.

We then introduce a variant of C∗ that may be used as an encryption scheme, not

just as a signature scheme. Finally, we will analyze the security and efficiency of

a (n, d, s, a, p, t) scheme in general. This allows for individuals to generally discuss

security and performance of any C∗ variant.
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CHAPTER 1

AN INTRODUCTION TO CRYPTOGRAPHY

In order to illustrate the basic concepts of cryptography, we will introduce

characters Alice, Bob, and Charlie. Alice and Bob want to have a private conver-

sation, while Charlie wants to spy on them. In order to keep the contents of their

conversation secret, Alice and Bob may turn to cryptography to exchange encrypted

messages. Alice and Bob have many choices when deciding upon a cipher code. One

of the first things they must decide is if they will use a private key or a public key

to encrypt. In private key cryptography, both parties have enough information to

encrypt and decrypt. Because of this, the way that messages are encrypted is kept

private.

Private Key Toy Example: Alice comes up with the secret encryption code

C ≡ P + 3 mod 26. This would mean X 7→ A, Y 7→ B,Z 7→ C,A 7→ D, etc.

Through secret channels, Alice sends Bob her cryptosystem. Bob encrypts his mes-

sage using Alice’s cryptosystem and sends back the message “KHOOR!” Charlie

would not know the meaning of this encrypted message, but Alice uses her en-

cryption/decryption key to know that P ≡ C − 3 mod 26, and that this message

says “Hello!” The secrecy of the encryption key is of utmost importance because if

Charlie were to gain access to the key, he would automatically be able to decrypt

messages.
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Diffie-Hellman Key Exchange The purpose of the Diffie-Hellman Key Ex-

change is to create a shared secret between two parties. Alice and Bob will want to

create a private key, but we consider that they do not have a way of sharing infor-

mation through secure channels, meaning Charlie can spy on any correspondence

between the two. The way to create this shared secret is to first decide on a prime

number p and a base element g ∈ Fp ∼= Zp. This information cannot be secretly

transmitted, so Charlie has access to the values of p and g. Now Alice will choose

some integer kA < p and computes gka mod p := a, and Bob will choose kB < p

and computes gka mod p := b. Alice and Bob will keep kA and kB private, but will

send the values a and b to the other party. Now Alice and Bob can let the value

gkAkB ∈ Fp be their key.

Bob will compute this value by raising the value a he received from Alice to

the power of his secret number kB.

akB mod p = (gkA)kB mod p = gkAkB mod p

Alice will, respectively, raise b to the power kA. Now both parties have the

same shared secret, while Charlie does not have enough information to find the key.

This is the basis of the Diffie-Hellman Problem, which is if you are given g, a, b ∈ Fp

to then find gkAkB . Clearly if an individual can solve the discrete log problem, the

individual could also solve the Diffie-Hellman problem. The Discrete Log Problem

is GI-hard, and it is conjectured that the difficulty of the Diffie-Hellman Problem

is equivalent to that of the Discrete Log Problem. Problems that are GI-hard tend

to be sub-exponential in complexity, but still difficult for classical computers.

1.1 Public Key Cryptography

Public-key cryptography centers around the idea of “one-way functions.”

These are functions that if you are given an input, it is easy to compute an output.

2



But, if you are given only an output, it is unreasonably difficult to invert the function

without additional information.

The Diffie-Hellman Key Exchange creates a shared secret where the key and

the shared secret are kept private. Public key schemes may be used for encryption in

order to create a shared secret, where the encryption key is public. In practice, one

individual may create a random string of numbers, use a public key to encrypt that

random string, and then send the encrypted random message to the other party who

may then decrypt the cipher-text to understand the original string. The random

string is thus the two parties’ shared secret. Using our characters, we say that

Alice creates one way functions, which she uses to create her public key. Both Bob

and Charlie can see the public equations. Bob encrypts his message, it looks like

gibberish to Charlie, but Alice uses secret information only she knows to decrypt

Bob’s message

Signature Verification We can also use cryptosystems to guarantee the authen-

ticity of a message. To describe how a scheme may be used for signature verification,

we will again say that Alice and Bob would like to communicate, but now we will

say that Charlie may try to send Bob information disguised as Alice. To defend

against this, Alice and Bob will agree upon a signature scheme for their correspon-

dence. Alice will create a public key P , and Alice and Bob will agree that Alice’s

signature will be the preimage of some certificate y. Alice created the public key, so

she is able to compute P−1(y) := x. She will write her message, sign it as x, and

send it to Bob. Bob will receive her message, compute P (x) = y, and he will know

the message came from Alice. If Charlie only knows that Alice is supposed to sign

with the preimage of y, he will not know how to compute that using Alice’s public

key.

3



Hash Functions Hash functions are another way to provide security against mes-

sage tampering. A hash function is a function, h, that will in general have the

following properties:

• Collision free, meaning that if messages x1 6= x2, then h(x1) 6= h(x2).

• The same message x will always result in the same hash value h(x).

• Small changes in the message should result in major changes in the hash value.

So if x1 and x2 are similar, h(x1) and h(x2) are not.

• It is infeasible to guess x given h(x)

• Messages can be of variable length, while all hash values will have a fixed

length.

We can see that generally speaking, a hash function is a function that pseudo-

randomly assigns a message to a hash value, and that will always follow that as-

signment once it has been made. Well known hash functions include SHA functions

(0 through 3), RIPEMD-160, BLAKE2, Whirlpool, and more.

To illustrate how hash functions may be used, consider the following scenario.

Bob would like to send Alice a message. After Alice receives the message, she wants

to make sure the message she is reading is actually what Bob sent, and that Charlie

has not tampered with or altered the message in any way. In order to protect

against outside tampering, Alice and Bob may choose to use a hash function.

The hash function is used along with the Bob’s public key. Bob will send

Alice (x, v) = (x, P−1(h(x))), and then Alice can check that P(v)=h(x). In order

for Charlie to trick Alice, he would have had to find values x and v such that

P (v) = h(x). But, only Bob has access to the information necessary to invert P ,

and it would be infeasible for Charlie to guess a message x′ such that h(x) = h(x′).

4



1.1.1 RSA

The public key cryptosystem RSA (named after authors Rivest, Shamir, and

Adleman) was introduced in 1978 and is still widely used today. The security of

this scheme is based on the difficulty of factoring large numbers into their prime

factors. It is an open question whether breaking RSA has the same difficulty as the

factoring problem.

We will consider the hypothetical situation that Alice and Bob would like to

secretly converse in order to demonstrate how RSA works. Alice decides to create a

public key to use for encryption. To do this, she first chooses two prime numbers, p

and q, and computes n = pq. Alice will then choose some large integer d such that

gcd(d, ϕ(n)) = 1, where ϕ(n) = (p − 1)(q − 1). Finally, she will find some e such

that e · d ≡ 1 mod ϕ(n). Clearly, this means e · d = kϕ(n) + 1 for some k.

The reason behind computing integers e and d is to create a multiplicative

inverse for decryption. It is clear that Zn has zero divisors when n is not prime,

but we can consider the unit group (the set of all invertible elements) of Zn. We

will denote the unit group of Zn as Un. For primes p and q, where n = p × q,

Un ∼= Up × Uq, where Up has size p − 1, and Uq has size q − 1. Thus, Un has size

ϕ(n) = (p− 1)× (q − 1). So for any x ∈ Un, xϕ(n) = (1 mod n).

If Bob wants to send Alice the message M (represented as an integer between

0 and n−1) he will compute C ≡M e (mod n). Once Alice receives the cipher text

C, she computes

Cd = (M e)d = Mkϕ(n)+1 = (Mϕ(n))kM

Cd ≡M (mod n)

and she then understands the original plain text. Adversary Charlie only sees C, n,

and e, and is unable to find any multiplicative inverse d without knowing the prime

factors of n.

5



1.2 Post Quantum Cryptography

In 1994 Peter Shor developed a polynomial-time algorithm that computes the

prime factorization of a number on quantum computers. This algorithm will render

RSA and similar schemes useless when quantum computing becomes prevelant.

Post-quantum cryptography focuses on schemes where there is no clear quantum

advantage.

1.3 Multivariate Cryptography

A specific subset of post-quantum cryptography is multivariate cryptogra-

phy. Multivariate cryptosystems are composed of systems of quadratic equations,

and the security of these schemes is based on the MQ-problem. The MQ-problem is

the problem of solving systems of quadratic equations over a field. This problem is

known to be NP-hard, which suggests it will be difficult even for quantum comput-

ers. The “one-way functions” used to construct multivariate schemes are created

by function composition. Composing multiple easily invertible maps results in a

function that is difficult to invert without knowing each of the individual functions.

6



CHAPTER 2

BIG FIELD MULTIVARIATE SCHEMES

2.1 Introduction to Big Field Schemes

Many multivariate schemes make use of the fact that given a finite field

Fq and a degree n extension K, then K is an Fq-algebra. Schemes utilizing this

structure are known as “big field” schemes.

By choosing a vector space isomorphism φ : Fq → K, we are guaranteed

an equivalence between systems F and f , where F is a set of n polynomials in n

variables over Fq, and f is a univariate polynomial of the form

f(x) =
∑

0≤i≤j<n

αijx
qi+qj , x ∈ K.

This equivalence is given by F = φ−1 ◦ f ◦ φ

To hide the structure of an easily invertible map F , the standard technique

is to apply a morphism of polynomials, essentially choosing random linear maps

that mix the input and output spaces of the central map. Formally, we define these

morphisms as follows.

Definition 1. A polynomial morphism between two systems of polynomials is a pair

of affine maps (T, U) such that G = T ◦F ◦U . If both T and U are invertible, then

the morphism is said to be an isomorphism and F and G are said to be isomorphic.

Thus, for big field schemes, the construction of a public key can be summa-

rized with the following diagram.

7



Fnq Fnq Fnq Fnq

K K

U F T

φ

f

φ−1

2.2 C∗ Scheme

Matsumoto and Imai introduced the first massively multivariate cryptosys-

tem now known as C∗ at Eurocrypt ‘88, [1]. The C∗ scheme is a big field con-

struction in which the central map f : K → K is the Fq-quadratic monomial map

f(x) = xq
θ+1. We call this function Fq-quadratic because it is the product of two

Fq-linear terms (xq
θ

and x). In order to guarantee that this function has an inverse,

it is required that gcd(qθ+1, qn − 1) = 1. The central map f is hidden by a poly-

nomial morphism. In this case, the affine maps T and U both map from Fnq to Fnq .

Thus the public key is given by P = T ◦ φ−1 ◦ f ◦ φ ◦ U .

Encryption of a plaintext x ∈ Fnq is accomplished by evaluating the public

polynomials P at x. Decryption is accomplished by inverting each of the three

component maps individually. The inversion of v = f(u) is performed by solving

h(qθ + 1) = 1 mod (qn − 1), and calculating u = vh. The original intention for the

C∗ scheme was encryption, but it is also useful for digital signatures.

2.2.1 C∗ Toy Example

Creating the public key In order to complete a toy example, we must first

choose our private information. We will let q = 2, which will make our base field

F2 = GF (2). We can choose K to be a degree n = 5 extension of Fq, defined as

K = F/〈x5 + x2 + 1〉. We will choose our central map f to be f(x) = x23+1. To

create our public key, we will consider the input vector x = [x1, x2, x3, x4, x5]> ∈ F5
2.

8



We must also define our maps U and T , which for this example will be defined

below:

U =



1 1 0 0 1

1 1 0 1 0

0 1 1 1 0

1 0 0 1 1

1 1 0 1 1


T =



0 0 0 1 0

0 0 0 0 1

0 1 1 0 1

0 1 0 1 1

1 0 0 1 1


First we compose our input vector with our map U , which gives:

Ux =



x1 + x2 + x5

x1 + x2 + x4

x2 + x3 + x4

x1 + x4 + x5

x1 + x2 + x4 + x5


We can then write Ux as an element of the extension field by composing Ux with

our vector space isomporphism φ. Let β be a primitive element of the extension

field. Then, we can define:

φ◦U(x) = (x1+x2+x5)+(x1+x2+x4)β+(x2+x3+x4)β2+(x1+x4+x5)β4+(x1+x2+x4+x5)β5

Now that we have mixed our input values with our affine map U and found

the extension field representation of this information, we can evaluate our central

map f at this element.
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f(φ(U(x))) =
(
φ(U(x))

)23+1

=
(
φ(Ux)

)23(
φ(U(x))

)
=
(

(x1 + x2 + x5) + (x1 + x2 + x4)β + (x2 + x3 + x4)β2 + (x1 + x4 + x5)β4

+ (x1 + x2 + x4 + x5)β5
)23(

(x1 + x2 + x5) + (x1 + x2 + x4)β

+ (x2 + x3 + x4)β2 + (x1 + x4 + x5)β4 + (x1 + x2 + x4 + x5)β5
)

=
(

(x1 + x2 + x5) + (x1 + x2 + x4)β23 + (x2 + x3 + x4)β2·23 + (x1 + x4 + x5)β4·23

+ (x1 + x2 + x4 + x5)β5·23
)(

(x1 + x2 + x5) + (x1 + x2 + x4)β

+ (x2 + x3 + x4)β2 + (x1 + x4 + x5)β4 + (x1 + x2 + x4 + x5)β5
)

=(x4x5) + β(x1x3 + x2x4) + β6(x1x3) + β7(x1x2 + x4x5) + β8(x3x4 + x5)

+ β9(x3x4 + x2x5) + β10(x3x8) + β11(x2x3) + β15(x2x4) + β16(x2x5 + x3x5)

+ β17(x2) + β18x3 + β20x1 + β22(x1x4) + β24(x2x3) + β28(x1x4) + β29(x1x5)

+ β30(x1x2 + x4 + x1x5)

The next step will be to find a base field representation of this element in the

extension field. In order to use φ−1, we require all of the β terms to be expressed

with degrees less than 5. Because β is a primitive element, then we know that

β5 + β2 + 1 = 0 (from our definition of K). This gives us the relationship that

β5 = β2 + 1. We can use this information to find other relations, for example,

β6 = β3 + β. We can also use field equations to simplify the expressions. Because

F2 = GF (2) we know that x = −x, 2x = 0, and xj = x for each x ∈ F. Using this

information we are able to rewrite the output of f shown above to get the following.
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f
(
φ(U(x))

)
=x4x5 + x3x4 + x5 + x2x3 + x2x4 + x2x5 + x2 + x3 + x1x4 + x1x5

+ β(x3x4 + x3x5 + x2 + x3 + x1x4 + x1x2 + x4 + x1x5)

+ β2(x1x2 + x4x5 + x3x4 + x5 + x2x4 + x1)

+ β3(x1x3 + x5 + x2x4 + x3x5 + x1 + x2x3 + x1x5)

+ β4(x4x5 + x3x4 + x2x4 + x2 + x2x3 + x4 + x1x5)

The quantity φ−1(f(φ(Ux))) is

x4x5 + x3x4 + x5 + x2x3 + x2x4 + x2x5 + x2 + x3 + x1x4 + x1x5

x3x4 + x3x5 + x2 + x3 + x1x4 + x1x2 + x4 + x1x5

x1x2 + x4x5 + x3x4 + x5 + x2x4 + x1

x1x3 + x5 + x2x4 + x3x5 + x1 + x2x3 + x1x5

x4x5 + x3x4 + x2x4 + x2 + x2x3 + x4 + x1x5


We compose this with our map T to get the public key:

P (x) =



x1x3 + x2x3 + x2x4 + x1x5 + x3x5 + x1 + x5

x2x3 + x2x4 + x3x4 + x1x5 + x4x5 + x2 + x4

x2x3 + x1x4 + x3x4 + x3x5 + x1 + x3 + x5

x1x2 + x1x3 + x1x4 + x1x5 + x4x5 + x1 + x3 + x5

x1x3 + x2x3 + x1x4 + x2x4 + x1x5 + x2x5 + x3x5 + x1 + x3 + x4


To encrypt To encrypt a vector x, you will evaluate P at x. For a specific

example, lets say that x =

[
1 1 0 0 1

]>
. Then P (x) =

[
1 1 0 0 0

]>
.

To decrypt Let P (x) = y. Then, given y, you will compute

U−1 ◦ φ−1 ◦ f−1 ◦ φ ◦ T−1y

to get x.
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2.2.2 Break of C∗

C∗ was broken by Patarin in 1995 in [2] using linearization equations. The

goal of the attack is to use the known quadratic equations to discover linear rela-

tionships between the plaintext and cipher text variables.

The first step of the attack is to denote v = uq
θ+1. Notice, v, u ∈ K, so

we can consider u = φ(x1, . . . , xn) and v = φ(y1, . . . , yn). Once this relationship is

established, the next step is to raise both sides to the qθ − 1 power, which results

in vq
θ−1 = uq

2θ−1. The final step in creating the linearization equations is then to

multiply both sides of the equation by uv, giving us uvq
θ

= uq
2θ
v. This equation is

Fq-linear in both plain text and cipher text variables, which renders the scheme no

longer secure.

2.2.3 PFLASH and Other C∗ Variants

After the break of C∗, modifiers were introduced in [3] in the hopes of regain-

ing security. One such modifier is the minus modifier, which eliminates r equations

from the public key. Revisiting the example from Section 2.2.1, if we were to apply

a minus modifier, we may only publish 4 of the 5 public key equations (in this case,

r would be equal to 1). C∗ schemes that have a minus modifier applied are called

C∗− schemes. One example of a C∗− scheme is SFLASH. SFLASH is a particular

parameterization of a C∗− scheme which was thought to be secure and was recom-

mended by the NESSIE consortium for smart card use. SFLASH was broken in [4]

by employing the discrete differential, which will be discussed in Section 3.2.

Another modifier introduced is the projection modifier. The idea of pro-

jection is to fix the value of d − n input variables to change the simplicity of the

central map. PFLASH, see [5], is a specific parameterization of a projected C∗−

scheme, which is used as a digital signature primitive. If we consider the projection
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modifier πd : Fdn → Fdq and the minus modifier πr : Fdq → Fd−rq , then the public key

of PFLASH is given by P = πr ◦ T ◦ φ−1 ◦ f ◦ φ ◦ U ◦ πd.

It is important to note that there is only a polynomial morphism between

the central map and the public key, as opposed to the two being isomorphic. The

morphism of polynomials problem is known to be NP-hard, as seen in [6], which

gives hope that the information lost to the public key may secure the scheme.

Verification of a signature is accomplished by evaluating the public polyno-

mials at the given signature. Signing is done by finding preimages of each of the

private maps. To find a preimage of πr ◦ Tφ−1, randomly append r values to the

message, then apply T−1 and φ. Once f is inverted, an element in the preimage of

φ ◦ U and in the image of πd is selected as the signature.

2.3 HFE

Hidden Field Equation (HFE) scheme (introduced in [7]) is a generalization

of the C∗ construction where the monomial map is replaced by a more general

polynomial with a degree bound D. Given the base field Fq and the degree n

extension K, we choose a quadratic polynomial f : K → K of degree bound D.

Thus f has the form:

f(x) =
∑
i≤j

qi+qj≤D

αi,jx
qi+qj +

∑
i

qi≤D

βix
qi + γ,

where αi,j, βi, γ ∈ K. The public key is then constructed via the isomorphism:

P = T ◦ φ−1 ◦ f ◦ φ ◦ U.

Inversion is accomplished by first taking a ciphertext y = P (x), computing

v = T−1(y), solving v = f(u) for u via the Berlekamp algorithm, see [8], and then

recovering x = U−1(u).
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The HFE scheme was designed to be used as an encryption or a signature

scheme. To generate a signature (or to decrypt), one computes, successively, v =

T−1y, u = f−1(v) and x = U−1u. The vector x is the signature (or the plaintext).

For verification (or encryption), one simply evaluates the public polynomials, P , at

x. If P (x) which is equal to T ◦f ◦U(x) is equal to y, the signature is authenticated

(or the ciphertext is y).

HFE was presented in the hopes of creating a scheme that is protected against

Patarin’s linearization equations. The scheme is safe from that attack, but HFE

is vulnerable against MinRank and differential attacks, which we will discuss in a

later chapter.

2.3.1 HFEv and Other Variants

The break of HFE lead to the application of modifiers in the hopes of con-

structing a secure adaptation of the scheme. Once again a minus modifier was pro-

posed, which lead to the creation of HFE−. This scheme seemed to hold promise,

but a new key recovery attack for HFE− was proposed in [9].

When using HFE as a signature scheme, another possible modification is to

add vinegar variables. The vinegar modifier adds extra variables x̃1, x̃2, . . . , x̃v into

the public key, that can be assigned random values upon inversion. The effect of

adding vinegar variables is that new quadratic terms, formed from both products of

vinegar variables and HFE variables and products among vinegar variables, increase

the rank of the public key. The central map of the HFEv scheme has the form

f(x) =
∑
i≤j

qi+qj≤D

αi,jx
qi+qj +

∑
i

qi≤D

βi(x̃1, x̃2, . . . , x̃v)x
qi + γ(x̃1, x̃2, . . . , x̃v)

where x ∈ K, αi,j ∈ K, βi : Fvq → K is linear, and γ : Fvq → K is quadratic.
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The vector valued functions of HFEv map from Fn+v
q → Fnq , unline the vector valued

functions of HFE which map from Fnq → Fnq . But, as shown in [10–12], it can be

useful to express these functions over the extension field K.

One way to create the representation over K is by augmenting an additional

n − v elements to the input of f . We can consider the input variables ŷ (vinegar

variables) and x̂ (HFE variables) and f̂ , which is now a bivariate function over K.

We may now write f in the following form:

f(x, y) =
∑
i≤j

qi+qj≤D

αi,jx
qi+qj +

∑
i

qi≤D

βix
qiyq

j

+
∑

0≤i≤j<n

γijy
qi+qj

Here we see an obvious distinction among the types of monomials.

The HFEv− scheme applies a minus modifier to an HFEv scheme. Just as

before, the minus modifier removes r of the public equations. This alteration is

designed to destroy some of the information of the big field operations latent in the

public key.

2.3.2 HFEv Toy Example

Creation of the public key For the purposes of this toy example, we will only

consider the central map f , and we will let U and T be identity maps. We will

choose q = 2, Fq = GF (2), K = F2/ < x4 + x + 1 >, n = 4, and v = 3. We will

define our central map to be f = xq
1+q2 + xy + yq

1+q2 , and consider β a primitive

element of the extension field. Using our information we compute:
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f̂

 x̂

ŷ

 =(x1 + βx2 + β2x3 + β3x4)q
3

+ (x1 + βx2 + β2x3 + β3x4)(y1 + βy2 + β2y3)

+ (y1 + βy2 + β2y3)q
3

=x3
1 + βx2

1x2 + β2x1x
2
2 + β3x3

2 + β2x2
1x3 + β4x2

2x3 + β4x1x
2
3 + β5x2x

2
3 + β6x3

3

+ β3x2
1x4 + β5x2

2x4 + β7x2
3x4 + β6x1x

2
4 + β7x2x

2
4 + β8x3x

2
4 + β9x3

4 + y3
1

+ βy2
1y2 + β2y1y

2
2 + β3y3

2 + β2y2
1y3 + β4y2

2y3 + β4y1y
2
3 + β5y2y

2
3 + β6y3

3

+ x1y1 + βx2y1 + β2x3y1 + β3x4y1 + βx1y2 + β2x2y2 + β3x3y2 + β4x4y2

+ β2x1y3 + β3x2y3 + β4x3y3 + β5x4y3

=(x1 + y1 + x1y1 + x3x4 + x2x4 + x3x4 + x2x3 + x1x3 + y2y3 + y1y3 + x4y2 + x3y3)

+ β(x1x2 + x2y1 + x1y2 + x2x4 + x4y3 + x3x4 + x2x4 + x4 + x1x3 + x4y2 + x3y3)

+ β2(x1x2 + x1x3 + y1y2 + y1y3 + x3y1 + x2y2 + x1y3 + x2x3 + x2x4 + y2y3

+ x4y3 + x3 + x1x4 + y3 + x3x4) + β3(x2 + x1x4 + y2 + x4y1 + x3y2 + x2y3 + x3

+ x1x4 + y3 + x3x4 + x2x4 + x4)

We will now denote the vinegar variables y1, y2, and y3 as x5, x6, and x7,

respectively. This gives us our public key P (x):


x1 + x5 + x1x5 + x3x4 + x2x4 + x3x4 + x2x3 + x1x3 + x6x7 + x5x7 + x4x6 + x3x7

x1x2 + x2x5 + x1x6 + x2x4 + x4x7 + x3x4 + x2x4 + x4 + x1x3 + x4x6 + x3x7

x1x2 + x1x3 + x5x6 + x5x7 + x3x5 + x2x6 + x1x7 + x2x3 + x2x4 + x6x7 + x4x7 + x3 + x1x4 + x7 + x3x4

x2 + x1x4 + x6 + x4x5 + x3x6 + x2x7 + x3 + x1x4 + x7 + x3x4 + x2x4 + x4


Signature Creation Alice wants to send Bob an important message, but Bob

needs a way to ensure the message he receives is from Alice. Alice creates her public

key P , and they agree upon a signature. Bob states he wants Alice’s signature to

be x where x is the preimage of y =

[
0 1 1 0

]
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Alice will then apply random values to the vinegar variables x5, x6, x7. She

will then use her information regarding the creation of the public key to invert f ,

which is now quadratic in x̂.

Alice finds that x =

[
1 0 1 1 1 0 0

]
is a preimage of y =

[
0 1 1 0

]
,

and signs her message accordingly.

Signature Verification Bob plugs x =

[
1 0 1 1 1 0 0

]
in to P and

verifies that P (x) =

[
0 1 1 0

]
= y.
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CHAPTER 3

ATTACKS

There are three major classes of attacks that have proved effective against

big field schemes. These classes of attacks include differential techniques, MinRank

attacks, and algebraic attacks. All of these attacks are related in some way to the

Q-rank of a scheme.

Definition 2. Given a central map f , we choose a matrix representation F of the

central map f such that

f(X) =

[
X Xq . . . Xqd−1

]
F

[
X Xq . . . Xqd−1

]>
We call the rank of the quadratic form F, the Q-rank of f

The MinRank key recovery attack has a complexity directly dependent on the

Q-rank of the central map. The differential symmetry attack is relevant when the

Q-rank of the central map is minimal in the relevant algebra. The direct algebraic

attack has a complexity dependent on the degree of regularity of the public key

which is usually a linear function of the Q-rank. We review each of these techniques.

The subsequent chapters will focus heavily on analyzing the security of different

multivariate schemes against these attacks

3.1 Direct Algebraic Attack

The most straightforward attack of a multivariate cryptosystem is to try

to directly invert the public key via Gröbner bases. In this section we will define
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Gröbner bases and outline the process of such an attack.

3.1.1 Gröbner Basis

Definition 3. Let G = {g1, . . . , g`} ⊂ F[X] = F[X1, . . . , Xm] be a finite set of

polynomials in m variables over a field F; and let I be the ideal of F[X] that they

generate. We say that G is a Gröbner basis for the ideal I if every nonzero f ∈ I

has a leading term that is divisible by the leading term of at least one of the gi.

(Page 74, [13])

Informally, a Gröbner basis is a special collection of functions that generate

an ideal, I. It is important to note that this differs from our normal idea of a basis

in that the linear combinations of the functions to form elements of our ideal I are

not unique.

Many resources have been devoted to creating algorithms to efficiently find

Gröbner bases. Buchberger created the first algorithm to compute the Gröbner

basis of a set of polynomials in [14]. Later, Faugére created the F4 algorithm,

published in [15], which greatly improves the efficiency of finding a Gröbner basis.

The first step to compute the Gröbner basis of an ideal, is to decide on a

term ordering. You will get different solutions depending on the chosen order, so it

is important to be consistent. Common orderings include Lexicographical ordering,

Degree-Lexicographical ordering, and Degree-Reverse-Lexicographical ordering.

The process of finding a Gröbner basis requires the use of the S-polynomial.

Definition 4. The S-polynomial of two nonzero polynomials f, g ∈ F[X1, . . . , Xm]

is

S(f, g) =
L

lt(f)
f − L

lt(g)
g

where L denotes the least common multiple of the leading terms of f and g. That

is, the power product of lowest total degree that is divisible by both lt(f) and lt(g)
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Now we will consider the following process, which follows Buchberger’s algo-

rithm. Let I ⊂ F[X1, . . . , Xm] be the ideal generated by the set F = {f1, f2, . . . , f`′}.

To create the Gröbner basis, one would reduce the S-polynomial S(fi, fj) modulo F

until a polynomial hij is obtained that either is 0 or has leading term that cannot be

reduced (for all 1 ≤ i < j ≤ `′). In the case that hij is nonzero, hij is added to the

set F . This process continues, adding f`′+1, f`′+2, . . . to the set F , until you have a

set G = {f1, . . . , f`} such that S(fi, fj) reduces to 0 modulo G for all 1 ≤ i < j ≤ `.

This process will give you a Gröbner basis of I and will terminate in finitely many

steps.

Definition 5. A Gröbner basis {g1, . . . , g`} of an ideal I ⊂ F[X1, . . . , Xm] is said

to be minimal if all of the gi are monic and if the leading term of gi does not divide

the leading term of gj for i 6= j, with i, j = 1, . . . , l. (Page 77, [13])

Once we have a minimal Gröbner basis, we are able to derive a reduced

Gröbner basis. It is shown in [13] that every ideal of F[X1, . . . , Xm] has a unique

reduced Gröbner basis.

Definition 6. A Gröbner basis {g1, . . . , g`} of an ideal I ⊂ F[X1, . . . , Xm] is said

to be reduced if all of the gi are monic and if none of the terms of gi is divisible by

the leading term of gj where j 6= i. (Page 78, [13]).

Reduced Gröbner bases are unique for any given ideal and monomial order-

ing. Thus, two ideals are equal iff they have the same reduced Gröbner basis.

3.1.2 Attacks Using Gröbner Basis

As discussed in the previous subsection, the Gröbner basis of a set of poly-

nomials is a set of functions that generate an ideal. We will consider the set of

polynomials

p1 = y1, p2 = y2, . . . , pn = yn
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where pi represents the ith public polynomial and yi represents the ith coordinate

of a ciphertext. If an adversary has intercepted a secret ciphertext [y1, y2, . . . , yn]

then the adversary may try to directly solve the set of polynomials using Gröbner

basis techniques.

Let F ⊂ F[X1, . . . , Xn], and denote V (F ) = {x ∈ Fn : f(x) = 0,∀f ∈ F} as

the variety of the set F . Recall the set of polynomials p1 = y1, p2 = y2, . . . , pn = yn,

consider the equivalent set p1− y1 = 0, p2− y2 = 0, . . . , pn− yn = 0. We will use the

following Lemma to establish a link between p1−y1 = 0, p2−y2 = 0, . . . , pn−yn = 0

and the Gröbner basis it will produce.

Lemma 1. Consider two sets of polynomials F,G ⊂ F[X1, . . . , Xn]. If F and G

generate the same ideal, then V (F ) = V (G).

Proof. Let I be an ideal generated by F .

1. Show V (F ) ⊆ V (I)

Let x ∈ V (F ). Thus, f(x) = 0 for all f ∈ F . Consider f̂ ∈ I. Then, by the

definition of I, f̂ =
∑
pifi, where fi ∈ F . So we see, f̂(x) =

∑
pi(x)fi(x) = 0,

because fi(x) = 0 for all fi ∈ F . Thus, for all x ∈ V (F ) we know x ∈ V (I).

Therefore, V (F ) ⊆ V (I)

2. Show V (I) ⊆ V (F )

Recall, F ⊆ I. Let x ∈ V (I). Thus f(x) = 0 for all f ∈ I. Let f̂ ∈ F . Then,

f̂ ∈ I. Thus, f̂(x) = 0. Therefore, V (I) ⊆ V (F ).

3. Consider G.

Let G be a generating set of I. As shown above, V (I) = V (F ). By similar

arguments, we can show V (G) = V (I). Therefore V (F ) = V (G).
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So if we start with the polynomial system pi − yi = 0 for all 1 ≤ i ≤ n, then

we can find a Gröbner basis for this system of polynomials. As we have found, the

variety of the Gröbner basis will be the same as the variety of the original of public

polynomials. This is advantageous for an adversary because it is known how to find

the variety of a Gröbner basis. The first coordinate of x ∈ V (G) will be a root of the

greatest common divisor of polynomials of the basis that depends only of the first

variable. After substituting in the first coordinate of x, the second coordinate will

be a root of the greatest common divisor of the resulting polynomials that depends

only on this second variable, and so on, until all of the coordinates of x have been

found. Thus,

P (x)− y = 0 =⇒ P (x) = y.

The complexity of solving such systems relies on the degree of regularity of

the system, which can be defined as the smallest degree at which a nontrivial syzygy

producing a degree fall is generated in the Gröbner basis algorithm.

3.2 Differential Techniques

Differential attacks make use of the discrete differential of a function. The

discrete differential of a function f : K→ K is the bivariate function

Df(a, x) = f(a+ x)− f(a)− f(x) + f(0).

The discrete differential is similar to the derivative of a function in the sense

that it depresses the degree of a function, but the discrete differential will also

introduce another variable. For example, if you have a cubic function f , then the

discrete differential of f , Df , will be a bi-quadratic function.

Pataran’s linearization equations in [2] can be viewed as a differential attack.

Notice that the discrete differential of the C∗ monomial f(x) = xq
θ+1 is Df(a, x) =

axq
θ

+ xaq
θ
. If a = x then we would get Df(x, x) = 2xq

θ+1, which is equal to zero
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in characteristic two. Now consider setting v = f(u) and compute the following:

0 = Df(v, f(u)) =
(
f(u)

)
vq

θ

+ v
(
f(u)

)qθ
= uq

θ+1vq
θ

+ vuq
2θ+qθ

= uq
θ

(uvq
θ

+ vuq
2θ

)

Notice, we now have a bilinear relationship between u (plain-text variables) and v

(cipher-text variables) over Fq.

Moving beyond the direct application of the differential, discrete differentials

are the foundation of differential symmetry and differential invariant attacks. It is

useful to note that while Df is a function over Fnq , we can define Df as a matrix

on K. Notice that we can express the ith coordinate of Df , notated as [Df(y, x)]i,

in the following way:

[Df(y, x)]i = y>Df ix

where Df is the matrix form of Df . If we consider f(x) to be the C∗ polynomial,

then Df is the n × n matrix with 1’s in the (0, θ) and (θ, 0) coordinates, and 0’s

everywhere else. This notation will help us in later analysis.

3.2.1 Differential Symmetry

Linear differential symmetry attacks attempt to find linear maps L that “fac-

tor through” the differential of the central map in an interesting way. Specifically,

the goal is to find maps M satisfying

Df(Ma, x) +Df(a,Mx) = ΛMDf(a, x) (3.1)

If such a map can be found, it allows one to “remove” a minus modifier by discov-

ering new linear combinations of the central maps that are linearly independent of

the public key.
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This technique was used in [4] to fatally attack SFLASH. We recall the

discrete differential of a function f is defined as Df(a, x) = f(a + x) − f(a) −

f(x) + f(0). When f(x) = xq
θ+1 then Df(a, x) = axqθ + aqθx. If we symmetrically

apply an element of the extension field to the inputs of the differential, we have

Df(σa, x) = σaxqθ + (σa)qθx and Df(a, σx) = a(σx)qθ +aqθxσ, where σ ∈ K. Thus

for all σ ∈ K, Df(σa, x) +Df(a, σx) = (σ + σq
θ
)Df(a, x).

Consider the public key of the C∗ scheme given by P = T̂ ◦ φ−1 ◦ fφ ◦ Û .

For ease of notation (for this section only) we will let T := T̂ ◦ φ−1 and U := φ ◦ Û ,

so we can denote P = T ◦ f ◦ U . We will now analyze the differential of the public

equations P . This will be computed as DP (a, x) = T ◦ Df(U(a), U(x)), where

DP : Fnq → Fnq .

Now consider symmetrically applying elements of K as we did before. We

want to apply this relation to U(a) and U(x), so we define Mσ(x) = σU(x).

DP (Mσ(a), x) +DP (a,Mσ(x)) = T ◦Df(σU(a), U(x)) + T ◦Df(U(a), σU(x))

= T ◦ (σ + σq
θ

)(Df(U(a), U(x))

= T ◦ (σ + σq
θ

)(T−1(DP (a, x))

Now let DPΠ denote the differential of a C∗− scheme. We can consider

PΠ = Π ◦ T ◦ f ◦ U , where Π denotes the minus modifier.

DPΠ(Mσ(a), x) +DPΠ(a,Mσ(x)) = Π ◦ T ◦Df(σU(a), U(x))

+ Π ◦ T ◦Df(U(a), σU(x))

= Π ◦ T ◦ (σ + σq
θ

)(Df(U(a), U(x))

= Π ◦ T ◦ (σ + σq
θ

)(T−1(DP (a, x))

So now we have a relationship between the published C∗− key (left hand
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side), and the breakable unmodified C∗ public equations (right hand side). The

left hand side is linear in the unknown coefficients Mσ, and the right and side is

linear in the unknown coefficients of T ◦ (σ + σq
θ
) ◦ T−1. To match our notation in

Equation 3.1, M = Mσ, ΛM = T ◦ (σ + σq
θ
) ◦ T−1.

Once the new linearly independent combinations of the central maps have

been discovered, the adversary may mount other attacks (such as Patarin’s lin-

earization equations) onto the recovered representation of the scheme and break it.

This attack lead to the implementation of using a projection modifier in conjunction

with a minus modifier, leading to schemes such as PFLASH (parameters defined

in [5]).

3.2.2 Differential Invariants

Differential invariants can also be used to weaken the security of certain

schemes. Informally, a function has a differential invariant, V ⊆ K, if the image of

V under all the coordinates of the matrix form of Df lies in a fixed subspace with

the same or smaller dimension size. More formally we define the following:

Definition 7. Let f : Fnq → Fmq be a function. A differential invariant of f is

a subspace V ⊆ K with the property that there is a subspace W ⊆ K such that

dim(W ) ≤ dim(V ) and ∀A ∈ SpanFq(Dfi) it holds that AV ⊆ W.

The point of searching for a differential invariant is to try to create a linear

relationship between plaintext and ciphertext variables. If we can find a differential

invariant V , then we can establish a linear relationship using the discrete differential.

This explanation follows much of the analysis done in [12].

Assume V is a differential invariant of some function f . Then we define V ⊥

to be the set of elements x ∈ K such that the dot product 〈x,A〉 = 0 for all v ∈ V

and A ∈ Span(Dfi). In other words, we can consider V ⊥ to be the set of elements
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orthogonal to AV. Once we have found V and defined V ⊥, we may then choose

linear functions M : K→ V and M⊥ : K→ V ⊥.

Expressing the differential as a matrix we find that

[Df(M⊥y,Mx)]i = (M⊥y)>(Df i(Mx)).

Notice that M⊥y ∈ V ⊥ and Df iMx ∈ AV . So for 1 ≤ i ≤ n and ∀x, y ∈ K

we have

[Df(M⊥y,Mx)]i = (M⊥y)>(Df i(Mx)) = 0

Our next goal will be to rewrite M and M⊥. Consider Proposition 1 from [12]

which states the following:

If A,B are two m× n matrices, then rank(A) = rank(B) if and only if

there exist nonsingular matrices C,D such that A = CBD.

Now considerM andM⊥. Without loss of generality, assume that rank(M⊥) ≤

rank(M). If rank(M⊥) = rank(M), then by the above proposition, there exist

nonsingular matrices S, T such that M⊥ = SMT . If rank(M⊥) < rank(M), then

compose M with singular matrix Y so that rank(M⊥) = rank(YM). Applying

the above proposition to M⊥ and YM , we know there exist nonsingular matrices

S, T such that M⊥ = S(YM)T = S ′MT where S ′ is singular. Restating our above

result, for all x, y ∈ K

Df(SMTy,MTx) = 0.

Thus we have found a linear relationship between plaintext and ciphertext

variables using the differential invariant V .

3.3 MinRank

The first effective attack on HFE was presented in [10] and is now com-

monly called the Kipnis-Shamir (KS) attack. Their idea is to express the central
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polynomial f as a matrix in quadratic form F (recall Definition 2) over K. As the

reader easily notices, the degree bound on f implies that F has only a small block

of nonzero values and thus has low rank. We call the rank of this quadratic form

the Q-rank of f .

The attack in [10] exploits this low Q-rank property of HFE by first finding

a formula for the public key over the extension field. The next step of the attack

is to compute the matrix forms of all of the Frobenius powers of this map, and the

final goal is to find a low rank linear combination of these matrices with coefficients

chosen from K. The attack can be effective, but all of the algebra takes place in K

which can be cumbersome.

The KS attack was significantly improved for determined or slightly over-

determined schemes in [11], where the authors introduce minors modeling. The

modeling of the low rank property in the KS attack requires structures defined

over K, whereas the authors of [11] noticed that a K-linear combination of the

public quadratic forms defined over Fq also has low rank. Thus one may construct

a system of equations over the small field, resolve this system via Gröbner bases

over the small field, and finally recover the variety over the big field. This requires

the most intensive calculations to be performed over the base field, providing a

significant advantage.
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CHAPTER 4

ON THE DIFFERENTIAL SECURITY OF THE HFEv− PRIMITIVE

This chapter will analyze the security of HFEv− schemes against differential

attacks. Recall from Section 2.3.1 the definition of an HFEv− scheme. HFEv− is a

big-field scheme where the central map is of the form

f(x, y) =
∑
i≤j

qi+qj≤D

αi,jx
qi+qj +

∑
i

qi≤D

βix
qiyq

j

+
∑

0≤i≤j<n

γijy
qi+qj (4.1)

and r of the public key equations are deleted. Much of this work has been completed

by considering the security of an HFEv scheme, analyzed in [12], and then extending

the analysis to the HFEv− scheme.

4.1 Linear Symmetry

Recall from Section 3.2.1 that a general linear differential symmetry is a

relation of the form

Df(Mx, a) +Df(x,Ma) = ΛMDf(a, x).

where M,ΛM : K→ K are Fq−linear maps.

While attacks similar to that of [10,16] exploited some multiplicative relation

on central maps of schemes with some algebraic structure over the base field, it was

shown in [17] that general linear differential symmetries based on more complex

relations exist, in general. Therefore, when analyzing the potential threat, it be-

comes necessary to classify the possible linear differential symmetries. If we succeed

28



in characterizing parameters which provably eliminate nontrivial differential sym-

metric relations, we prove security against the entire class of differential symmetric

attacks, even those utilizing relations not yet discovered. To this end, we evaluate

the security of HFEv against such adversaries. We explicitly consider parameter

restrictions that guarantee the existence of only trivial differential symmetries.

4.1.1 Linear Symmetry for HFEv

In our analysis, we will begin by considering the differential of our core map.

The discrete differential is

Df̂
( â

b̂

 ,
 x̂

ŷ

) = Df(a, b, x, y)

By the bilinearity of Df̂ we see that Df is multi-affine, meaning Df is affine

in each of its inputs when the remaining inputs are fixed. Evaluating this differential

we obtain

Df(a, b, x, y) =
∑

0≤i≤j<n
qi+qj≤D

αi,j(x
qiaq

j

+ xq
j

aq
i

)

+
∑

0≤i≤j<n
qi≤D

βi,j(x
qibq

j

+ yq
j

aq
i

)

+
∑

0≤i≤j<n

γi,j(y
qibq

j

+ yq
j

bq
i

)

(4.2)

noting that Df is a K-bilinear form. For ease of computation, we will choose

the following representation for K:

x 7→
[
x xq xq

2 · · · xq
n−1

]>
Similarly, we may map our oil-vinegar vector as

x 7→
[
x xq xq

2 · · · xq
n−1
y yq yq

2 · · · yq
n−1

]>
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and Df is thus represented by the 2n × 2n matrix where the (i, j)th and

(j, i)th entries in the upper left n× n block are the coefficients αi,j, and the (i, j)th

entries in the upper right block and the (j, i)th entries in the lower left block are the

coefficients βi,j , while the (i, j)th and the (j, i)th entries in the lower right block are

the coefficients γi,j. Note, that any Fq-linear map M : K → K can be represented

by Mx =
∑n−1

i=0 mix. Thus, as demonstrated in [12], under our representation we

can model M as,

M =



m0 m1 · · · mn−1

mq
n−1 mq

0 · · · mq
n−2

...
...

. . .
...

mqn−1

1 mqn−1

2 · · · mqn−1

0


.

However, when viewing an Fq-linear map over our vector

 x̂

ŷ

, we may

consider the 2n× 2n matrix

M =



m00,0 m00,1 · · · m00,n−1 m01,0 m01,1 · · · m01,n−1

mq
00,n−1 mq

00,0 · · · mq
00,n−2 mq

01,n−1 mq
01,0 · · · mq

01,n−2

...
...

. . .
...

...
...

. . .
...

mqn−1

00,1 mqn−1

00,1 · · · mqn−1

00,0 mqn−1

01,1 mqn−1

01,2 · · · mqn−1

01,0

m10,0 m10,1 · · · m10,n−1 m11,0 m11,1 · · · m11,n−1

mq
10,n−1 mq

10,0 · · · mq
10,n−2 mq

11,n−1 mq
11,0 · · · mq

11,n−2

...
...

. . .
...

...
...

. . .
...

mqn−1

10,1 mqn−1

10,1 · · · mqn−1

10,0 mqn−1

11,1 mqn−1

11,2 · · · mqn−1

11,0


For computational reference, we will label each row and column modulo(n),

i.e., each coordinate of the entry (i, j), will be represented by a residue class modulo

n. If we assume that f is vulnerable to a differential attack, then there exists a
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nontrivial linear mapping M such that the differential symmetry is satisfied. Com-

puting such a symmetry inducing map requires the solution of 4n2 highly depen-

dent, but random, equations in the 8n unknown coefficients of M and ΛM over

K. Since trivial symmetries (such as multiplication by scalars) are exhibited by

every map, we know that there exist nontrivial solutions. Even assuming unit time

for K-arithmetic operations, for realistic parameters this process is very inefficient;

with the more realistic assumption of costly K-arithmetic operations, this task is

unsatisfactory in key generation.

To make the solution of such systems of equations more efficient, we derive

the structure of the equations and develop a two step process for verifying triv-

ial differential symmetric structure. The first step involves finding equations which

only involve a subset of the variables. The existence of such equations is guaranteed

by the degree bound of the HFE monomials. This information is then bootstrapped

to eliminate many unknown coefficients of M resulting in a very small system of

equations which can be solved explicitly. We remark here that this methodology

also suggests a method for estimating the probability of the existence of a differ-

ential symmetry for the HFEv primitive. The existence of a nontrivial symmetry

corresponds to systems for which the rank of the system of equations is less than

8n. Under the heuristic that under row reduction these systems of equations behave

like random 8n× 8n matrices, we obtain a probability of roughly 1− q−1 that the

scheme has no nontrivial differential symmetry.We note that this heuristic is almost

certainly false since trivial symmetries do exist. This quantity does represent a

lower bound, however, and thus may offer support for larger base fields.

We begin by considering the entries of the matrix M
>
Df + DfM . The

contribution of any monomial αi,jx
qi+qj to the ith row of DfM is given by

(
αi,jm

j
00,−j αi,jm

j
00,1−j · · · αi,jm

j
00,−1−j αi,jm

j
01,−j αi,jm

j
01,1−j · · · αi,jm

j
01,−1−j

)
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while the contribution to the jth row is

(
αi,jm

i
00,−i αi,jm

i
00,1−i · · · αi,jm

i
00,−1−i αi,jm

i
01,−i αi,jm

i
01,1−i · · · αi,jm

i
01,−1−i

)
By symmetry, the ith and and jth columns of M

>
Df Df are the same as their

respective rows.

It is clear that the rows and columns associated with coefficients of vinegar

monomials as well as terms associated with mixing monomials may be represented

similarly. However, it should be noted that those terms associated with mixing

monomials will be multiplied by linear coefficients m00,∗,m01,∗,m10,∗, and m11,∗,

while coeffcients associated with vinegar variables are multiplied only by the linear

coeffcients m10,∗ and m11,∗.

The above patterns can be extended to characterize the contribution to the

ith row and jth row of monomials of the form βi,jx
qiyq

j
and γi,jy

qi+qj as well. We

note, however, that γ coefficients interact with entries from the lower block matrices

while β coefficients interact with coefficients from all block matrices.

Now that we have characterized the left side of the central map described

in Equation 4.1, we will consider the entries of ΛMDf . For every monomial of f ,

say αi′,j′x
qi+qj , βr,sx

qryq
s
, or γu,vy

qs+qv , under the mapping of ΛM we have terms of

the form: l`α
q`

i,jx
qi+`+qj+` l`β

r+`
r,s x

qs+`yq
j
, and l`γ

q`

u,vy
qu+`+qv+` . Clearly, this results in

every nonzero entry, say (r, s), of our Df matrix being raised to the power of q`

and shifted along a forty-five degree angle to entry (r + `, s + `). Thus, for every

monomial in f there are two possible nonzero entries in the ith row, with possible

overlap.

This discrete geometrical interpretation of the action of M and D on the

coefficients of f is central to this analysis. A graphical representation of these

relations is provided in Figure 4.1

As in [12], the possibility of a differential symmetry can be determined by
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Figure 4.1: Graphical representation of the equation M>Df + DfM = ΛMDf

for the HFEv polynomial f(x) = αi,jx
qi+qj + βr,sx

qryq
s

+ γu,vy
qu+qv . Horizontal

and vertical lines represent nonzero entries in M>Df + DfM while diagonal lines

represent nonzero entries in ΛMDf . We may consider this diagram as a genus 4

surface containing straight lines.

setting the matrix representation of M>Df + DfM equal to the matrix ΛMDf .

We will demonstrate an algorithm, given some specific constraints, that will help

provide secure keys to be generated automatically. Due to the structure of our

M matrix, we need to work within each mi,j matrix independently. The following

algorithm for m0,0 extends very naturally to the other 3 matrices. For clarity, all m

terms in the description below are m0,0 terms.

Let αi,j, βr,s, γu,v represent the coefficients of our monomials in our core map.

Consider the ith row of M>Df +DfM . For all w not occurring as a power of q of

our HFE or mixing monomials in f , or difference as a of powers of q in an exponent

of a monomial in f plus i, the (i, w) entry is αi,jm
qi

w−j = 0 (respectively βi,jm
qj

w−j).

Consider the rth row. For all w not occurring as an exponent of q in a vinegar

monomial or as a difference of powers of q in an exponent of a monomial in f plus

s, the (r, w)th entry is βr,sm
qs

k−s = 0. Hence, we can use those relations to look for

non-zero entries of m0,0.

After putting those relations into Algorithm 2 (listed in Appendix I), we can
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generate a set of exponents that occur in the core map for every i and r. Each set

provides a list of indices of all possible non-zero m’s. For each index not occurring

in any such set, the corresponding coefficient m must equal zero due to the fact

that there must be a coordinate in the equation M>Df +DfM = ΛMDf setting a

constant multiple of m to zero. Thus, the intersection of all sets generated produces

a list of all possible non-zero entries for the sub-matrix m0,0.

Once this list is obtained, the variables shown to have value zero are elim-

inated from the system of equations. After repeating a similar algorithm for each

of the remaining three submatrices a significantly diminished system of equations

is produced which is then solved explicitly. After running this algorithm with re-

alistic values satisfying the above constraints and matching the parameter sizes of

[53] along with using mild restrictions on the powers of the mixing and vinegar

monomials, the only non-zero value obtained is m0.

We note that it is possible that these restrictions, especially the restriction

for these experiments on the number of monomials, place a lower bound on the

number of vinegar variables required to achieve such a structure. On the other

hand, with numerous small-scale experiments without parameter restrictions and

using the full number of monomials we found that structurally the only nonzero

value for the matrix m0,0 is the m0 term.

Since we have only a single non-zero term, our m0,0 matrix is a diagonal

matrix. A similar analysis for each of the remaining submatrices reveals the same

structure. Thus we find that the only possible structure for M under these con-

straints satisfying a differential symmetry for HFEv is

M =

 cI dI

dI cI


Furthermore, we can prove by way of Theorem 2 from [18], that the coeffi-

cients c, d ∈ Fq.
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We note that this map induces a trivial differential symmetry. To see this,

note that the (nonpartial) differential of any bivariate function is bilinear in its

vector inputs. Thus

Dg(M [a, b]>, [x, y]>) = Dg([ca+ db, da+ cb]>, [x, y]>)

= Dg([ca+ db, cb+ da]>, [x, y]>)

= Dg(c[a, b]>, [x, y]>) +Dg(d[b, a]>, [x, y]>)

= cDg(a, b, x, y) + dDg(b, a, x, y)

= (c+ d)Dg(a, b, x, y).

(4.3)

Consequently, for the parameters provided by Algorithm 2 found in Ap-

pendix I HFEv provably has no nontrivial differential symmetric structure.

It should be noted that the restrictions provided on the powers of q of the

monomials of our f does lower the entropy of our key space and likely raise the num-

ber of required vinegar variables to a level which is either unsafe or undesirable.

However, there is still plenty of entropy with these restrictions and we obtain prov-

able security against the differential symmetric attack. The restrictions provided

are just a base line for this technique and our experiments with small scale examples

indicate that even when we insist that every possible monomial satisfying the HFE

degree bound is required to have a nonzero coefficient, the generalized algorithm

still outputs only the trivial solution. Thus we can achieve provable security with

minimal loss of entropy.

4.1.2 Linear Symmetry for HFEv−

The algorithm extends naturally to HFEv−. Every non-zero entry from the

system generated by HFEv is also in the system generated by HFEv−, but with a

few additional entries, see Figure 4.2. We choose a basis in which an example minus

projection is a polynomial of degree q2. For every ith row, we also know that for
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Figure 4.2: Graphical representation of the equation M>Df + DfM = ΛMDf for

the HFEv with the minus modifier given by the projection π(x) = xq
2

+ ρxq + τx.

Horizontal and vertical lines represent nonzero entries in M>Df + DfM while

diagonal lines represent nonzero entries in ΛMDf . We note that each triple of lines

corresponds to a single monomial in the central map.

any w which is not a power of α + n or β + n (where n < 2), the (i, w)th entry is

αi,jm
qj

w−j = 0. For the sth row for all w not being a power of β + n or r + n where

n < 2, the (s, w)th entry is βr,sm
qr

w−r = 0 A visualization is provided in Figure 4.2.

Again, we can use these relations, along with the relations described in the

HFEv system, to create a list of sets of all non-zero areas on m0,0 using Algorithm 3.

Each of these sets contains indices which are possibly non-zero, thus entries not in

that set are definitively equal to zero.

By taking the intersection of all the sets, you can find the final locations of

non-zero entries for our sub matrix m0,0. In doing so, with realistic values from [19],

the only non-zero value obtained is m0. This again gives us security against sym-

metrical attacks by having M being a block matrix consisting of diagonal matrices

with an argument similar to [12].

4.2 Differential Invariants
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Df(SMTy,MTx) = 0.

As discussed in Section 3.2.2, if we have a differential invariant V , then there

exists a linear relationship between plain text and cipher text variables. To deter-

mine the effectiveness of a differential invariant attack, we evaluate the liklihood

that a differential invariant exists.

Minimal Generators over Intermediate Subfield Consider the following state-

ment about the structure of the coordinate ring of a subspace of an extension field

over an intermediate extension.

Lemma 2. Let L/K/Fq be a tower of finite extensions with |L : K| = m and

|K : Fq| = n. Let V be an Fq-subspace of L. Then I(V ) has m multivariate

generators over K of the form

M (k)
V (x0, . . . , xm−1) =

∑
0≤i<n
0≤j<m

αijkx
qi

j .

This Lemma is proven in [20], and will prove insightful during the following

analysis. We note that the minimal polynomials studied in [12] correspond to the

special case of the above lemma in which m = 1. Given our characterization from

Section 2.3.1 of the central map of HFEv− as a bivariate polynomial over K, we are

primarily interested in the m = 2 case of Lemma 2.

4.2.1 Invariant Analysis of HFEv

As in [12], we consider Df(SMTa,MTx), where T is nonsingular, S is a

possibly singular map which sends V into V ⊥ and M : K→ K s a projection onto

V . Without loss of generality we’ll assume that M projects onto V . Then MT is

another projection onto V . SMT is a projection onto V ⊥. An important distinction

is that for this case, the a and x above are actually two dimensional vectors over

K.Thus dim(V ) + dim(V ⊥) ≥ n.
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Theorem 1. Let K be a degree n extension of the finite field Fq. Let f be an

HFEv central map. With high probability, f has no nontrivial differential invariant

structure.

Proof. We will denote the quantity MT [x, y]> as [x̂, ŷ]. Suppose we have

f(x, y) =
∑

0≤i≤j<n
qi+qj≤D

αijx
qi+qj +

∑
0≤i≤j<n
qi≤D

βijx
qiyq

j

+
∑

0≤i≤j<n

γijy
qi+qj .

Applying the differential with respect to the vector [x, y]>, we obtain Equa-

tion 4.2. Substituting SMT [a, b]> and MT [x, y]> into Equation 4.2 we derive:

Df(S[â, b̂]>, x̂, ŷ) = Df(S11â+ S12b̂, S21â+ S22b̂, x̂, ŷ).

For notational convenience, let ã = S11â+S12b̂ and b̃ = S21â+S22b̂. Plugging these

values into the previous equation we get

Df(ã, b̃, x̂, ŷ) =
∑

0≤i≤j<n
qi+qj≤D

αi,j(ã
qix̂q

j

+ ãq
j

x̂q
i

)

+
∑

0≤i≤j<n
qi≤D

βi,j(ã
qi ŷq

j

+ x̂q
j

b̃q
i

)

+
∑

0≤i≤j<n

γi,j (̃b
qi ŷq

j

+ b̃q
j

ŷq
i

)

(4.4)

In contrast to the situation with HFE, these monomials are not necessarily inde-

pendent. By Lemma 2, the generators of I(V ) have the form∑
0≤i<n

rijx
qi +

∑
0≤i<n

sijy
qj for j ∈ {1, 2},

where rij, sij ∈ K. Clearly these expressions evaluate to zero on (x̂, ŷ). Evaluating

4.4 modulo I(V ) (only on the variables x̂, ŷ), we obtain:

Df(ã, b̃, x̂, ŷ) =
∑

0≤i<n
0≤j<dx

[
α′ij(ã)q

i

+ β′ij (̃b)
qi
]
x̂q

j

+
∑

0≤i<n
0≤j<dy

[
γ′ij(ã)q

i

+ δ′ij (̃b)
qi
]
ŷq

j

,

(4.5)
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where dx and dy are the largest occurring powers of x̂ and ŷ, respectively. After

the reduction modulo I(V ), the remaining monomials x̂, . . . , x̂q
dx

and ŷ, . . . , ŷq
dy

are

independent. Thus, for Df(ã, b̃, x̂, ŷ) = 0, each polynomial expression multiplied by

a single x̂q
j

or ŷq
j

must be identically zero, that is to say that for all 0 ≤ j ≤ dx

∑
0≤i<n

[
α′ij(ã)q

i

+ β′ij (̃b)
qi
]

= 0 (4.6)

and for all 0 ≤ j ≤ dy ∑
0≤i<n

[
γ′ij(ã)q

i

+ δ′ij (̃b)
qi
]

= 0 (4.7)

The left hand sides of 4.7 and 4.6 are F-linear functions in S[â, b̂]>. Thus we can

express each such equality over F as

LS
[
â0, . . . , ân−1, b̂0, . . . , b̂n−1

]>
= 0

where L is an n × 2n matrix with entries in F. We note specifically that the

coefficients of L depend on V and the choices of coefficients in the central map

f . For randomly chosen coefficients retaining the HFEv structure, we expect an L

derived from an equation of the form 4.7 or 4.6 to have high rank with very high

probability, more than 1− q−n. Thus the dimension of the intersections of the null

spaces of each L is zero with probability at least 1− 2q−n.

Clearly, the condition for these equations to be satisfied is that S sends V to

the intersection of the null spaces of each such L. Thus S is with high probability

the zero map on V and so V ⊥ = {0}. This generates a contradiction, however, since

2n ≤ dim(V ) + dim(V ⊥) < 2n. Thus, with probability greater than 1 − 2q−n, f

has no nontrivial differential invariant structure.
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4.2.2 Invariant Analysis of HFEv−

The situation for HFEv− is quite similar, but the probabilities are slightly

different. Specifically one must note that since the condition of being a differential

invariant is a condition on the span of the public differential forms, under projection

this condition is weaker and easier to satisfy. For specificity, we consider the removal

of a single public equation, though, critically, a very similar though notationally

messy analysis is easy to derive in the general case.

We may model the removal of a single equation, which can be considered a

corank 1 projection, as a projection of the form π(x) = xq + x applied after the

central map. We will show this by proving the more general statement below. This

proof was originally published in [9].

Claim 1. Let Π ◦ T be a corank a linear transformation on Fnq . There exists both a

nonsingular linear transformation S and a degree qa polynomial π such that

Π ◦ T = S ◦ φ−1 ◦ π ◦ φ

Proof. Let V be the kernel of Π ◦ T and let π = MV = Πv∈V (x− v). We may call

π the “minimal polynomial” of V because this is the polynomial of minimal degree

such that every element of V is a root. Note that |V | = qa. This is because each

v ∈ V will have 0’s in the first n− a coordinates, while the remaining a terms can

be any value in Fq. Thus we see from the definition of π that MV (x) has degree qa

and will be of the form

xq
a

+ ca−1x
qa−1

+ · · ·+ c1x
q + c0x

where ci ∈ K.

Now let Bv = {bn−a, bn−a+1, . . . , bn−1} be a basis for V . We can extend Bv

into some vector B = {b0, . . . , bn−a−1, bn−a, bn−a+1, . . . , bn−1} such that B is a basis

for Fnq .
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Let M be the matrix that maps the standard basis to B. We can see that the

last a columns of the matrix representations of M−1(Π◦T )M and M−1(φ◦π ◦φ)M

will be zero.

Observe that there exist invertible matrices A and A′, corresponding to row

operations, such that both AM−1(Π ◦ T )M and A′M−1(φ ◦ π ◦ φ)M are in reduced

echelon form; that is:

AM−1(Π ◦ T )M =

 I 0

0 0

 = A′M−1(φ ◦ π ◦ φ)M

Solving for Π ◦ T , we obtain

Π ◦ T = MA−1A′M−1(φ−1 ◦ π ◦ φ)

Let S = MA−1A′M−1 and the proof is complete.

So to remove one equation, we consider Π to be a corank 1 projection, a = 1,

|V | = q1, and π = Πv∈V (x− v) = xq + x. We have

Π ◦ T ◦ φ−1 ◦ f ◦ φ ◦ U = S ◦ φ−1 ◦ (πf) ◦ φ ◦ U

4.3 Degree of Regularity, Q-Rank, and Parameters

Further considerations for the security of HFEv− are the degree of regularity,

a quantity closely connected to the complexity of algebraic attacks, and the Q-rank

of the public key. A careful analysis of each of these quantities reveals that they

support the security of HFEv− against an algebraic attack such as [21] and against

the Kipnis-Shamir methodology and its improvements, see [10, 11].

In [22], it is shown that an upper bound for theQ-rank of an HFE component,

the number of removed equations, and the Q-rank of the vinegar component. For

Gui-96(96,5,6,6), here q = 2, n = 96, D = 5, v = 6, and r = 6, this quantity is
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roughly 15. Furthermore, in [19], experimental evidence in the form of analysis of

toy variants is provided indicating that this estimate is tight. Thus the complexity

of a Kipnis-Shamir style attack is roughly O(n3q15n).

Also in [22], a formula for an upper bound on the degree of regularity for

HFEv− systems is derived. Given the parameters of Gui-96(96,5,6,6), the degree of

regularity is expected to be 9. Further, experiments are provided in [19], supporting

the tightness of this approximation formula for toy schemes with n as large as 38.

With this degree of regularity the expected complexity of inverting the system via

Gröbner basis techniques is given by(
96− 6 + 9

9

)ω
≈ 293

where 2 ≤ ω < 3 is the linear algebra constant. We note than an error in the

approximation of the degree of regularity can easily change this estimate by a factor

of a few thousand. Still, it seems clear that each of these avenues of attack is

unviable.

Still another attack vector is to put the entropy of the key space to the test

with techniques such as those mentioned in [23] for deriving equivalence classes

of keys. With our most restrictive instance of the key verification algorithm in

Section 4.1.2, we have a key space consisting of roughly q13n central maps, roughly

q6n of which can be seen as equivalent keys as in [23]. Thus provable security against

the differential adversary can be achieved with a key space of size far beyond the

reach of the “guess-then-IP” strategy.
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CHAPTER 5

AN UPDATED SECURITY ANALYSIS OF PFLASH

SFLASH, was thought to be secure until its break in [4] (described in Sec-

tion 3.2.1). This scheme was attacked by exploiting its differential symmetry. The

authors of [24] present a way to resist the attack on SFLASH through projection,

which produces a scheme we now call PFLASH. PFLASH is still a very fast signature

scheme and is amenable to low-power environments without sacrificing side-channel

resistance. This projected C∗− system is shown to resist differential cryptanalysis

for restricted parameters, that is, when the degree is bounded by qn/2−d, in [17] and

is fully specified with paractical parameters in [5].

Since the design of PFLASH there have been a number of cryptanalytic de-

velopments in the big field venue. The development of differential invariant attacks

in [25] and their further application in [26] are examples of advancement in this

active area. Furthermore, the improved efficiency of the Kipnis-Shamir (KS) at-

tack of [10] presented in [11] is directly impactful to PFLASH, as one can consider

PFLASH as a possibly high degree but still low rank version of HFE−.

We expand and update the analysis in [17] and [5] proving resistance to

differential and rank techniques for the vast majority of parameters, and we verify

that the provably secure key spaces are less limiting than previous works suggest.

This improvement is directly impactful, providing further assurance that attacks

based on equivalent keys cannot weaken PFLASH.

The degree bound restriction in [17] reduces the dimension of possible private

keys by a factor of more than two. Our updated differential analysis verifies the
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security of the scheme when the central map has no degree bound, and thus assures

us that very little entropy is lost in the key space when restricting to parameters

that are provably secure against differential adversaries.

In [5], an argument for the resistance of PFLASH to the technique of [11, Sec-

tion 8.2] when PFLASH is considered as a low degree projected HFE− scheme is

provided. We make this assessment more robust by also considering the possibility

of an adversary attempting to remove the projection modifier from PFLASH consid-

ering it to be a higher rank HFE− scheme. Whereas in the former case, the attack

is impossible, in the latter case, the algebraic structure allows the possibility that

the attack can succeed; however, the complexity of the attack is directly computed

and shown to be infeasible.

5.1 Updated Differential Analysis of Projected Primitive

As discussed in [17], we may assume that the projection mapping is tied to

f and consider differential symmetries of f ◦ π where π is chosen in a basis such

that deg(π) = qd. Clearly, if f ◦ π has a differential symmetry then the equation

Df(Ma, πx) + Df(πa,Mx) = ΛMDf(πa, πx) is satisfied for some M . We can

express this relation with matrix multiplication, namely

a>(Π>DfM)x+ a>(M>DfΠ)x = ΛM [a>(Π>DfΠ)x],

where Df is the matrix representing Df as a bilinear form over K, having one in

the (0, θ) and (θ, 0) coordinates and zero elsewhere, where Πx =
∑d

i=0 βix
qi and

where Mx =
∑n−1

i=0 mix
qi .

Examining this equation, we see that a>(Π>DfM)x + a>(M>DfΠ)x will

have nonzero entries restricted to certain coordinates depending only on d and

θ, see Figure 5.1. Similarly, the right hand side of the equation, Π>DfΠ, has a

structure dependent upon d and θ, see Figure 5.2. Notice, the graphs may look
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different depending on the choice of θ and d.

d

d θ + d

θ + d

θ

θ

Figure 5.1: The shape of the

matrix representation over K of

Df(Ma, πx) + Df(πa,Mx). Shaded

regions correspond to possibly

nonzero values.

d

d θ + d

θ + d

θ

θ

Figure 5.2: The shape of the matrix

representation of ΛMDf(πa, πx) over

K. Shaded regions correspond to pos-

sibly nonzero values. The shape of the

matrix representation

The strategy for finding conditions on π, M and ΛM for the existence of such

a symmetry is then to find coordinates in which one side of this matrix equation

is zero while the other side involves only a single unknown coefficient of M or ΛM .

While this system of equations is nonlinear in the coefficients of π, it is linear in

both the unknown coefficients of M and those of ΛM .

The system contains many more equations than variables, but certainly gen-

erates a positive dimensional ideal. The reason is that for any fixed π, M = aπ for

any a ∈ Fq generates a solution. On the other hand, for a fixed π and a fixed θ, the

above system becomes linear with the number of nonzero equations depending on

both d and θ. Even in the best case, the number of equations is far larger than the

number of variables. Since the coefficients of π are the only source of randomness for

this system of linear equations, the great number of equations are not independent

in a probabilistic sense. Therefore, probabilistic arguments are difficult, though
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extensive experiments show that the solution space is generally one dimensional.

Luckily, we can do better by bootstrapping the result of [17]. Specifically,

we examine the case when θ > n
2
.

Lemma 3. f(xq
ρ
) = f(x)q

ρ
when f(x) = xq

θ+1

Proof. f(xq
ρ
) = (xq

ρ
)q
θ+1 = x(qθ+1)qρ =

(
xq

θ+1
)qρ

= f(x)q
ρ

�

Consider the special case of Lemma 3 when ρ = −θ. After applying this

map to the output of Df, the nonzero terms, originally in the (θ, 0) and (0, θ)

coordinates, are transported to the (0,−θ) and (−θ, 0) coordinates, respectively.

This observation leads to the following theorem, revealing that most parameters of

PFLASH are provably secure against a differential adversary.

Theorem 1. Let f(x) = xq
θ+1 be a C∗ map, and let M and πx :=

∑d
i=0 x

qi be

linear. Suppose that f satisfies the symmetric relation:

Df(Ma, πx) +Df(πa,Mx) = ΛMDf(πa, πx).

If d < min{n
2
− θ, |n − 3θ|, θ − 1}, or if d < {θ − n

2
, |2n − 3θ|, n − θ − 1}, then

M = Mσ ◦ π for some σ ∈ k.

Proof. Assume Df(Ma, πx) + Df(πa,Mx) = ΛMDf(πa, πx) holds true. Then,

we have two cases.

1.) θ < n
2

By [17, Theorem 3], we are done.

2.) θ > n
2

Let f̃(x) = f(x)q
−θ

= f
(
xq
−θ
)
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We have,

Df(Ma, πx) +Df(πa,Mx) = ΛMDf(πa, πx)

[Df(Ma, πx) +Df(πa,Mx)]q
−θ

= [ΛMDf(πa, πx)]q
−θ

[Df(Ma, πx) +Df(πa,Mx)]q
−θ

= L−1
θ ΛMDf(πa, πx)

Let Lθ represent the map that raises terms to the θth power. We can use

the definition of the discrete differential to expand the left hand side of the

equation. By linearity, we can distribute the exponent q−θ to each term. After

applying our lemma we get the following,

f̃(Ma+πx)+f̃(Ma)+f̃(πx)+f̃(πa+Mx)+f̃(πa)+f̃(Mx) = L−1
θ ΛMDf(πa, πx)

By adding 0 = 2f̃(0) to the left and applying I = LθL
−1
θ to the right we get,

Df̃(Ma, πx) +Df̃(πa,Mx) = L−1
θ ΛM(LθL

−1
θ )Df(πa, πx)

And by the lemma we have,

Df̃(Ma, πx) +Df̃(πa,Mx) = L−1
θ ΛMLθDf̃(πa, πx)

We now have a relation on f̃(x) where −θ + d < n
2
. Now we can apply [17,

Theorem 3] to conclude that M = Mσ ◦ π for some σ ∈ k.

�

We note that the existence of a differential symmetry on f ◦ π implies a

solution of the equation in Theorem 1 as well as the commutativity of Mσ and π.

Since the commutativity of Mσ and π requires that π is L-linear, where Fq ⊆ L ⊆ k

and σ ∈ L, for any nontrivial differential symmetry to exist, (d, n) > 1. Thus, there

is a most desirable value of d from an efficiency and security standpoint: d = 1.
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Let us specifically consider this most desired value d = 1. Then the only

restriction on θ for provable differential security is

θ ∈
(

2,
n− 1

3

)
∪
(
n+ 1

3
,
n

2
− 1

)
∪
(
n

2
+ 1,

2n− 1

3

)
∪
(

2n+ 1

3
, n− 2

)
.

Furthermore, since θ = n
2

always produces a many-to-one map in any characteristic,

the restriction to provably secure parameters for PFLASH eliminates at most four

possible values for θ for all extension degrees n.

5.2 Extension to PFLASH

We now generalize the analysis of the previous section in application to

PFLASH. First we derive a heuristic argument for bootstrapping the provable se-

curity of the composition f ◦ π to statistical security for the projected primitive.

We then clarify the resistance of PFLASH to analysis as an HFE− scheme. Finally,

we derive security bounds for various PFLASH parameters.

5.2.1 Differential Analysis

As previously mentioned, proof that differential symmetries do not exist for

the central map of a scheme verifies that a differential adversary cannot recover a

full rank key. Such a proof does not, however, verify that a differential adversary

cannot find a symmetry revealing the extension field multiplicative structure and

directly attack the scheme.

To illustrate this principal, imagine a high degree variant of HFE in which

the central map has the form f(x) = xq
θ+1 + π2(Q(x)) over an extension of degree

2n, where π2 is a rank n projection onto the complement of the subfield of size qn

and Q is an arbitrary quadratic. Then any minus variant in which the image of π2

is the kernel of T is a C∗− public key, but one with multiplicative symmetry. In
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particular, any map L representing muliplication by an element in the intermediate

extension of degree n would satisfy

D(T ◦ f ◦ U)(U−1La, x) +D(T ◦ f ◦ U)(a, U−1Lx) = (Lq
θ

+ L)D(T ◦ f ◦ U)(a, x).

Thus the minus scheme has a multiplicative symmetry even though the original

scheme provably does not. In fact, even more strongly, we have computed functions

of the form of f above over a degree 6 extension of GF (2) for which no linear

differential symmetry of any form exists, but under projection onto the degree 3

subfield, the multiplicative symmetry is exhibited.

In the case of PFLASH, we may attempt the strategy of the previous section

for proving security. We may always model the removal of r equations as the

application of a polynomial π(x) =
∑r

i=0 aix
qi to the central map. If only a few

equations are removed, then the analysis proceeds just like in [12], because f ◦π is a

low rank albeit high degree polynomial. Since no parameters suggested for PFLASH

are near this range, however, this analysis does not apply. When we perform this

analysis with r ≈ n
3

and f ◦ π, however, the methods of the previous section fail to

generate a provably secure class of private keys.

Fortunately, there is an easy heuristic argument revealing a simple relation-

ship between symmetries of the central map and symmetries of a map with the

minus modifier that shows that symmetry should be statistically no more likely for

any minus modified scheme than for the original. Let T ′ be the minus projection

composed with the inclusion mapping with domain Fn−rq and codomain K. Suppose

that T ′ ◦ f ◦ π has a differential symmetry. Then

D(T ′ ◦ f)(πa,Mx) +D(T ′ ◦ f)(Ma, πx) = ΛMD(T ′ ◦ f)(πa, πx)

T ′ [Df(πa,Mx) +Df(Ma, πx)] = ΛMT
′Df(πa, πx).

Since the left is clearly in T ′K, the right must be as well. Thus, with high prob-

ability, that is, when Spana,x(Df(πa, πx)) = K, we have that ΛMT
′K = T ′K.
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We know from linear algebra that in this case there exists at least one invertible

transformation Λ′M such that ΛMT
′ = T ′Λ′M . Therefore, we obtain the relation

Df(πa,Mx) +Df(Ma, πx) = Λ′MDf(πa, πx) (mod ker(T ′)). (5.1)

Clearly, this argument is not reversible for any Λ′M satisfying (5.1); therefore,

we cannot in general conclude that the scheme with the minus modifier inherits any

differential symmetry from the central map. On the other hand, satisfying (5.1)

imposes n − r constraints on ΛM , while the “commuting” of ΛM with T ′ imposes

another r constraints. Thus, the existence of a symmetry in the minus case imposes

the same number of constraints on ΛM as for the central map and so we expect the

probability of the existence of a differential symmetry to be no higher than for the

central map.

5.2.2 Rank Analysis

One can consider PFLASH to be a high degree version of HFE− by absorbing

the projection of the variables into the central map. Notice that the rank of the

composition is still only two, thus PFLASH must achieve its security from the minus

modifier.

Recently, in [27], a key recovery attack valid for all parameters of HFE− is

presented. For an HFE− instance with parameters (q, n,D, r), the complexity is

noted as O(
(
n+dlogq(D)e+1
dlogq(D)e+r+1

)ω
).

In application to PFLASH, there are two things to note about this attack.

First, the attack produces an equivalent HFE− key, not a pC∗− key. This fact may

not limit the attack, because it will still recover a central map of rank two of the

form f ◦π which we may then attack as a pC∗ scheme in the manner of [28]. Second,

the quantity dlogq(D)e in the complexity estimate is derived from the rank structure

that the degree bound of HFE implies, not directly from the degree bound itself.
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Thus, the rank of the C∗ monomial, which is two, plays the role of dlogq(D)e in the

application of the techniques of [27] to PFLASH.

In fact, instances of PFLASH with quite inappropriate but still large parame-

ters can be broken with this method. In particular we note that for a PFLASH(256, 44, 3, 1)

that the complexity of the attack is roughly estimated 44(3+2+1)ω ∼ 278. For large

values of r, however, such as in all parameter sets in [5], this attack is infeasible. For

example, the smallest parameters suggested in [5] still resist this attack to dozens

of orders of magnitude beyond brute force. Thus, for sensible parameters with r

sufficiently large, PFLASH is secure.

5.2.3 Security Estimates

Now with a refined security analysis, we can eliminate differential attacks for

a larger set of parameters, thus doubling the entropy of the key space for PFLASH.

In addition, with the complexity estimate of O(n(r+3)ω) and practical values of r,

PFLASH is quite secure against the new attack on HFE− schemes. In conjunction

with the invariant analysis of [5], we conclude that the security of PFLASH is

determined by its resistance to algebraic and brute force attacks.

Viewing PFLASH as an HFE− scheme, we may use the bound in [22] to

estimate the degree of regularity of PFLASH. This upper bound can be computed

(q − 1)(R + r)

2
+ 2,

where R is the rank of the central map; in the case of PFLASH, this quantity is

two. Though this is an upper bound, empirical evidence suggests that it is tight for

random systems of rank R. Thus the degree of regularity is far too high for practical

schemes to be weakened. Furthermore, direct algebraic attacks for large schemes

are impractical even with smaller complexity bounds because the space complexity

of the best algorithms are too large to be practical.
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Therefore, we corroborate the claims of [5] that brute force collision attacks

are the greatest threat to PFLASH schemes. The evidence from our increase of

the entropy of the key space and the verification that PFLASH resists recent weak-

nesses revealed in HFE− suggest the security levels in Table 5.1 (all of which are in

agreement with [5]).

Scheme Public Key (B) Security (b)

PFLASH(16, 62, 22, 1) 39,040 80

PFLASH(16, 74, 22, 1) 72,124 104

PFLASH(16, 94, 30, 1) 142,848 128

Table 5.1: Security levels for standard parameters of PFLASH
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CHAPTER 6

EFLASH: A NEW MULTIVARIATE ENCRYPTION SCHEME

Many of the previously discussed multivariate schemes are used as signature

schemes. Recently we have seen new candidates and strategies emerge for mul-

tivariate encryption. Previously, multivariate schemes centered around bijective

functions that map from vector spaces of size n back into a vector space of size n.

The problem with this strategy is that there are not many bijective quadratic maps.

Furthermore, of the maps that do exist, many of these functions were either too

hard to invert, or too easy to invert. The common practice to try to overcome this

downfall was to try to hide an easily invertible function by composing the bijective

function with affine maps.

In 2013, Tao et al. proposed relaxing the bijective condition for the cen-

tral function and replacing it with an injective map with a much larger codomain

in [29]. In theory, this would make hiding the structure of the map while maintain-

ing efficient inversion easier to accomplish. The recent resurgence of multivariate

encryption is due primarily to this change in philosophy. Many schemes have been

proposed along these apparently promising lines.

Some notable schemes that increase the codomain size of the central map-

pings include the ABC Simple Matrix scheme, see [29], which utilizes a large matrix

algebra structure; ZHFE, see [30],which is similar to a high degree version of HFE

with a single variable over the extension; and SRP, see [31], which combines the

Square encryption scheme, Rainbow signature scheme, and Plus method. Although

these schemes appear promising, many of these schemes have subsequently been
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the victims of surprising (if not disabling) cryptanalysis. The attacks on ABC

from [25, 26, 32] work well if the base field is small, and both ZHFE and SRP were

broken in [33] and [34], respectively.

In the following chapter, we will introduce a new multivariate encryption

scheme, EFLASH. Our scheme will be a new parameterization of a projected C∗−.

A major difference between our scheme and PFLASH is the size of the projection.

The size of our projection π will be much larger.

6.1 Algebraic Structure

We will let n be the number of variables and d > n be the degree of the

extension field over Fq. We will let m ≥ n be the number of equations (m < d)

and denote the number of equations removed by a = d−m. We will compose our

central map f(x) = xq
θ+1 with affine maps S and T from Fdq to Fdq . We let φ be a

vector space isomorphism from Fdq to K, π be a linear embedding from Fnq to Fdq ,

and τ be a linear projection from Fdq to Fmq .

(Fq)d (Fq)d (Fq)d (Fq)d

K K

(Fq)n

(Fq)m

S T

φ

f

φ−1

π

τ

Our public equations P can be found by computing P = τ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π.

6.2 Encryption and Decryption

To encrypt a message x, the sender would just compute P (x) = τ ◦T ◦φ−1 ◦

f ◦ φ ◦ S ◦ π(x) = y to get ciphertext y. To decrypt the message we will take
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advantage of some of the weaknesses that an unmodified C∗ scheme possesses.

To decrypt, we exploit the more efficient method of inversion Patarin devel-

oped in his linearization equations attack from [2].

As shown in 2.2.2, if v = (φ−1 ◦ f ◦ φ)u, then we know there exists a bilinear

relationship between v and u. Let y′ = T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π ◦ x, v̂ = T−1 ◦ y′, and

û = S ◦ π ◦ x.Then, v̂ = (φ−1 ◦ f ◦ φ)û. Thus, we see we have a bilinear relationship

between our plaintext and ciphertext variable. This tells us there is a system of d

polynomials of the form

∑
0≤i,j<d

αi,j,`uivj +
∑

0≤i<d

βi,`ui +
∑

0≤i<d

γi,`vi + δ`

in the coefficients of u and v which are simultaneously zero.

Given access to the private key the calculation of this bilinear relation is

immediate. Adding the linearization equations to the private key can be considered

a drawback as it increases the private key size, but is an important aspect for our

algorithm.

Inversion, given the ciphertext y, is then accomplished by concatenating

every possible suffix ya to discover y′ = y||ya. Success is determined by solving the

affine system in x induced from the linearization equations upon input y′. If the

affine system has a solution, x, we can be assured that P (x) = y.

6.3 Decryption Failure Rate

We want to find the probability that there are multiple preimages of y under

τ , which would result in a decryption failure. Specifically, we want to compute

the probability that x1, x2, y ∈ Fq exists such that P (x1) = P (x2) = y, given that

P (x1) = y. Given our function P (x) = τ ◦T ◦φ−1◦f ◦φ◦S ◦π(x), it is clear that the

only part of this function that is not injective is τ, and that π is the only additional

map that is not bijective. Thus we compute the probability of decryption failure
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under the simplifying heuristic that the central map P̂ (x) = T ◦φ−1 ◦ f ◦φ ◦S(x) is

a random bijection. This assumption is obviously false as f is a quadratic map, but

we believe this heuristic to be statistically useful. Let A = image(π), |A| = qn. We

can consider B to be the preimage of y under τ , so under our simplifying heuristic

B is a random set of qa elements from Fdq .

We will use Bernoulli trials to estimate the probability that y is the image

of at least two distinct elements of Fnq , given that it is the image of at least one. If

Pr(P̂ (x) ∈ B : P̂ (x) ∈ A) = p, then the probability of k elements in A being in B

is
(
qn

k

)
(1− p)(qn−k)pk.

The probability of P̂ (x) ∈ B is qa

qd
= q−m, and the probability that P̂ (x) is

not in B is 1− q−m. Thus we compute:

Pr(|A ∩B| ≥ 2 | |A ∩B| ≥ 1) =
Pr(|A ∩B| ≥ 2)

Pr(|A ∩B| ≥ 1)

=
1−

(
Pr(|G ∩ τ−1(y)| = 0) + Pr(|G ∩ τ−1(y)| = 1)

)
1− Pr(|G ∩ τ−1(y)| = 0)

Therefore we find Pr(|A∩B| ≥ 2 | |A∩B| ≥ 1) to be p = 1−(1−q−m)q
n−qn−m(1−q−m)q

n−1

1−(1−q−m)qn
.

To find an upper bound for the probability p, we find an upper bound for the nu-

merator, and a lower bound for the denominator.

Claim 2.
(
a
i+1

)
(q−(i+1)m) <

(
a
i

)
(q−im) when a < qm

Proof. Notice that
(
a
i+1

)
(q−(i+1)m) = a!

(i+1)!(a−i−1)!q(i+1)m has the same numerator as(
a
i

)
(q−im) = a!

(i)!(a−i)!qim , so we will prove the claim by showing the denominator of

the left hand side is larger than the denominator of the right hand side.

Clearly (i + 1)! > i!, and q(i+1)m > qim by a factor of qm. We see that

(a − i − 1)! < (a − i)! by a factor of a − i, but we know that a − i < a < qm.

Thus we can conclude (i + 1)!(a − i − 1)!q(i+1)m > (i)!(a − i)!qim and therefore(
a
i+1

)
(q−(i+1)m) <

(
a
i

)
(q−im) when a < qm.
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Bounding the numerator: 1− (1− q−m)q
n − qn−m(1− q−m)q

n−1 .

Using binomial coefficients and the above claim, we see that:

(1− q−m)q
n

= (1−
(
qn

1

)
q−m +

(
qn

2

)
q−2m − · · · ) ≥ 1− qnq−m.

Thus 1− (1− q−m)q
n ≤ 1− (1− qn−m).

By the same argument, we are given:

(1− q−m)q
n−1 = (1−

(
qn−1

1

)
q−m +

(
qn−1

2

)
q−2m − · · · ) ≥ 1− (qn − 1)q−m.

Therefore, −qn−m(1− q−m)q
n−1 ≤ −qn−m(1− (qn − 1)q−m). Thus the numerator is

bounded above by 1− (1− qn−m)− qn−m(1− (qn − 1)q−m).

Bounding the denominator: 1 − (1 − q−m)q
n

Similar to our argument for

bounding the numerator, we will use binomial coefficients and claim 1 to find:

(1− q−m)q
n

= (1−
(
qn

1

)
q−m +

(
qn

2

)
q−2m − · · · ) ≤ 1−

(
qn

1

)
q−m +

(
qn

2

)
q−2m

Hence the denominator is bounded below by 1− (1− qn−m + qnqn−1
2

q−2m).

Finding a bound for the probability, p

p =
1− (1− q−m)q

n − qn−m(1− q−m)q
n−1

1− (1− q−m)qn

≤ 1− (1− qn−m)− qn−m(1− (qn − 1)q−m)

1− (1− qn−m + qnqn−1
2

q−2m)

=
1− 1 + qn−m − qn−m + qn−m(qn − 1)q−m

1− 1 + qn−m − qn(qn−1)
2

q−2m
=

qn−m(qn − 1)q−m

qn−m − qn(qn−1)
2

q−2m

=
qn−m(qn − 1)q−m

qn−m − qn−m(q−(n−m) q
n(qn−1)

2
q−2m)

=
qn−m − q−m

1− ( q
n−m−q−m

2
)

When q = 2, empirical evidence shows we can approximate this by 2n−m−1.

The data to support this claim are shown in Table 7.1.
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q n d a m n−m decrypt fail rate

2 14 34 8 26 −12 2−13.13

2 14 35 8 27 −13 2−13.94

2 14 36 8 28 −14 2−14.94

2 14 37 8 29 −15 2−15.94

2 14 38 8 30 −16 2−17.64

Table 6.1: Probability of decryption failure for specific parameters of EFLASH.

6.4 Resistance to Known Attacks

The security analysis of EFLASH is quite related to that of PFLASH because

of the similar algebraic structure. There are three attack methods that must be

considered. Since the scheme requires more equations than variables to ensure a

low probability of decryption failure, we require a careful analysis of the direct

algebraic attack to ensure that the degree of regularity of the scheme is not too

low. Second, in light of the attack on HFE- schemes, see [9], we require a MinRank

analysis. Finally, given the history of the lineage of the C∗ family, we require an

analysis of symmetric differential methods.

6.4.1 Algebraic Attack

The first relevant attack for EFLASH is the direct algebraic attack. Al-

gebraically, EFLASH is a high degree projected HFE- scheme, in the sense that

EFLASH has a low Q-rank like HFE. Applying a projection to the input variables

cannot increase the Q-rank, so we analyze the Q-rank of the central map composed

with the minus modifier.

The key observation is that, unlike the case of HFE in which removing one

equation in general increases the Q-rank by one, since the quadratic form associated
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with the central map is so sparse, the removal of one equation in general increases the

rank by two. To see this, note that the coefficients of the quadratic form associated

with HFE are restricted to a square submatrix whose size is typically the Q-rank

of the map. A codimension one projection allows these coefficients to bleed into

another row and column, which increases the size of the square by one. In contrast,

the size of the smallest square containing the nonzero values in the quadratic form

of the EFLASH central map is usually much larger than the Q-rank of EFLASH;

in fact, the codimension one projection can produce two elements in original rows

and columns, see Figure 7.1.

Figure 6.1: The shape of the matrices representing the central maps of HFE- and

C∗−. The darkly shaded regions represent nonzero values of the central map with-

out the minus modifier, the lightly shaded regions represent new nonzero values

introduced by the removal of one equation. Unshaded areas have coefficients of

zero.

Thus, the central map of EFLASH has Q-rank 2 + 2a. By the formula

provided in [22], we compute an upper bound on the degree of regularity,

dreg ≤ (q − 1)(a+ 1) + 2. (6.1)

When q is small this bound is known to be fairly tight. The complexity of the

algebraic attack on EFLASH is therefore estimated to be O
((

n+dreg
dreg

)ω)
, where

2 ≤ ω ≤ 3 is the linear algebra constant.

Experiments were conducted on some small scale instances of EFLASH to

study the behavior of the degree of regularity for values of n and m = d − a of a

59



similar ratio to a full sized scheme with a low decryption failure rate. The results

are shown in Table 6.2.

n d a m dreg dreg (RANDOM)

16 28 9 19 4 4

24 37 9 28 4 5

32 47 9 38 5 6

40 56 9 47 ≥ 6 7

Table 6.2: The degree of regularity of small scale EFLASH parameters in comparison

to that of random systems of the same size.

The data show that the degree of regularity grows with the size of the system

when a is fixed. Until our resource permissions were limited on the machine, each

sufficiently large system exhibited a degree of regularity at most one less than that

of a random system. We do not have a solid theoretical argument for why the degree

of regularity should be bounded thusly; however, for the sizes of schemes necessary

to achieve security, the upper bound provided by Equation (6.1) is already strictly

less than the degree of regularity of random systems of the same size.

6.4.2 MinRank Attack

We can denote the calculations used to find our public equations P as matrix

multiplications. Let F∗i be the matrix representation of the ith Frobenius power of

the central map f . Then the matrix F∗0 represents our central map f , and is

the d × d matrix with 1’s in the (0, θ) and (θ, 0) coordinates and zeros elsewhere.

Matrices S and T are d×d affine maps. We can also consider π as a linear embedding

from (Fq)n to (Fq)d, and τ as a linear projection from (Fq)d to (Fq)m. Let σ be a

primitive element of the extension, and thus {1, σ, σ2, . . . , σd−1} is a basis vector

over Fq. Then mappings of φ and φ−1 can be represented as multiplication of Md
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and M−1
d , respectively, where

Md =



1 1 . . . 1

σ σq . . . σq
d−1

...
... . . .

...

σd−1 σ(d−1)q . . . σ(d−1)qd−1


We can express the actions of τ by the following d× d matrix,

τ ∗ =

 Im 0m×a

0a×m 0a×a


.

Notice that τ ∗ : (Fq)d → (Fq)d. We will call P ∗ := τ ∗ ◦ T ◦ φ−1 ◦ f ◦ φ ◦S ◦ π.

P and P ∗ will be comprised of the same m public equations, but P ∗ will then have

a rows of 0 appended to it.

Consider R = φ ◦ τ ∗ ◦ T ◦ φ−1. Then R : Fqd → Fqd is Fq-linear. If we

let τ̃(x) = Πr∈ker(R)(x − r), then we know by proposition 2 in [12], there exists a

nonsingular linear map R̃ from Fqd to Fqd such thatRx = R̃τ̃x. Let T̃ = φ−1◦R̃◦τ̃◦φ.

This brings us to the following claim.

Claim 3. P ∗(x) = τ ∗ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ πx = T̃ ◦ φ−1 ◦ f ◦ φ ◦ S ◦ πx

Proof.

T̃ ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π = φ−1 ◦ R̃ ◦ τ̃ ◦ φ ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π

= φ−1 ◦ R̃ ◦ τ̃ ◦ f ◦ φ ◦ S ◦ π (∗)

= φ−1 ◦R ◦ f ◦ φ ◦ S ◦ π

= φ−1 ◦ φ ◦ τ ∗ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π

= τ ∗ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π

= P ∗
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Now, let us reconsider (∗). We know that our public key is equivalent to (∗),

so we see that

P ∗ = φ−1 ◦ R̃ ◦ τ̃ ◦ f ◦ φ ◦ S ◦ π

= φ−1 ◦ R̃ ◦ φ ◦ φ−1 ◦ τ̃ ◦ f ◦ φ ◦ S ◦ π

= T̂ ◦ φ−1 ◦ f̂ ◦ φ ◦ S ◦ π

Where f̂ is our new central map and f̂ = τ̃ ◦ f and T̂ = φ−1 ◦ R̃ ◦φ. We now

consider F̂∗i to be the ith Frobenius power of the new central map f̂ = τ̃ ◦ f . If we

denote h = φ−1 ◦ f̂ ◦ φ, then we can find symmetric matrices (H1, . . . ,Hd) ∈ (Fq)d

such that hi = xHix
>. As shown in [11] we see,

(H1, . . . ,Hd) = (MdF̂∗0M>
d , . . . ,MdF̂∗(d−1)M>

d )M−1
d . (6.2)

If we denote the public key by P = (g1, g2, . . . , gm)>, then we can consider the

symmetric matrices (G1,G2, . . . ,Gm) that correspond to the public polynomials,

such that gi = xGix. By analysis in [11] we find,

(G1, . . . ,Gm) = (πSMdF̃∗0M>
dS>π>, . . . , πSMdF̃∗(d−1)M>

dS>π>)M−1
d T̃ (6.3)

When we consider our original central map, we saw that F∗0 has rank 2.

Looking at our new central map f̂ , we see that τ̃ increases the rank. If we insist

that θ is between a+ 1 and d− a− 1, then F̂∗0 has rank 2(a+ 1).

Notice that the embedding π : (Fq)n → (Fq)d, and the affine map S will not

increase the rank of the right hand side of (6.3), so it will not affect our MinRank

attack. Applying T̂ normally does increase the rank, but it does not increase the

min-Q-rank because it just produces new linear combinations of these matrices.

Using these facts and the analysis from [11] we find that we are solving the
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MinRank problem:

rank
(m−1∑
k=0

λiGi

)
≤ 2(a+ 1)

By the analysis in [35] and [36], the complexity of solving MinRank with

the given parameters is O
((
m+dreg
dreg

)ω)
, where dreg is the degree of regularity of the

minors system and ω is the linear algebra constant. Treating EFLASH as a special

case of HFE-, we may derive the degree of regularity of the minors system from [9,

Conjecture 2] by using the Q-rank in place of the sum of the logarithm of the

degree bound and the number of equations removed . Then we may estimate that

the degree of regularity of the minors system is dreg = 2a+ 3.

6.4.3 Discrete Differential Attack

In Chapter 5 it is shown that almost all parameters of PFLASH are secure

against differential adversaries. The proof relies on the fact that the corank of the

projection is relatively small. Since EFLASH uses a corank d − n projection, the

security proof does not apply and so we must use other arguments.

By the symmetric argument to that in [9], we can express π under the ap-

propriate basis as a polynomial in K of degree qd−n. Thus, the central quadratic

form can be considered a quadratic form in the d − n “variables” π(x)q
i
, for 0 ≤

i ≤ d − n. In characteristic two, there are at least as many linearly independent

quadratic monomials as in GF(2); thus, there are at least
(
d−n+1

2

)
linearly indepen-

dent quadratic monomials in π(x)q
i
, for 0 ≤ i ≤ d− n over K.

We expect that the locus of stabilizing pairs of matrices is zero-dimensional

over K, though it is necessarily positive dimensional over Fq since scalar multiples

induce symmetry for any map. We performed experiments and found that the

solution space was zero-dimensional over K in all cases. We conclude that the space

of linear maps inducing symmetry on EFLASH is too small to be exploited like in
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the attack on SFLASH of [37].

6.5 Parameter Selection

In choosing parameters for EFLASH, we need to consider security against the

direct algebraic attack, the MinRank attack, and fault attacks exploiting decryption

failure. We address the constraints each of these attacks places on parameters, as

well as efficiency concerns.

The complexity of both the direct attack and the MinRank attack is directly

related to the Q-rank of the public key. In the case of very small fields, such

as GF(2), the degree of regularity is little larger than the Q-rank, 2a + 2; thus,

several equations must be removed to achieve security. Over GF(2), each increase

in a doubles decryption time while making the direct attack approximately n times

harder and the MinRank attack approximately 2m times harder.

To address decryption failures, we note that the probability estimate of Sec-

tion 6.3 is approximately qn−m−1. We set a reasonable bound 2−B on the probability

of decryption failure and may set m = n+ B
lg(q)

to achieve this bound.

For larger q, the MinRank attack seems to be the most concerning. For

efficiency reasons, it is impractical to have a large a; therefore, an instance with

large q is vulnerable to MinRank. For this reason, we recommend the choice q = 2

with a and n sufficiently large to resist the algebraic attack. Our specific parameter

selections for classical security levels are summarized in Table 6.3.It is important to

note that our implementation is a proof of concept, and not at all optimized. This

is a magma implementation, and we are only using one core.

In principle, Grover search should affect the security of these schemes, but

at this time we are not aware of a result that indicates a Grover search would be

feasible for such large parameters. It is possible that Grover search could halve the
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Scheme Security Public Key Enc. Dec. Dec.

B (ms) (ms) Failure

EFLASH(2, 80, 101, 5) 80-bit 38892 0.7 194 2−17

EFLASH(2, 134, 159, 9) 128-bit 169613 1.3 12758 2−17

Table 6.3: Parameters and unoptimized performance of EFLASH(q, n, d, a) at the

80-bit and 128-bit classical security levels.

dimension of the preimage search space. Thus, we may have to roughly double the

size of the plaintext. To protect against the possible threat of Grover search we

consider the parameter selections shown in Table 6.4.

On the other hand, we may consider the possibility of the cryptosystem

being implemented on a quantum device so that the search step in decryption may

be Groverized. Therefore Grover’s algorithm may, in fact, improve efficiency.

Scheme Security Public Key Enc. Dec. Dec.

B (ms) (ms) Failure

EFLASH(2, 160, 181, 5) 80-bit 141691 1.9 1140 2−17

EFLASH(2, 256, 279, 7) 128-bit 559249 5.3 16177 2−17

Table 6.4: Parameters and unoptomized performance of EFLASH(q, n, d, a) at the

80-bit and 128-bit quantum security levels.
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CHAPTER 7

ALL IN THE C∗ FAMILY

Section 2.2.3 introduces some of the modifiers that have been proposed to

try to secure C∗ schemes. In this chapter we will look at each of these modifiers

in more detail, and consider new combinations of them. We will start by reviewing

the modifiers, and introducing the notation we will use throughout the chapter.

One such modifier is the minus modifier (−), which eliminates a equations

from the public key. The plus modifier (+) adds p random equations to the public

key. Another modifier introduced is the projection modifier (p). The idea of pro-

jection is to fix the value of d− n input variables. We call the codimension of this

projection t := d− n.

The vinegar modifier (v) adds extra variables into the public key that can

be assigned random values upon inversion. The effect of adding vinegar variables is

that new quadratic terms, formed from both products of vinegar variables and C∗

variables and products among vinegar variables, increase the Q-rank of the public

key, that is, its rank as a quadratic form over K. Vinegar variables are typically

applied to Hidden Field Equation (HFE) schemes, as discussed in Chapter 4.

The final modifier we will discuss is internal perturbation (ip). For this

modifier, we will consider a public key P : Fnq → Fmq . We will denote the ith equation

of the public key as pi, and plain-text vector x := (x1, x2, . . . , xn) ∈ Fnq . Consider an

affine map S : Fnq → Fsq, and denote z := S(x). Additionally, consider Q : Fsq → Fmq

to be a set of m quadratic equations, where qi denotes the ith. equation. We can

create the internally perturbed public key P̃ by defining p̃i(x) = pi(x) + qi(z) for
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each 0 < i ≤ m. The support dimension of (ip) will be denoted as s.

7.1 Known Combinations of Modifiers

The unmodified C∗ scheme is easy to attack with the help of hindsight and

twenty years of serious development in multivariate cryptography. Not only is C∗

vulnerable to Patarin’s linearization equations attack of [2], the scheme is also weak

against differential methods such as [38], can be broken by finding the extension

field structure via the techniques of [37] and is easily defeated by MinRank methods

such as [11].

Several attempts at encryption and signatures derived from C∗ have been

proposed over the years using the modifiers of the previous section. Each of the

modifiers has a critical weakness. The minus modifier is vulnerable to differential

cryptanalysis as the practical attack on SFLASH of [39] shows. The plus modifier

does not increase the MinRank of the scheme and so MinRank attacks are effective

and reveal the output basis, breaking the scheme. The projected C∗ scheme is still

vulnerable to a differential attack as shown in [28], as is the internally perturbed C∗

scheme, see [38]. The vinegar variant transforms C∗ into a particularly bad HFEv

scheme unless some hack making it similar to (ip) is applied. Interestingly, none of

the modifiers alone are sufficient to secure C∗.

Combinations of these modifiers have seen some greater success. After the

attack in [38] of the original PMI scheme of [40], an ipC∗ scheme, PMI+, proposing

the combination of the (ip) and (+) modifiers was presented in [41]. Similarly,

PFLASH and EFLASH use both the projection and minus modifieres.

We present in Appendix II a summary of the security properties of C∗

schemes with various combinations of modifiers. For brevity we are not exhaus-

tive, and as a general rule it seems that combinations of modifiers each of which are
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weak against attack A tend to remain weak against attack A.

Two things are important to note about this summary. First is that there is

a notable exception to the rule of the previous paragraph. While it has been shown

that pC∗ schemes and C∗− schemes are both vulnerable to differential attacks,

it was proven in [17] and generalized in [42] that the combination of projection

with the minus modifier renders C∗ invincible from differential attacks. Thus the

combination (p-) is resistant to differential adversaries though (p) and (-) are weak.

Second, resistance to these attack models is typically not binary but parameterized

by the modifier. In particular, though the (ip) modifier provides resistance to

MinRank attacks, the original parameters of PMI+ are easily broken by a simple

modification of [11] and still larger parameters can be defeated by the new MinRank

techniques developed in [43]. (Embarrassingly, we can find no reference to either

such attack on PMI+.) We will revisit this analysis in Section 7.3 where we will

generalize the analysis of the family of C∗ schemes to the full array of possible

schemes with all of their parameters.

7.2 The C∗ Schema

In this section, we describe a C∗ construction that is as general as possible

using the modifiers of the previous section. We parameterize this generalized C∗

scheme with the values:

• n, number of variables

• d, degree of extension

• s, support dimension of the (ip) modifier

• a, number of public equations removed

• p, number of plus polynomials
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• t, corank of projection (d− n)

We call the resulting scheme a (n, d, s, a, p, t) scheme.

The only modifier whose use we do not consider in the C∗ framework is the

vinegar modifier, (v). Directly applying the vinegar modifier produces a degenerate

HFEv scheme, since inversion must be accomplished via Berlekamp’s Algorithm,

see [8], or something similar. We do not consider this modifier as a C∗v scheme would

be no better performing than an HFEv scheme, while the C∗v would have a smaller

key space and worse security properties. Moreover, since the direct application of

the vinegar modifiers results in an inversion process that does not use the structure

of the C∗ map, we do not consider this a C∗ scheme, but rather a bad HFE scheme.

Let K be a degree d extension of Fq and let φ : Fdq → K be an Fq-vector space

isomorphism. Let U : Fnq → Fnq be an invertible Fq-affine map, let Lt : Fnq → Fdq be

a corank t embedding, let S : Fnq → Fsq be the projection onto the first s coordinates

and let T : Fd+p
q → Fd+p−a

q be a full rank Fq-affine map.

Define fc : Fnq → Fdq by

fc = φ−1 ◦ f ◦ φ ◦ Lt,

where f : K→ K is given by f(X) = Xqθ+1. Further, let fip : Fnq → Fdq be given by

fip = Q ◦ S,

where Q : Fsq → Fdq is a random quadratic. Finally, let fp : Fnq → Fpq be a random

quadratic.

The central map is constructed as

F = (fc + fip)‖fp.

The public key is then given by P = T ◦ F ◦ U , illustrated below.
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(Fq)n (Fq)n
U

(Fq)n

(Fq)d

K K

Fdq
Lt

φ

f

φ−1

(Fq)n

(Fq)s
Fdq

S

Q

Fnq

Fpq

fp

Fd+pq

Fd+p−aq

T

F

Remark 1. We note that since φ is a parameter of the system, that the choice of

φ amounts to a choice of basis for K over Fq and that Lt is random, the choice of

defining fip using only the first s variables still captures the full generality of the

(ip) modifier.

The degree of the extension field d is a parameter that can vary widely

depending on the application. For most studied signature schemes of this type,

d = n. For encryption, it is viable to allow d to be much larger than n, as is the

case for EFLASH, see [44].

Inversion of the public map given the private key is straightforward. First,

at key generation, compute the image of fip so that its elements can be efficiently

enumerated. Given y ∈ Fd+p−a
q , compute the preimage of y under T and parse

each vector as w = w1‖w2 = (w1, . . . , wd)‖(wd+1, . . . , wd+p). For all elements ws ∈

Im(fip) and for all such w1, enumerate all preimages u of w1 + ws under fc. Check

that fip(u) = ws and that fp(u) = w2: if either fails retry with another pair; if

the check succeeds then output U−1(u). All of the details are explicitly provided

in Algorithm 1, which calls on a subroutine to invert the map fc, since this process

can differ depending on whether the scheme is parameterized as a signature or an

encryption scheme.

7.3 Security Analyses of the Schema

Here we consider the known attacks on multivariate schemes and discuss
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Algorithm 1 (n, d, s, a, p, t) scheme Public Key Inversion

Input: T, φ, fc, fip, fp, U
−1, Im(fip) and y ∈ Fd+p−a

q .
Output: x such that P(x) = y.

1: x = ⊥
2: WT ← {w ∈ Fd+p

q : T (w) = y}
3: for all w ∈ WT do
4: w1 ← w[1 : d], w2 ← w[d+ 1 : d+ p]
5: for all ws ∈ Im(fip) do
6: wc ← w1 + ws

7: Uc ← Invfc(wc)
8: for all u ∈ Uc do
9: if fip(u) = ws and fp(u) = w2 then
10: x← U−1(u)
11: break
12: end if
13: end for
14: end for
15: end for
16: return x

their application on the general C∗ framework presented in the previous section. In

particular, we discuss what combinations of modifiers prevent attacks and highlight

what modifiers are vulnerable to attack without a companion modifier.

7.3.1 Differential Analysis

Differential symmetry attacks also broke SFLASH, SQUARE and PMI, see

[28,37,38]. The vulnerability of C∗ to the differential symmetric attack is provably

removed with the combination of the projection and minus modifiers as shown

in [5, 17] and generalized in [42]. Thus, for any generalized C∗ scheme with both

the projection and minus modifiers to be vulnerable to such attacks, the additional

modifiers must somehow reintroduce this weakness. Since the remaining modifiers

introduce random coefficients or equations to the central map, the likelihood of

such an occurrence is very remote. In particular, both of the random (ip) and

(+) modifiers move the distribution of (n, d, 0, a, 0, t) schemes towards the uniform
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distribution on quadratic maps in statistical distance. Under the loose heuristic

that the distribution of such (n, d, s, a, p, t) schemes is very close to uniform, we

can derive an approximation of the probability that the result has a differential

symmetry.

To calculate the probability that a random function has a differential sym-

metry, we note that quantified over all quadratic functions, we obtain all possible

differential symmetry relations of the form

DP (Ma, x) +DP (a,Mx) = ΛMDP (a, x). (7.1)

in the unknown coefficients of M and ΛM . We can see that M is being applied

to the plaintext variables a and x, which are vectors of length n. Therefore, M

will be an n× n matrix. Lambda on the other hand, will be applied to the output

variables, and will therefore have dimension d − a + p × d − a + p. So the two

matrices together will have (d − a + p)2 + n2 variables. To determine the number

of equations, it is easier to think about this relationship coordinate wise. If we

denote DPi as the differential of the ith public key equation, and consider solving

DPi(My, x) + DPi(y,Mx) = ΛMi
DP (y, x), we can see that we will have a set of

d − a + p equations. For each coordinate i, we get one equation. But, we can

interpret each equation as a matrix equation, M>DPi + DPiM = ΛMiDP. The

left hand side of the equation will give me a symmetric matrix as DPi is symmetric,

so we only need to test the upper triangular section of the matrix, including the

diagonal, which gives us
(
n+1

2

)
coordinates. Thus, there are (d− a+ p) times

(
n+1

2

)
equations. Therefore the symmetric discrete differential equation has a solution

with probability q(d−a+p)2+n2−(d−a+p)(n2) = qO(−n3).

For the sake of caution, we will consider schemes with at most one of the

projection and minus modifiers and at most one of the (ip) and (+) modifiers to

be insecure. The reason is that schemes with at most one of (p) and (-) exhibit a
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form of differential symmetry and it is plausible that statistical techniques similar

to [38] or projection techniques similar to [43] may be effective against (ip) and (+)

modifications of these schemes, respectively.

Thus the space of (n, d, s, a, p, t) schemes resistant to differential attacks are

those with at > 0 or sp > 0.

7.3.2 MinRank

The complexity of MinRank is dependent upon Q-rank, so it is clear that

if we increase the rank, we decrease the effectiveness of the MinRank attack. The

minus modifier increases the rank of the central map. Since the quadratic form

associated with the central map is so sparse, the removal of one equation in general

increases the rank by two. The minus modifier can be viewed as a codimension

one projection, which can produce two elements in original rows and columns, see

Figure 7.1.

Figure 7.1: The shape of the matrix representing the central map of C∗−. The

darkly shaded regions represent nonzero values of the central map without the

minus modifier, the lightly shaded regions represent new nonzero values introduced

by the removal of one equation. Unshaded areas have coefficients of zero.

The projection modifier cannot increase the Q-rank of the central map. Since

we expect the Q-rank of the projected scheme to be the same as the original, we

expect the security of a (n, d, s, a, p, t) scheme against MinRank attacks to be the

same as that of a (n, d, s, a, p, 0) scheme.
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The effect of (ip) depends on the support dimension s. Since the support

dimension of the (ip) summand is s, there is an s dimensional space in which the

(ip) modifier adds extra randomness to the quadratic form F. Under an appropriate

change of basis, all of this contribution can be contained in the upper left s × s

block of F; hence, (ip) increases the Q-rank by at most s. We can apply projections

on the input to try to kill the (ip) support, which once again makes the Q-rank

low. Therefore, techniques similar to [43] may limit the effectiveness of the (ip)

modifier in preventing a MinRank attack, a fact that once again highlights the

close relationship between (ip) and (v).

Finally, the (+) modifier has no effect on min-Q-rank. While any nonzero

linear combination of the (+) polynomials is likely to have a high rank, any linear

combination of the public polynomials that eliminates the contribution of the (+)

polynomials has a rank independent of the (+) modifier. Thus, if the Q-rank of

a (n, d, s, a, 0, t) scheme is sufficiently low, the (+) modifier adds no significant

security; it merely increases the number of equations.

Thus, the Q-rank of a generic (n, d, s, a, p, t) scheme is 2 + 2a + s at most,

and this is a tight bound for most realistic parameters. Thus, we can conclude that

the complexity of a MinRank attack on (n, d, s, a, p, t) schemes is

O

((
d+ a+ p+ s+ 3

3 + 2a+ s

)ω)
≈ O

(
(d− a+ p)(3+2a+s)ω

)
.

7.3.3 Algebraic

The complexity of algebraic attacks rely on the degree of regularity, defined

as the smallest degree at which a nontrivial degree fall is generated in the Gröbner

basis algorithm. We can find an estimate of the degree of regularity depending on

the Q-rank of the system in [22].

As discussed in the previous section, the Q-rank of a C∗ scheme with a
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equations removed is 2 + 2a. The projection and plus modifier cannot increase

the rank of the central map. Thus we compute an upper bound on the degree of

regularity on a (n, d, s, a, p, t) scheme to be

dreg ≤ (q − 1)(a+ s+ 1) + 2.

We note that dreg monotonically decreases in p, thus we cannot add too many plus

polynomials.

If we are more conservative, we may consider projection attacks such as those

in [43] attempting to eliminate some of the support for the (ip) modifier. We note

that with appropriately chosen parameters, this attack can be rendered no more

effective than the standard algebraic attack.

Therefore, similar to the analysis done in [44], the complexity of the algebraic

attack on a (n, d, s, a, p, t) scheme is estimated to be O
((

n+dreg
dreg

)ω)
, where 2 ≤ ω ≤ 3

is the linear algebra constant.

7.4 Performance Analyses

The performance characteristics of C∗ schemes under various modifiers are

straightforward to derive. There are some significant differences, however, in the

effects of the modifiers when employed for signatures versus encryption. We, thus,

treat each case independently.

7.4.1 Key Size

For a generic (n, d, s, a, p, t) scheme, the derivation of the public key size

is straightforward. There are d − a + p public equations in n variables. Each

of those equations will be a quadratic function with
(
n
2

)
possible quadratic terms

(recall, x2 = x in F2), n linear terms, and 1 monomial. So each equation will have(
n
2

)
+ n + 1 elements. The public key therefore consists of (d − a + p)

((
n+1

2

)
+ 1
)

75



elements from Fq. This observation is not all there is to say about public key size,

however.

The (+) modifier significantly reduces the probability of the existence of a

preimage for an arbitrary element in the codomain of the public key. We may

therefore safely ignore this modifier for digital signature applications.

Similarly, there is a possibility of inversion failure for the public key if the

balance of the projection, minus and plus modifiers is not correctly handled. In

particular, if d is larger than n the chance of failure is high. Therefore, we will

restrict our consideration in the case of signature schemes to (n, n, s, a, 0, t) with t

small and in particular t < a.

For encryption schemes we need the public key to be statistically injective.

To accomplish this goal with modifiers, we either require some redundancy in the

plaintext space or to have a larger codomain than the domain. To allow random

plaintexts, we use a value of d much larger than n. Then inherently a projection

of corank at least t = d − n is required. Since a larger value of t precludes unique

inversion, we are forced to set the parameter t = d− n.

7.4.2 Complexity of Inversion

Inversion of the public key is accomplished with Algorithm 1. From the

algorithm we can see that we have as many as qa+s calls to Invfc, plus as many as

qa+s|ker(Lt)| evaluations of fip and fp, plus a couple of linear algebra operations.

These numbers can vary depending on the parameters and the application.

Consider a (n, d, s, a, 0, t) scheme designed for signatures. With n = d, any

preimage of y has a high probability of producing a valid signature and so it is likely

that very few of the qa such preimages will need to be utilized in the inversion. In

contrast, for an encryption scheme with n far smaller than d, one may have to
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search nearly the entire qa preimages to find the valid plaintext. Similarly, for a

signature scheme, the kernel of Lt may be large, as large as qt, possibly, whereas for

an encryption scheme it is necessary that Lt is an embedding. Thus, we split into

two cases to consider inversion complexity.

First, we consider inversion for signatures. Under the above assumptions for

valid performance of a (n, d, s, a, p, t) scheme for signatures, we have that n = d,

p = 0, t is small and t < a. Since t is small and evaluation of fip and fp are

extremely efficient, the complexity is dominated by that of Invfc. Since we expect

to only require a few values of w to find a valid inverse, the complexity of this step

is O(qs) times the complexity of Invfc. Using an efficient inversion process based on

linearization equations, the complexity of the latter is O(nω). Thus the complexity

for signature schemes is

O (nωqs) .

In the case of encryption, we assume that d is much larger than n and that

t = d − n. In this case, all of Invfc and fip and fp are evaluated qa+s times, thus,

once again, the complexity of inversion is dominated by that of Invfc. In this case,

however, it is likely that on the order of qa preimages of y under T need to be

searched. Thus the complexity of inversion for an encryption scheme is

O
(
nωqa+s

)
.

7.4.3 Decryption Failure Rate

The decryption failure rate for (n, d, 0, a, 0, t) schemes created with the inten-

tion of encryption is discussed in [44]. Using conditional probabilities and Bernoulli

trials, it was found that the probability, p, that y is the image of at least two distinct

elements of Fnq , given that it is the image of at least one can be approximated by

qn−m, where m = d− a.
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This probability was found under the simplifying heuristic that considered

the Fq−quadratic central maps f to be random injective maps. Considering (ip), we

no longer have the injective property, though the (ip) modifier has a large codomain,

so it is unlikely to have collisions between it and anything else. Therefore, (ip) should

not have an effect on the decryption failure rate because we would just be adding

another random summand. Adding a plus modifier will decrease the decryption

failure rate because it will add extra equations that need to be satisfied.

We can model the central map without the minus modifier as a random func-

tion G : qn → qm̂, where m̂ := d + p − a. We will again use Bernoulli trials, and

compute: P (|G−1(y)| ≥ 2
∣∣ |G−1(y)| ≥ 1) ≤ 1−(1−qn−m̂)−qn−m̂+q2n−2m̂−qn−2m̂

1−(1−qn−d+ 1
2

(qn(qn−1)q−2d))
. Follow-

ing an analysis equivalent to that in [44], we see that the numerator is bounded by

q2n−2m̂ while the denominator is very close to qn−m̂; thus, a good approximation is

about qn−m̂ = qn+a−d−p. We can see that the plus modifier reduces the probability

of decryption failure approximately by qp, while (ip) has no significant effect on the

failure rate.

We performed a series of experiments on failure rate for (n, d, s, a, p, t) schemes

designed for encryption to investigate the rate of decryption failure relative to vary-

ing parameters d and p, the degree of extension and number of plus polynomials.

The results are reported in Table 7.1. All experiments were performed by encrypting

all possible plaintexts and counting the number of plaintexts producing non-unique

ciphertexts. In every experiment the failure rates follow the above analysis closely

without significant variance.
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q n d a s p m̂ n− m̂ decryption failure rate

2 14 26 4 2 2 24 −10 2−9.62

2 14 26 4 2 3 25 −11 2−10.71

2 14 27 4 2 2 25 −11 2−10.86

2 14 27 4 2 3 26 −12 2−12.23

2 14 28 4 2 2 26 −12 2−11.68

2 14 28 4 2 3 27 −13 2−13.23

Table 7.1: Probability of decryption failure for specific parameters of a

(n, d, s, a, p, t) scheme.

7.4.4 Parameter Spaces for Encryption and Signatures

From Section 7.3, we obtain the following constraints for a 128-bit secure

(n, d, s, a, p, t) scheme.

at+ sp > 0

(d− a+ p)(2+2a+s)ω ≥ 2128

n((q−1)(a+s+1)+2)ω ≥ 2128.

These constraints assure security against differential, MinRank and algebraic at-

tacks, respectively.

For signature schemes with suggested parameters of the form (n, d, s, a, 0, t)

we obtain a public key size of at least (n − a)
((
n+1

2

)
+ 1
)
lg(q) bits and a signing

time on the order of nωqs field operations. Both of these quantities seem to be

optimized by making s = 0, having a fairly large, and having t = 1. This choice of

parameters, unsurprisingly, produces the PFLASH scheme. It is interesting to note

that these data also suggest an optimal choice of q for such schemes of 2 or 4.

For encryption schemes of the form (n, d, s, a, p, t), the public key size has the

form (d− a + p)
((
n+1

2

)
+ 1
)
lg(q) bits while decryption time is around nωqa+s and
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the decryption failure rate is qn+a−d−p. Here there is a much more interesting trade-

off between different strategies. The quantity a + s needs to remain sufficiently

large to provide security but directly impacts the decryption speed. Public key

size is reduced if a is increased while s and p are reduced , however this directly

and negatively impacts decryption failure rate. Thus there are an array of options

offering various optimizations.
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[36] M Bardet, JC Faugére, B Salvy, and BY Yang. Asymptotic behaviour of the

degree of regularity of semi-regular polynomial systems. Proc. of MEGA 2005,

Eighth International Symposium on Effective Methods in Algebraic Geometry,

2005.

[37] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Practical

Cryptanalysis of SFLASH. In Alfred Menezes, editor, CRYPTO, volume 4622

of Lecture Notes in Computer Science, pages 1–12. Springer, 2007.

[38] Pierre-Alain Fouque, Louis Granboulan, and Jacques Stern. Differential crypt-

analysis for multivariate schemes. In Advances in Cryptology - EUROCRYPT

2005, 24th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,

pages 341–353, 2005.

[39] Vivien Dubois, Pierre-Alain Fouque, and Jacques Stern. Cryptanalysis of

SFLASH with Slightly Modified Parameters. In Moni Naor, editor, EURO-

85



CRYPT, volume 4515 of Lecture Notes in Computer Science, pages 264–275.

Springer, 2007.

[40] J. Ding. A new variant of the matsumoto-imai cryptosystem through pertur-

bation. PKC 2004, LNCS, 2947:305–318, 2004.

[41] J. Ding and J. Gower. Inoculating multivariate schemes against differential

attacks. PKC 2006, LNCS, 3958:290–301, 2006.

[42] Ryann Cartor and Daniel Smith-Tone. An updated security analysis of

PFLASH. In Post-Quantum Cryptography - 8th International Workshop,

PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings,

pages 241–254, 2017.

[43] Jintai Ding, Ray A. Perlner, Albrecht Petzoldt, and Daniel Smith-Tone. Im-

proved cryptanalysis of hfev- via projection. In Post-Quantum Cryptography

- 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA,

April 9-11, 2018, Proceedings, pages 375–395, 2018.

[44] Ryann Cartor and Daniel Smith-Tone. EFLASH: A new multivariate encryp-

tion scheme. In Selected Areas in Cryptography - SAC 2018 - 25th International

Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected Pa-

pers, pages 281–299, 2018.

[45] Tanja Lange and Tsuyoshi Takagi, editors. Post-Quantum Cryptography - 8th

International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-

28, 2017, Proceedings, volume 10346 of Lecture Notes in Computer Science.

Springer, 2017.

[46] Michele Mosca, editor. Post-Quantum Cryptography - 6th International Work-

shop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings,

volume 8772 of Lecture Notes in Computer Science. Springer, 2014.

86



APPENDIX I

HFEv and HFEv− Key Check Algorithms

Algorithm 2 HFEvKeyCheck

Input: An HFEv central map f , a flag flg.
Output: Set of indices of coefficients mi of submatrix m00 which
are possibly nonzero in a linear map inducing differential symmetry for
f .

1: for monomial αi,jx
qi+qj in f do

2: Si = {};
3: Sj = {};
4: for monomial with powers r and s in f do
5: Si = Si ∪ {r − j, s− j, i− j + r − s, i− j + s− r};
6: Sj = Sj ∪ {r − i, s− i, j − i+ r − s, j − i+ s− r};
7: end for
8: end for
9: if flg then
10: return all Si
11: else
12: return ∩Si
13: end if

Algorithm 3 HFEv−KeyCheck

Input: An HFEv− central map π(f), the corank of π, r.
Output: Set of indices of coefficients mi of submatrix m00 which
are possibly nonzero in a linear map inducing differential symmetry for
π(f).

1: Call: HFEvKeyCheck(f,1)
2: for all Si do
3: Ti = {};
4: for j from 0 to r − 1 do
5: Ti = Ti ∪ (j + Si);
6: end for
7: end for
8: return ∩Ti
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APPENDIX II

C∗ Security

Modifier Algebraic Differential Linearization Equation MinRank
(ip) + 0 + +
(-) + 0 + +
(+) - + + 0
(p) - 0 0 0
(v)∗ + + + +

(ip+) - + + +
(+-) + + + +
(p-) +- 1 + +

Table II.1: Resistance of C∗ against attacks under certain modifiers. The table can
be read as probabilities of resistance to the given attack. Thus 0 means that the
modifier(s) provide(s) no security in the attack model, 1 means the modifiers(s)
provide(s) provable security, and + or - mean increases, respectively decreases in
security. ∗ These schemes use HFEv inversion and are not C∗ schemes
per se.
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APPENDIX III

Glossary

• Algebra. An algebra over a field is a vector space along with a bilinear

product.

• Algebraic Variety. An algebraic variety is the set of solutions of a set of

polynomial equations.

• Basis. The basis of a vector space is a set of linearly independent elements

that span the vector space.

• Codimension The codimension of W ⊆ V is a V is a vector space is

codim(W ) = dim(V )− dim(W ).

• Corank. If an m × n matrix has rank r, then the corank of the matrix is

m− r.

• Coset. For any N ≤ G and any g ∈ G where G is a group, let gN = {gn|n ∈

N} and Ng = {ng|n ∈ N} called respectively a left coset and a right coset of

N in G.

• Degree of Regularity. Although there are many ways to define the degree

of regularity for a set of polynomials, this work will be using the following

definition: the degree of regularity for a system of equations is the degree

of the first degree fall while using the Buchberger algorithm to the compute

Gröbner basis.
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• Dimension. The dimension of a vector space is the number of elements in

the basis of the vector space.

• Extension field. If F is a field, then K is an extension field of F if K is a

field and F ⊂ K.

• Field. A field is a set F along with operations multiplication and addition that

satisfy the following properties: associativity, commutativity, the distributive

law, existence of additive identity 0, existence of multiplicative identity 1,

additive inverses, and multiplicative inverses for everything except 0.

• First Isomorphism Theorem. Let f : G → G′ be a surjective homomor-

phism with kernel K.

1. The map f̃ : G/K → G′, defined by f̃(xk) = f(x) for every x ∈ G is

well defined

2. The map f̃ is an isomorphism

3. Let Π : G→ G/K be the natural map. Then f̃ ◦Π = f , i.e., the following

diagrams commute

G G′
f

G/K

Π f̃

• Graph Isomorphism Problem (GI). The Graph Isomorphism Problem is

the problem of determining whether two finite graphs are isomorphic.

• Group. A group consists of set and an operation such that the operation

satisfies closure, associativity, identity and invertibility.

• Hilbert’s Nullstellensatz: Let F be a field and K and algebraically closed

extension field. Let I be an ideal of the polynomial ring F[X1, . . . , Xn], and let
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V (I) be the algebraic set of the ideal, defined such that ∀x ∈ V (I), f(x) = 0,

for every f ∈ I. If some polynomial p ∈ F[X1, . . . , Xn] vanishes on V (I)

(meaning p(x) = 0 for all x ∈ V (I)), then there exists a natural number r

such that pr ∈ I.

• Ideal. Let R be a ring. A subset I of R is called a left (respectively right or

2 sided) ideal of R if the following conditions hold:

1. 0 ∈ I

2. x, y ∈ I ⇒ x+ y ∈ I

3. r ∈ R, x ∈ I ⇒ rx ∈ I

• Irreducible Polynomial. A nonconstant polynomial f is said to be irre-

ducible over a field F if it cannot be factored into a polynomial of lower degree.

• Minimal polynomial. The minimal polynomial of an element α is the poly-

nomial f of lowest degree such that f(α) = 0.

• Monic. A polynomial is said to be monic if the leading coefficient is 1.

• Nonsingular. A square matrix is nonsingular if the matrix has a multi-

plicative inverse (i.e., is invertible). A square matrix is nonsingular when the

determinate is nonzero

• Normal Subgroup. A subgroup H ⊆ G is normal if the left and right cosets

of H in G are equal, i.e., gH = Hg for all g ∈ G

• NP , NP -complete. A decisional problem belongs to the class NP if, given

a witness (an example where the problem’s answer is yes), we can check that

the answer is correct in polynomial time. Stands for “non-deterministic poly-

nomial time”. If you have a problem where a witness can be checked in
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polynomial time, and a known NP problem can be solved using the given

problem with modified input, then your problem is NP -complete.

• P -space. A decisional problem belongs to the class P if there is a polynomial-

time algorithm that solves any solves any instance of the problem in polyno-

mial time. Note, P ⊆ NP .

• Polynomial ring. A polynomial ring over a field F in the variables [X1, X2, . . . , Xn],

denoted F[X], consists of all finite sums of products of powers of X1, . . . , Xm

with coefficients in F.

• Primitive Element. If the field K is generated by a single element α over

F, K = F(α), then α is the primitive element of that extension.

• Projection. A projection on a vector space V is a linear operator P : V 7→ V

such that P 2 = P (i.e., P is idempotent).

• Quotient Group. Let N be a normal subgroup of G. We define the set G/N

to be the set of all left cosets of N in G, i.e., G/N = {aN : a ∈ G}. We define

an operation on G/N as (aN)(bN) = (ab)N . The set G/N together with the

defined operation forms the quotient group of G by N .

• Ring. A ring is a set R along with two binary operators + and × that sat-

isfy additive associativity, additive commutativity, additive identity, additive

inverse, distributivity, and multiplicative associativity.

• Singular. A square matrix is singular if the matrix has no multiplicative

inverse (i.e., is not invertible). Thus, a square matrix is singular when the

determinate is equal to zero.

• Standard Basis. The standard basis of the space containing K−dimensional

vectors is a basis composed of vectors that have one entry equal to 1 and the
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remaining K − 1 entries equal to 0.

• Support. The support of a function f : A→ B is the set of elements x ∈ A

such that f(x) 6= 0.

• Vector Space. A vector space is a set that is closed under finite vector

addition and scalar multiplication.

93



CURRICULUM VITAE

Ryann Cartor
University of Louisville

ryann.cartor@louisville.edu

EDUCATION

University of Louisville, Louisville, KY
Ph. D, Applied Mathematics August 2019
M.A., Applied Mathematics December 2016

Bellarmine University, Louisville, KY.
B.S., Mathematics (Summa Cum Laude) May 2014

PROFESSIONAL EXPERIENCE

Teaching Assistant, University of Louisville 2014 - 2019
Courses independently taught include:

Elementary Statistics (Math 109)
College Algebra (Math 111)
Math for Elementary Education I (Math 151)
Math for Elementary Education II (Math 152)
Elements of Calculus (Math 180)
Precalculus (Math 190)
Calculus I (Math 205)
Calculus II (Math 206)

Courses recitation instructor for include:
Contemporary Mathematics (Math 105)
Finite Mathematics (Math 107)
College Algebra (Math 111)
Elements of Calculus (Math 180)

Adjunct Professor, Bellarmine University Spring 2018
Courses independently taught:

Math for Liberal Arts (Math 107)

94



RESEARCH

Publications

Cartor, R., Smith-Tone, D. EFLASH: A New Multivariate Encryption
Scheme. 25th Conference on Selected Areas in Cryptography, Calgary,
Canada, August 15-17, 2018, Proceedings, Springer (2018)

Cartor, R., Smith-Tone, D. An Updated Security Analysis of PFLASH.
8th International Workshop, PQCrypto 2017, Utrecht, the Netherlands,
June 26-28, 2017, Proceedings, Springer (2017)

Cartor, R., Gipson, R., Smith-Tone, D., Vates, J. On the Differential
Security of the HFEv- Signature Primitive. 7th International Workshop,
PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings,
Springer (2016)

Presentations

Cartor, R., “Studying C∗: An Introduction to Multivariate Post Quan-
tum Cryptograhpy,” Clemson University (April 2019)

Cartor, R., “An Introduction to Multivariate Cryptography,” Butler
University (November 2018)

Cartor, R., “EFLASH: A New Multivariate Encryption Scheme,” Con-
ference on Selected Areas in Cryptography, University of Calgary (Au-
gust 2018)

Cartor, R., “EFLASH: Introduction and Analysis,” Graduate Student
Seminar, University of Louisville (November 2017)

Cartor, R., “A Review of Collective Approval,” Graduate Student Sem-
inar, University of Louisville (October 2016)

Cartor, R., “An HFE Example,” Graduate Student Seminar, University
of Louisville (March 2016)

Cartor, R., Gipson, R., Vates, J., “On the Differential Security of the
HFEv- Signature Primitive,” Algebra-Combinatorics Seminar, Univer-
sity of Louisville (October 2015)

Cartor, R. “Estimating the Size of a Polynomial,” Bluegrass Undergrad-
uate Mathematics Symposium, Centre College (September 2013)

Posters

Cartor, R., “Computational Algebraic Geometry in Finite Fields,” As-
sociation for Women in Mathematics Research Symposium (April 2017)

95



Cartor, R., “Estimating the Size of a Polynomial,” Undergraduate Schol-
arship Poster Session, Bellarmine University (Winning Poster–April 2014)

Cartor, R., “Minimum Number of Necessary Sudoku Clues,” Undergrad-
uate Scholarship Poster Session, Bellarmine University (April 2014)

Cartor, R., “Estimating the Size of a Polynomial,” Nebraska Conference
of Undergraduate Women in Mathematics (Jan 31-Feb 2 2014)

PROFESSIONAL DEVELOPMENT

Indiana MAA Sectional Meeting October 2018
Hanover College

Selected Areas in Cryptography August 2018
University of Calgary-Awarded Conference Funding

AWM Research Symposium April 8-9 2017
University of California, Los Angeles

PQCrypto Feb 2016
Fukuoka Japan-Awarded Conference Funding

AWM Research Symposium April 2015
University of Maryland

Ohio River Analysis Meeting February 2015
University of Cincinnati

Nebraska Conference for Undergraduate Women in Math Jan 31-Feb 2 2014
University of Nebraska

Bluegrass Undergraduate Mathematics Symposium September 2013
Centre College

Research Experience for Undergraduates (REU) Summer 2013
Kent State University

Bluegrass Undergraduate Mathematics Symposium September 2012
Centre College

DEPARTMENTAL SERVICE

Vice President of the University of Louisville’s American Mathematical
Society Student Chapter 2017-present

Co-Chair of the Graduate Student Seminars 2015-present

96



AWARDS/HONORS

Selected Areas in Cryptography Stipend 2018
Partial Support from Department of Mathematics Travel Fund 2017 & 2018
Graduate Student Counsel Travel Fund, University of Louisville 2016 & 2018
PQCrypto 2016 Grant 2016
Faculty Merit Award 2014
Faculty Merit Award–Mathematics 2014
Sister Mary Casilda Science Award 2014
In Veritatis Amore Award Nominee 2014
Chi Alpha Sigma Inducted 2014
Kappa Gamma Pi Inducted 2014
Omicron Delta Kappa Inducted 2014
Dean’s List Fall and Spring 2010-2014
Lenihan Memorial Award for Campus and Community Service 2012
Who’s Who Recognition 2012
Monsignor Horrigan Scholarship 2010

PROFESSIONAL MEMBERSHIPS

Association for Women in Mathematics
Mathematical Association of America
American Mathematical Society

COMMUNITY ENGAGEMENT

Head Coach of Presentation Academy Dance Team 2015-2019
Assistant Coach of Presentation Academy Dance Team 2014-2015
Head Coach of Atherton High School Dance Team 2013-2014

97


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	8-2019

	A study of big field multivariate cryptography.
	Ryann Cartor
	Recommended Citation


	tmp.1560523492.pdf._mEUv

